THE CLASS OF SUBEXPONENTIAL DISTRIBUTIONS

By Jozef L. Teugels

University of Louvain

The class $\mathscr S$ of subexponential distributions is characterized by F(0)=0, $1-F^{(2)}(x)\sim 2\{1-F(x)\}$ as $x\to\infty$. New properties of the class $\mathscr S$ are derived as well as for the more general case where $1-F^{(2)}(x)\sim\beta\{1-F(x)\}$. An application to transient renewal theory illustrates these results as does an adaptation of a result of Greenwood on randomly stopped sums of subexponentially distributed random variables.

1. Introduction. Let F be a distribution function on $(0, \infty)$ for which F(0+)=0, F(x)<1 for all x>0, $F(\infty)=1$. Let the Laplace-Stieltjes transform of F be denoted by ϕ .

The distribution F is said to belong to the subexponential class $\mathscr S$ if

$$\lim_{x \to \infty} \frac{1 - F^{(2)}(x)}{1 - F(x)} = 2.$$

In spite of the simplicity of their definition, subexponential distributions have not been studied in much detail. The first paper dealing with \mathscr{S} is due to Chistyakov [3], where an application to branching processes is given. Since then essential results in the latter field have been obtained using properties of \mathscr{S} [1]. Especially the papers by Chover, Ney and Wainger [4, 5] are important in this connection. See also the papers by Pakes [10] and W. L. Smith [11].

In this paper we give a few new properties of \mathcal{S} together with an application to renewal theory. Among others we will give proofs of the results, stated without proof in [12]. An adaptation of a recent result of Greenwood [8] is included as a further illustration.

2. Properties of \mathcal{S} . An elegant and basic property of \mathcal{S} was found by Chistyakov [3]; for a proof see also [1].

LEMMA 1.
$$F \in \mathscr{S}$$
 iff for every $n = 2, 3, \dots \lim_{x \to \infty} (1 - F^{(n)}(x))/(1 - F(x)) = n$. As a complement we prove in Section 3:

THEOREM 1. (i) $F \in \mathcal{S}$ if and only if $(1 - F^{(2)}(x))/(1 - F(x)) \to \beta \in (0, \infty)$ and $\phi(\lambda)$ is not analytic at $\lambda = 0$;

(ii)
$$(1 - F^{(2)}(x))/(1 - F(x)) \rightarrow \beta > 2$$
 if and only if $F(x) = \beta/2 \setminus_0^x e^{-\gamma y} G(dy)$ where $G \in \mathscr{S}$ and $\phi(-\gamma) = \beta/2$, $\gamma > 0$.

Theorem 1 (ii) provides us with a characterization of the class $\mathcal{S}(d)$ of distributions, allied to the subexponential class, and treated in [5] in connection with

Received November 18, 1974; revised March 4, 1975.

AMS 1970 subject classifications. Primary 60E05; Secondary 60G40.

Key words and phrases. Subexponential distributions, regular variation, renewal theory, branching process, random sum.

branching processes. For simplicity we say that $F \in \mathscr{S}_r$ iff F is of the form given in (ii) or iff $1/\phi(-\gamma) \int_0^x e^{ry} F(dy) \in \mathscr{S} \equiv \mathscr{S}_0$. It then follows that $\mathscr{S}(d)$ coincides with \mathscr{S}_r where $d = \beta/2$.

The above result proves useful in deriving comparison theorems in transient renewal theory as illustrated in Theorem 4. Another elegant result is due to Kesten-Athreya-Ney [1].

LEMMA 2. If $F \in \mathcal{S}$ then for any $\varepsilon > 0$ there exists a $K < \infty$ independent of n such that for all $x \ge 0$ and $n = 2, 3, \cdots$

$$\frac{1-F^{(n)}(x)}{1-F(x)} \leq K(1+\varepsilon)^n.$$

LEMMA 3 [1, 3]. If $F \in \mathcal{S}$, then $1 - F(\log x)$ is slowly varying as $x \to \infty$, i.e. as $x \to \infty$, uniformly on compact y-sets

$$\frac{1-F(x+y)}{1-F(x)}\to 1.$$

This result plays a fundamental role in the study of \mathcal{S} ; unfortunately it does not characterize \mathcal{S} .

Since \mathscr{S} is defined by a property of $F^{(2)}$ it seems intuitively difficult to characterize \mathscr{S} solely in terms of F. The next result contains a nontrivial sharpening of a result of Chistyakov [3]. We put $\psi(x) = -\log\{1 - F(x)\}$.

THEOREM 2. If the following conditions are satisfied, then $F \in \mathcal{S}$:

- (i) $\psi(x)$ is asymptotically concave;
- (ii) there exists a function g such that $0 < g(x) \rightarrow \infty$, $x g(x) \rightarrow \infty$ for which

$$\lim_{x \to \infty} \frac{1 - F[x - g(x)]}{1 - F(x)} = 1;$$

(iii) $\psi(x) \exp\{-\psi[g(x)]\} \to 0 \text{ as } x \to \infty.$

Theorem 2 or the method used in its proof provides us with the following examples of members of \mathcal{S} .

COROLLARY 1. If ψ' is nonincreasing and

$$\lim\nolimits_{\varepsilon\to 0}\lim\nolimits_{x\to\infty}\psi(x)\exp\Big\{-\psi\left[\frac{\varepsilon x}{\psi(x)}\right]\!\Big\}\;,$$

then $F \in \mathcal{S}$.

COROLLARY 2. (i) If $1 - F(x) \sim x^{-\alpha}L(x)$; $\alpha \ge 0$ and L is slowly varying, then $F \in \mathcal{S}$;

(ii) if $\psi(x) \sim x^{\alpha}L(x)$, $0 < \alpha < 1$ and L is slowly varying, then $F \in \mathcal{S}$.

Part (i) has been derived by Feller [7], Chistyakov [3]. Part (ii) extends a result in [1, 3]. We can similarly show that if $\psi(x) = x(\log x)^{-\beta}$, $\beta > 0$, then $F \in \mathscr{S}$ iff $\beta > 1$; this shows that (iii) in Theorem 2 cannot be dropped entirely.

The next result shows that \mathcal{S} is closed under asymptotic equality:

THEOREM 3. If $F \in \mathcal{S}$ and $1 - F(x) \sim 1 - G(x)$ then $G \in \mathcal{S}$.

3. Proofs.

3a. Proof of Theorem 1(i). Assume $(1 - F^{(2)}(x))/(1 - F(x)) \rightarrow \beta$, $\phi(\lambda)$ singular at 0.

Since $1 - F^{(2)}(x) = 1 - F(x) + \int_0^x [1 - F(x - y)]F(dy)$ we might as well assume that

(1)
$$I(x) \equiv \int_0^x \frac{1 - F(x - y)}{1 - F(x)} F(dy) \to \beta - 1.$$

Since F is nondecreasing we have for every A such that $0 \le A \le x$

(2)
$$I(x) \ge \int_A^x \frac{1 - F(x - y)}{1 - F(x)} F(dy) + F(A)$$
$$\ge \frac{1 - F(x - A)}{1 - F(x)} \{ F(x) - F(A) \} + F(A).$$

Hence by (1)

(3)
$$1 \le \frac{1 - F(x - A)}{1 - F(x)} \le \frac{I(x) - F(A)}{F(x) - F(A)} \to \frac{\beta - 1 - F(A)}{1 - F(A)} \equiv M(A).$$

Incidentally, putting A = 0, we obtain $\beta \ge 2$. For every $0 \le y$, finite

$$1 \le \liminf_{x \to \infty} \frac{1 - F(x - y)}{1 - F(x)} \le \limsup_{x \to \infty} \frac{1 - F(x - y)}{1 - F(x)} \le M(y).$$

Let $\{x_n; n = 1, 2, \dots\}$ be a nonnegative sequence of real numbers, increasing to ∞ with n. Put

$$t_n(y) = \frac{1 - F(x_n - y)}{1 - F(x_n)}.$$

Then $\{t_n(y), n = 1, 2, \dots\}$ is a sequence of functions, uniformly bounded on finite intervals, by the selection principle [7, 14] there exists a subsequence $\tau_n \equiv x_{m_n} \uparrow \infty$ such that everywhere on $(0, \infty)$

$$\mu_n(y) \equiv \frac{1 - F(\tau_n - y)}{1 - F(\tau_n)} \to \mu(y) .$$

The limit $\mu(y)$ satisfies $\mu(0) = 1$, $\mu(y + s) = \mu(y)\mu(s)$; further $\mu(y)$ is non-decreasing in y and is finite. But then $\mu(y) = e^{\gamma y}$ where $\gamma \ge 0$.

But then for any finite A by Fatou's lemma

$$\int_{0}^{A} e^{\gamma y} F(dy) = \int_{0}^{A} \lim_{n \to \infty} \frac{1 - F(\tau_{n} - y)}{1 - F(\tau_{n})} F(dy)
\leq \lim_{n \to \infty} \int_{0}^{\tau_{n}} \frac{1 - F(\tau_{n} - y)}{1 - F(\tau_{n})} F(dy) = \beta - 1.$$

Letting $A \to \infty$ we see that $\phi(-\gamma) \le \beta - 1$, where $\gamma \ge 0$. By the Vivanti-Pringsheim theorem the abscissa of convergence of $\phi(\lambda)$ is a singularity of $\phi(\lambda)$, hence $\gamma = 0$ for otherwise $\phi(\lambda)$ would be analytic.

This implies that for any finite A

$$\lim_{n\to\infty}\frac{1-F(\tau_n-A)}{1-F(\tau_n)}=1\;,$$

and since the same argument can be repeated for any subsequence we conclude that

(4)
$$\lim_{t \to \infty} \frac{1 - F(t - A)}{1 - F(t)} = 1$$

for any finite A.

It remains to show that (4) together with (1) implies that $\beta = 2$. Substitute τ_n for x in (1); then for any given $\varepsilon > 0$ we can by (1) choose B so large that

$$\int_{B}^{\tau_{n}} \frac{1 - F(\tau_{n} - y)}{1 - F(\tau_{n})} F(dy) < \varepsilon$$

for $n \ge n_0(\varepsilon)$. But then by bounded convergence and (4)

$$\int_0^B \frac{1 - F(\tau_n - y)}{1 - F(\tau_n)} F(dy) \to F(B) \leq 1.$$

Hence for n_0 large enough

$$\lim_{n\to\infty} \int_0^{\tau_n} \frac{1 - F(\tau_n - y)}{1 - F(\tau_n)} F(dy) \le 1 + \varepsilon$$

and henceforth $\beta = 2$. This proves one implication.

Conversely, if $F \in \mathcal{S}$ then Chistyakov has shown that $\phi(\lambda)$ is not analytic. A proof following Chistyakov's ideas is contained in the proof of part (ii).

3b. Proof of Theorem 1 (ii). Assume $\lim_{x\to\infty} (1-F^{(2)}(x))/(1-F(x)) = \beta > 2$. Again we can show that $\phi(-\gamma) \le \beta - 1$ as before, where now $\gamma > 0$ since otherwise $\beta = 2$ by part (i). Then $\phi(\lambda) = \int_0^\infty e^{-\lambda x} F(dx)$ exists for Re $\lambda \ge -\gamma$ by well-known properties of the Laplace-Stieltjes transform.

We show that $\lambda = -\gamma$ is actually a singularity of $\phi(\lambda)$. This follows partially from the Vivanti-Pringsheim theorem [14]. Indeed, pick any $\varepsilon > 0$. Then for all x > 0

$$\int_0^\infty e^{(\gamma+\varepsilon)y} F(dy) > e^{(\gamma+\varepsilon)x} \{1 - F(x)\}.$$

By the above construction $\psi(\tau_n) - \psi(\tau_n - y) \rightarrow \gamma y$, or

$$[\psi(\tau_n) - \gamma \tau_n] - [\psi(\tau_n - y) - \gamma(\tau_n - y)] \to 0.$$

By a classical result of Cauchy or by the fact that for any slowly varying function L(x), $\log L(x)/\log x \to 0$ as $x \to \infty$ [7, 9] we obtain that since $\tau_n \uparrow \infty$

$$\tau_n^{-1}\{\phi(\tau_n) - \gamma \tau_n\} \to 0$$

or

$$\phi(-\gamma - \varepsilon) > \exp\{(\gamma + \varepsilon)\tau_n - \psi(\tau_n)\} = \exp\tau_n \left\{ \gamma + \varepsilon - \frac{\psi(\tau_n)}{\tau} \right\}.$$

Choose n so large that $|\gamma - \psi(\tau_n)/\tau_n| < \varepsilon/2$, then since $\varepsilon > 0$

$$\phi(-\gamma - \varepsilon) > \exp\left\{\frac{\varepsilon}{2}\tau_n\right\} \to \infty$$
.

Hence $\lambda = -\gamma$ is a singularity of $\phi(\lambda)$.

Now put

$$G(x) = \frac{1}{\phi(-\gamma)} \int_0^x e^{\gamma y} F(dy)$$

then G(x) is a distribution function with Laplace-Stieltjes transforms $\phi_{\gamma}(\lambda) = \phi(\lambda - \gamma)/\phi(-\gamma)$. Using some elementary algebra one easily shows that $(1 - F^{(2)}(x))/(1 - F(x)) \rightarrow \beta$ implies

(5)
$$\lim_{x\to\infty} \frac{1-G^{(2)}(x)}{1-G(x)} = \frac{\beta}{\phi(-\gamma)} \equiv \beta_{\gamma}.$$

By the above considerations $\phi_{\gamma}(\lambda)$ is singular at $\lambda = 0$; but then by (i) of this theorem $\beta_{\gamma} = 2$ or $\beta = 2\phi(-\gamma)$. Hence from the definition of G(x)

$$F(x) = \frac{\beta}{2} \int_0^x e^{-\gamma y} G(dy)$$

where $G(x) \in \mathcal{S}$.

Conversely if F(x) is of the above form the same algebra as used to derive (5) proves that $(1 - F^{(2)}(x))/(1 - F(x)) \rightarrow \beta > 2$ since $\gamma > 0$. This proves the theorem.

Corollary 3. If $F \in \mathscr{S}_{\gamma}$, then $\phi(\lambda)$ has a singularity at $\lambda = -\gamma \leq 0$.

COROLLARY 4. If $F \in \mathcal{S}_{\gamma}$, then $x^{-1}\psi(x) \to \gamma$.

We remark that putting A = -y and $\beta = 2$ in (3) we proved also Lemma 3.

3c. Proof of Theorem 2. Similarly to the Feller inequalities [7] we can show that for any t < x/2

(6)
$$2F(t) + J(x,t) \le \frac{1 - F^{(2)}(x)}{1 - F(x)} \le 2 \frac{1 - F(x-t)}{1 - F(x)} + J(x,t)$$

where

$$J(x, t) = \int_{t}^{x-t} \frac{1 - F(x - u)}{1 - F(x)} F(du).$$

Using $\psi(x)$ as defined above we obtain

$$J(x, t) = \int_t^{x-t} e^{\psi(x) - \psi(x-u) - \psi(u)} \psi(du).$$

We show that under the three given conditions $J(x, g(x)) \to 0$ as $x \to \infty$. By the asymptotic concavity, and $0 < t \le u \le x/2 \le x - u \le x - t < x$,

$$\psi(x-u) + \psi(u) \ge \psi(x-t) + \psi(t).$$

Now $F \in \mathcal{S}$ iff $J(x, g(x)) \to 0$ as $x \to \infty$. But

$$J(x, g(x)) \le \frac{1 - F[x - g(x)]}{1 - F(x)} a(x)$$

where

$$a(x) = \{1 - F[g(x)]\} \log \{1 - F[g(x)]\} - \{1 - F[g(x)]\} \log \left\{\frac{1 - F[x - g(x)]}{1 - F(x)}\right\} - \{1 - F[g(x)]\} \log \{1 - F(x)\}.$$

The first term tends to zero since $\lim_{u\to 0} u \log u = 0$; the second clearly tends to zero, as does the third by condition (iii) of the theorem. This finishes the proof.

3d. Proof of Corollary 1. Assume $\psi'(x) \downarrow$. Then $x\psi'(x) \leq \int_0^x \psi'(u) du = \psi(x)$. Moreover $\psi'(u) \geq \psi'(t-u)$ for $u \leq t/2$; by integration we obtain

$$\psi(u) + \psi(x - u) \ge \psi(t) + \psi(x - t), \qquad t \le u \le x - t$$

which implies (i).

To prove (ii) take any $\varepsilon > 0$ and put $g_{\varepsilon}(x) = \varepsilon x/\psi(x)$. By the mean value theorem there exists a $\theta(x) \in [0, 1]$ such that

$$0 \le \log \frac{1 - F[x - g_{\epsilon}(x)]}{1 - F(x)} = \psi(x) - \psi \left\{ x - \varepsilon \frac{x}{\psi(x)} \right\} = \frac{\varepsilon x}{\psi(x)} \psi' \left\{ x - \frac{\theta \varepsilon x}{\psi(x)} \right\}.$$

Now $\psi' \downarrow$ and hence this expression is bounded by

$$\frac{\varepsilon x}{\psi(x)} \psi' \left\{ x - \frac{\varepsilon x}{\psi(x)} \right\}$$

$$= \varepsilon \frac{\left[x - \frac{\varepsilon x}{\psi(x)} \right] \psi' \left[x - \frac{\varepsilon x}{\psi(x)} \right]}{\psi \left[x - \frac{\varepsilon x}{\psi(x)} \right]} \cdot \frac{1}{1 - \varepsilon/\psi(x)} \cdot \frac{\psi[x - \varepsilon x/\psi(x)]}{\psi(x)}$$

$$\leq \varepsilon \cdot 1 \cdot \left\{ 1 - \frac{\varepsilon}{\psi(x)} \right\}^{-1} \cdot 1 \leq 2\varepsilon \quad \text{for } x \text{ large enough.}$$

This shows that

$$\lim_{\varepsilon \downarrow 0} \lim_{x \to \infty} \frac{1 - F[x - g_{\varepsilon}(x)]}{1 - F(x)} = 1.$$

The additional condition in the statement of the corollary replaces (iii) of Theorem 2.

- 3e. Proof of Corollary 2.
- (i) The proof is simple by using $g(x) = \varepsilon x$ and letting $\varepsilon \to 0$.
- (ii) We use some results from the theory of regular variation [6, 7, 9]. It is well-known that since $\alpha > 0$ we can replace $\psi(x) = x^{\alpha}L(x)$ by $\psi_1(x) = x^{\alpha}L_1(x)$ where $\psi_1(x)$ is differentiable and $xL_1'(x)/L_1(x) \to 0$. But then $\psi_1'(x) \sim \alpha x^{\alpha-1}L_1(x)$ which is asymptotically equal to a nonincreasing function since $\alpha 1 < 0$. Hence $\psi(x) \sim x^{\alpha}L_2(x)$ where $L(x) \sim L_2(x)$ and $x^{\alpha}L_2(x)$ is asymptotically concave.

Put

$$\psi(x) = x^{\alpha} L_2(x) L_3(x)$$

where $L_3(x) \rightarrow 1$.

Pick any $\varepsilon \leq \frac{1}{2}$ and choose x so large that $|L_3(x-u)-1|<\varepsilon$ for $t\leq u\leq x-t$. Hence for this range

$$\psi(x - u) + \psi(u) = (x - u)^{\alpha} L_{2}(x - u) L_{3}(x - u) + u^{\alpha} L_{2}(u) L_{3}(u)
\geq (1 - \varepsilon) \{ (x - u)^{\alpha} L_{2}(x - u) + u^{\alpha} L_{2}(u) \}
\geq \frac{1 - \varepsilon}{1 + \varepsilon} \{ \psi(x - t) + \psi(t) \}$$

since $x^{\alpha}L_2(x)$ is concave. For this fixed ε the proof of Theorem 2 can be repeated using in (ii) $g(x) = x^{\gamma}$ where $\gamma = (1 - \alpha)/2 > 0$. For (iii) choose $k \ge 1 + [\gamma^{-1}]$; then for x large enough $e^{-x} < Cx^{-k}$, hence

$$e^{-\psi[g(x)]}\psi(x) \leq C(1+\varepsilon)^2 x^{\alpha(1-\gamma k)} L(x) L^{-k}(x^{\gamma}) \to 0$$

by another property of slowly varying functions, since $\alpha(1 - \gamma k) < 0$.

3f. *Proof of Theorem* 3. As indicated in the proof of Theorem 1 it suffices to prove that

(7)
$$\lim_{x \to \infty} \int_0^x \frac{1 - G(x - y)}{1 - G(x)} G(dy) \le 1.$$

Let A be an arbitrary positive quantity. Then for x > A

$$I_1 \equiv \int_{x-A}^x \frac{1 - G(x - y)}{1 - G(x)} G(dy) \le \frac{G(x) - G(x - A)}{1 - G(x)} = \frac{1 - G(x - A)}{1 - G(x)} - 1.$$

Since $1 - F(x) \sim 1 - G(x)$, $I_1 \to 0$ as $x \to \infty$ for all finite A by Lemma 3.

Choose now $\varepsilon > 0$ and $y_0(\varepsilon)$ such that $1 - \varepsilon \le \{1 - G(y)\}/\{1 - F(y)\} \le 1 + \varepsilon$ for all $y \ge y_0$. Take $A \ge y_0$ and $x \ge y_0$. Then

$$\begin{split} I_2 &= \int_0^{x-A} \frac{1 - G(x - y)}{1 - G(x)} G(dy) \leq \frac{1 + \varepsilon}{1 - \varepsilon} \int_0^{x-A} \frac{1 - F(x - y)}{1 - F(x)} G(dy) \\ &= \frac{1 + \varepsilon}{1 - \varepsilon} \{1 - F(x)\}^{-1} \{G(x) - G * F(x) - \int_{x - A}^{x} [1 - F(x - y)] G(dy)\} \\ &\leq \frac{1 + \varepsilon}{1 - \varepsilon} \left\{1 - \frac{1 - G(x)}{1 - F(x)} + \int_0^x \frac{1 - G(x - y)}{1 - F(x)} F(dy)\right\}. \end{split}$$

But the integral is dominated by

$$(1+\varepsilon) \int_0^{x-A} \frac{1-F(x-y)}{1-F(x)} F(dy) + [1-G(A)] \int_{x-A}^x \frac{F(dy)}{1-F(x)} \le (1+\varepsilon)^2 + \varepsilon$$

since $F \in \mathcal{S}$ and by Lemma 3 on F again. Putting everything together we obtain

$$\lim_{x\to\infty} \int_0^x \frac{1-G(x-y)}{1-G(x)} G(dy) \leq \lim_{x\to\infty} I_1 + \lim_{x\to\infty} I_2 \leq 0 + \frac{(1+2\varepsilon)^2}{1-\varepsilon}.$$

Letting $\varepsilon \to 0$ we see that G satisfies (7). This finishes the proof.

COROLLARY 5. If $F \in \mathcal{S}_r$ and $1 - F \sim 1 - G$ then $G \in \mathcal{S}_r$.

PROOF. Since $1 - F \sim 1 - G$ we have successively

$$1 - F_{\gamma}(x) \equiv \frac{1}{\phi(-\gamma)} \int_{x}^{\infty} e^{\gamma y} F(dy)$$

$$= \frac{1}{\phi(-\gamma)} \left\{ e^{\gamma x} [1 - F(x)] + \gamma \int_{x}^{\infty} e^{\gamma y} [1 - F(y)] dy \right\}$$

$$\sim \frac{1}{\phi(-\gamma)} \int_{x}^{\infty} e^{\gamma y} G(dy) \equiv 1 - G_{\gamma}(x).$$

But $F_{\tau} \in \mathcal{S}$. So from the above theorem $G_{\tau} \in \mathcal{S}$ and hence $G \in \mathcal{S}_{\tau}$.

Actually one can assume $1 - F \sim c(1 - G)$ for c > 0 and still reach the same conclusion.

4. An application to renewal theory. Let F be a defective distribution on $(0, \infty)$ such that F(0+) = 0, $F(x) < F(\infty) = \alpha$ for all $x \ge 0$ where $0 < \alpha < 1$. The renewal function associated with F is given by

$$U(x) = \sum_{n=1}^{\infty} F^{(n)}(x)$$

and satisfies the renewal integral equation

(8)
$$U(x) = F(x) + F * U(x)$$
.

As is obvious $U(\infty) = \alpha/(1-\alpha)$. We are interested in the common tail behavior of $F(\infty) - F(x)$ and $U(\infty) - U(x)$. The importance of $\mathcal S$ is fully illustrated in the next theorem which generalizes a result of Callaert-Cohen [2].

THEOREM 4. The following statements are equivalent.

- (i) $F^{-1}(\infty)F(x) \in \mathcal{S}$;
- (ii) $U^{-1}(\infty)U(x) \in \mathcal{S}$;

(iii)
$$\lim_{x\to\infty} \frac{1-U^{-1}(\infty)U(x)}{1-F^{-1}(\infty)F(x)} = \frac{1}{1-\alpha}$$
.

PROOF OF (i) \rightarrow (ii). A short and elegant proof can be based on Lemma 2 and can be found in [1]. Another proof in the spirit of [2] can be derived by the method used in the second part of this proof.

 $(ii) \rightarrow (i)$. Let us use some abbreviations:

$$K^{-1}(x) = G(x) = \frac{U(\infty) - U(x)}{F(\infty) - F(x)} \quad \text{and} \quad S(x, y) = \frac{U(\infty) - U(x - y)}{U(\infty) - U(x)}.$$

The integral equation (8) can be rewritten in the form

(9)
$$1 - K(x)[1 + U(\infty)] = \int_0^x S(x, y) F(dy).$$

Since $S(x, y) \ge 1$, we obtain that

(10)
$$\bar{K} \equiv \limsup_{x \to \infty} K(x) \leq (1 - \alpha)^2 \equiv c_0.$$

To obtain an inequality in the other direction, take A such that 0 < A < x and write

$$1 - K(x)[1 + U(\infty)] = \{ \int_0^A + \int_A^{x-A} + \int_{x-A}^x \} S(x, y) F(dy) = I + II + III.$$

The integrals I and III can be easily estimated; the second requires first an integration by parts.

$$I \leq S(x, A)F(A)$$

$$II \leq \{F(\infty) - F(A)\}S(x, A) - \{U(\infty) - U(A)\}S(x, A)K(x - A)$$

$$+ \int_A^{x-A} K(x - t)S(x, t)U(dt)$$

$$III \leq U(\infty)K(x - A)S(x, A) - U(\infty)K(x).$$

Combination of these estimates leads to

(11)
$$1 - K(x) \le U(A)K(x - A)S(x, A) + F(\infty)S(x, A) + \int_A^{x-A} K(x - t)S(x, t)U(dt).$$

Pick an $\varepsilon > 0$. Choose A so that for large enough x, $1 \le S(x, A) \le 1 + \varepsilon$ and $\int_{[A,x-A]} S(x,t) U(dt) \le \varepsilon$ which can be done since by assumption $U(x)/U(\infty) \in \mathscr{S}$. But then for x large enough

$$1 - K(x) < U(\infty)(\bar{K} + \varepsilon)(1 + \varepsilon) + F(\infty)(1 + \varepsilon) + (\bar{K} + \varepsilon)\varepsilon.$$

Letting x tend to infinity and then $\varepsilon \downarrow 0$ we see that $\bar{K} \geq c_0$. Hence $\bar{K} = c_0$. To prove that also

$$\underline{K} \equiv \lim \inf_{x \to \infty} K(x) = c_0$$

we start again from (11). For x large and A as above we rewrite (11) in the form

$$K(x) \ge 1 - U(A)(\bar{K} + \varepsilon)S(x, A) - F(\infty)S(x, A) - \varepsilon(\bar{K} + \varepsilon)$$
.

Letting x tend to infinity we obtain

$$\underline{K} \ge 1 - U(A)(\overline{K} + \varepsilon) - F(\infty) - \varepsilon(\overline{K} + \varepsilon)$$
.

Now let $\varepsilon \downarrow 0$ and then $A \uparrow \infty$ to obtain that $\underline{K} \geq c_0$. This then shows that

$$\lim_{x\to\infty} K(x) = c_0 = (1-\alpha)^2.$$

But then also $F(x)/F(\infty)$ belongs to $\mathcal S$ by virtue of Theorem 3.

 $(iii) \rightarrow (i)$. We write (8) in the form

(12)
$$G(x) = 1 + U(\infty) + \int_0^x G(x - y) \frac{F(\infty) - F(x - y)}{F(\infty) - F(x)} F(dy)$$

where $G(x) \to c \in (0, \infty)$. Since G(x) is bounded away from zero and infinity it is clear that

$$\lim \sup_{x \to \infty} \int_0^x \frac{F(\infty) - F(x - y)}{F(\infty) - F(x)} F(dy) < \infty.$$

Following the same argument as in the proof of Theorem 1(i), we can find a sequence $\tau_n \uparrow \infty$ such that

$$\frac{F(\infty) - F(\tau_n - y)}{F(\infty) - F(\tau_n)} \to e^{\gamma y}$$

for $\gamma \ge 0$. Using this sequence in (12) we obtain by Lebesgue's theorem

$$c = 1 + U(\infty) + c \int_0^\infty e^{\gamma y} F(dy)$$
.

Since however $F(\infty) = \alpha$ and $c = (1 - \alpha)^{-2}$, necessarily $\gamma = 0$. But then

$$T(x, y) \equiv \frac{F(\infty) - F(x - y)}{F(\infty) - F(x)} \rightarrow 1$$

as $x \to \infty$ for all y.

Given $\varepsilon > 0$, choose A so large that $|G(y) - c| < \varepsilon$ for y > A. Then take x so large that $T(x, A) - 1 \le \varepsilon$. Then

$$\begin{aligned} |c \, \int_0^x T(x,y) F(dy) - [G(x) - 1 - U(\infty)]| \\ & \leq \int_0^{x-A} |G(x-y) - c| T(x,y) F(dy) + \int_{x-A}^x |G(x-y) - c| T(x,y) F(dy) \\ & \leq \varepsilon \int_0^x T(x,y) F(dy) + \{ \sup_{0 \leq t \leq A} G(t) + c \} F(\infty) \{ T(x,A) - 1 \} \leq M \varepsilon. \end{aligned}$$

for some constant M.

Letting $x \to \infty$ and then $\varepsilon \to 0$ we see that

$$\lim_{x\to\infty} \int_0^x \frac{F(\infty) - F(x-y)}{F(\infty) - F(x)} F(dy) = \frac{c-1 - U(\infty)}{c}.$$

Put $H(x) = F^{-1}(\infty)F(x)$. Then

$$\frac{1 - H^{(2)}(x)}{1 - H(x)} = \frac{1}{F(\infty)} \left\{ \frac{F^2(\infty) - F(\infty)F(x)}{F(\infty) - F(x)} + \int_0^x \frac{F(\infty) - F(x - y)}{F(\infty) - F(x)} F(dy) \right\}$$

and henceforth

$$\lim_{x\to\infty} \frac{1-H^{(2)}(x)}{1-H(x)} = 1 + \frac{1}{F(\infty)} \frac{c-1-U(\infty)}{c} \equiv 2.$$

But then $H \in \mathcal{S}$; by using Theorem 3 also $U(\infty)U^{-1}(x) \in \mathcal{S}$. This finishes the

We generalize the above theorem to the class \mathcal{S}_r ; part of the theorem can be found in [5].

COROLLARY 6. Assume that $\phi(-\gamma) = \int_0^\infty e^{\gamma x} F(dx) < 1$ where $\gamma \ge 0$. Then the following statements are equivalent.

- (i) $F^{-1}(\infty)F(x) \in \mathscr{S}_r$;

(ii)
$$U^{-1}(\infty)U(x) \in \mathcal{S}_{\gamma};$$

(iii) $\lim_{x \to \infty} \frac{1 - U^{-1}(\infty)U(x)}{1 - F^{-1}(\infty)F(x)} = \frac{1}{1 - \phi(-\gamma)}.$

Proof. Put $F_r(x) = \int_0^x e^{ry} F(dy)$; then (i) is equivalent to

(i)' $F_r^{-1}(\infty)F_r(x) \in \mathcal{S}$ in view of Theorem 1.

Put $U_r(x) = \int_0^x e^{ry} U(dy)$; then (ii) is equivalent to

(ii)' $U_{\gamma}^{-1}(\infty)U_{\gamma}(x) \in \mathcal{S}$.

A simple calculation shows that U_r is the renewal function generated by F_r ; hence by Theorem 4, (i), (i)', (ii) and (ii)' are all equivalent to

$$(\mathrm{iii})' \ \lim_{x \to \infty} \frac{U_{\mathrm{r}}(\infty) - U_{\mathrm{r}}(x)}{F_{\mathrm{r}}(\infty) - F_{\mathrm{r}}(x)} = (1 - \phi(-\gamma))^{-2} \,.$$

Performing similar operations as in the proof of Corollary 5, one can then show that (iii)' is equivalent to (iii).

The above theorem shows clearly how \mathcal{S} is the natural class for a comparison theorem of the given character. For if the limit in (iii) is replaced by any constant c, we naturally end up in a class \mathcal{S}_r .

Applications to branching processes can be derived by consulting the framework of [1]. In [12] an application to the ruin problem is investigated.

COROLLARY 7. [2]. With the above notations the following statements are equivalent: (i) $F(\infty) - F(x) \sim x^{-\beta}L(x)$;

(ii)
$$U(\infty) - U(x) \sim (1 - \alpha)^{-2} x^{-\beta} L(x)$$
.

5. On a theorem of Greenwood. In [8] Greenwood considers the following problem. Let S_n , $n = 1, 2, \cdots$ be a sequence of sums of independent, identically distributed random variables X_i , let N be a stopping time for S_n with finite mean. When is

$$\lim_{x \to \infty} \frac{P\{S_N > x\}}{P\{X_1 > x\}} = E(N) ?$$

Greenwood assumes that $P\{X_1 > x\} \sim x^{-\alpha}L(x)$, for $x \to \infty$. She shows that if $N \wedge n = \min(N, n)$, then for $n = 1, 2, \dots$

(13)
$$P\{S_{N \wedge n} > x\} \sim P\{X_1 > x\}E\{N \wedge n\}.$$

We show that if $F(x) \equiv P\{X_1 \leq x\} \in \mathcal{S}$, then (13) is satisfied. The basic step in the proof is the verification of the relation for $x \to \infty$

$$P\{S_n > x, S_{n-1} \le x, N \ge n\} - P\{S_{n-1} > x, S_n \le x, N \ge n\}$$

 $\sim P\{X_1 > x\}P\{N \ge n\}$

Conditioning on X_n and using the positivity of the random variables involved we have to show that

$$P\{x - X_n < S_{n-1} \le x, N \ge n\} \sim P\{X_1 > x\}P\{N > n\}.$$

The left hand side is equal to

 $P\{0 < S_{n-1} \le x, N \ge n\}P\{X_1 > x\} + P\{0 < x - X_n < S_{n-1} \le x, N \ge n\}$. Hence the first term divided by $P\{X_1 > x\}$ tends to $P\{N \ge n\}$; the second is bounded above by

$$\int_0^x \{F^{(n-1)}(x) - F^{(n-1)}(x-u)\} F(du)$$

which leads to

$$\int_0^x \frac{F^{(n-1)}(x) - F^{(n-1)}(x-u)}{1 - F(x)} F(du)$$

$$= \frac{[1 - F^{(n)}(x)] - [1 - F^{(n-1)}(x)]F(x) - [1 - F(x)]}{1 - F(x)}$$

$$\to n - (n-1) - 1 = 0 \quad \text{as} \quad x \to \infty.$$

The above result now allows an extension of Greenwood's results to a larger class of asymptotic decays, however for the case of positive random variables.

REMARK. This paper deals only with a few problems on \mathscr{S} . A sharpening of Theorem 2 would be helpful in studying the closure properties of \mathscr{S} under convolution, convex combinations, convergence in distribution, etc. A characterization of \mathscr{S} in terms of properties of $\phi(\lambda)$ would be highly interesting. An extension of \mathscr{S} to $(-\infty,\infty)$ might also be considered.

Acknowledgments. I express my sincere thanks to P. Ney and to a referee for their criticisms that led to the correction of some errors in an earlier version of the paper.

REFERENCES

- [1] ATHREYA, K. B. and NEY, P. E. (1972). Branching Processes. Springer, Berlin.
- [2] Callaert, H. and Cohen, J. W. (1973). A lemma on regular variation of a transient renewal function. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 24 275-278.
- [3] CHISTYAKOV, V. P. (1964). A theorem on sums of independent positive random variables and its application to branching random processes. Theor. Probability Appl. 9 640-648.
- [4] CHOVER, J., NEY, P. E. and WAINGER, S. (1973). Functions of probability measures. J. Analyse Math. 26 255-302.
- [5] CHOVER, J., NEY, P. E. and WAINGER, S. (1974). Degeneracy properties of subcritical branching processes. *Ann. Probability* 1 663-673.
- [6] DE HAAN, L. (1970). On Regular Variation and its Application to the Weak Convergence of Sample Extremes. MC Tract 32 Mathematisch Centrum, Amsterdam.
- [7] Feller, W. (1971). An Introduction to Probability Theory and its Applications 2 2nd ed. Wiley, New York.
- [8] Greenwood, P. (1973). Asymptotics of randomly stopped sequences with independent increments. Ann. Probability 1 317-321.
- [9] MATUSZEWSKA, W. (1962). Regularly increasing functions in connection with the theory of L*\(\phi\)-spaces. Studia Math. 21 317-344.
- [10] Pakes, A. G. (1974). On the tails of waiting-time distributions. Monash University, Clayton, Australia. (Preliminary report).
- [11] SMITH, W. L. (1972). On the tails of queueing time distributions. Mimeo Series No. 830, Dept. Statist., Univ. of North Carolina, Chapel Hill. (Preliminary report).
- [12] TEUGELS, J. L. (1975). On the class of subexponential distributions. *Teor. Verojatnost. i* Primenen. 19 854-855.
- [13] TEUGELS, J. L. and VERAVERBEKE, N. (1973). Cramèr-type estimates for the probability of ruin. CORE Discussion paper, No. 7316.
- [14] WIDDER, D. (1946). The Laplace Transform. Princeton Univ. Press.

FACULTEIT DER WETENSCHAPPEN DEPARTEMENT WISKUNDE CELESTIJNENLAAN 200B 3030 HAVERLEE, BELGIUM