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THE CLASS OF SUBEXPONENTIAL DISTRIBUTIONS

By JozEer L. TEUGELS
University of Louvain

The class & of subexponential distributions is characterized by F(0) =
0, 1 — F2)(x) ~ 2{1 — F(x)} as x — co. New properties of the class & are
derived as well as for the more general case where 1 — F'2)(x) ~ B{1 — F(x)}.
An application to transient renewal theory illustrates these results as does
an adaptation of a result of Greenwood on randomly stopped sums of sub-
exponentially distributed random variables.

1. Introduction. Let F be a distribution function on (0, co) for which
F(0+) =0, F(x) < 1 for all x > 0, F(co) = 1. Let the Laplace-Stieltjes trans-
form of F be denoted by ¢.

The distribution F is said to belong to the subexponential class /" if

1 —F%x) _,
1 — F(x)

In spite of the simplicity of their definition, subexponential distributions have
not been studied in much detail. The first paper dealing with & is due to
Chistyakov [3], where an application to branching processes is given. Since
then essential results in the latter field have been obtained using properties of
& [1]. Especially the papers by Chover, Ney and Wainger [4, 5] are important
in this connection. See also the papers by Pakes [10] and W. L. Smith [11].

In this paper we give a few new properties of & together with an application
to renewal theory. Among others we will give proofs of the results, stated
without proof in [12]. An adaptation of a recent result of Greenwood [8] is
included as a further illustration.

lim
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2. Properties of . An elegant and basic property of & was found by
Chistyakov [3]; for a proof see also [1].

LemMa 1. Fe &iff foreveryn =2,3,. .. lim,__, (1 — F™(x))/(1 — F(x)) = n.
As a complement we prove in Section 3:

THEOREM 1. (i) Fe & ifandonlyif (1 — F®(x))/(1 — F(x)) — B (0, o) and
@(2) is not analytic at 2 = 0;

(il) (1 — FP(x))/(1 — F(x)) — B > 2 if and only if F(x) = B/2 {5 e 7vG(dy)
where G e . and ¢(—r) = B/2, y > 0.

Theorem 1 (ii) provides us with a characterization of the class .5/(d) of distri-
butions, allied to the subexponential class, and treated in [5] in connection with
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branching processes. For simplicity we say that Fe & iff F is of the form
given in (i) or iff 1/¢(—7) {7 e"F(dy)e &= . It then follows that d)
coincides with &, where d = §/2.

The above result proves useful in deriving comparison theorems in transient
renewal theory as illustrated in Theorem 4. Another elegant result is due to
Kesten—-Athreya—Ney [1].

LEMMA 2. If F e & then for any ¢ > O there exists a K < oo independent of n
such that for all x =2 0 andn = 2,3, - --

1 — F™(x)

[~ Fx) < KA + o).

LemMA 3 [1, 3]. If Fe S, then | — F(log x) is slowly varying as x — oo, i.e.
as x — oo, uniformly on compact y-sets
1-Fx+y) _,q,
1 — F(x)

This result plays a fundamental role in the study of &; unfortunately it does
not characterize ..

Since & is defined by a property of F*® it seems intuitively difficult to charac-
terize & solely in terms of F. The next result contains a nontrivial sharpening
of a result of Chistyakov [3]. We put ¢(x) = —log {1l — F(x)}.

THEOREM 2. If the following conditions are satisfied, then F € &

(i) ¢(x) is asymptotically concave;
(ii) there exists a function g such that 0 < g(x) — oo, x — g(x) — oo for which

L— Flx— g _q,
1 — F(x)

(iii) ¢(x) exp{—¢[g(x)]} = 0 as x — co.

Theorem 2 or the method used in its proof provides us with the following
examples of members of ..

lim
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CoROLLARY 1. If ¢/ is nonincreasing and

lim, _, lim, .. $(x) exp { —¢ [?b%]} ,

then F ¢ &.

CoROLLARY 2. (i) If 1 — F(x) ~ x~*L(x); « = 0 and L is slowly varying, then
Fe

(il) if ¢(x) ~ x*L(x), 0 < a < 1 and L is slowly varying, then F ¢ /.
Part (i) has been derived by Feller [7], Chistyakov [3]. Part (ii) extends a result
in [1, 3]. We can similarly show that if ¢(x) = x(log x)=#, § > 0, then F e &
iff 8 > 1; this shows that (iii) in Theorem 2 cannot be dropped entirely.
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The next result shows that & is closed under asymptotic equality:
THEOREM 3. If Fe & and 1 — F(x) ~ 1 — G(x) then G € &.
3. Proofs.

3a. Proof of Theorem 1(i). Assume (1 — F®(x))/(1 — F(x)) — f, ¢(4) singu-
lar at 0.

Since 1 — F®(x) = 1 — F(x) + §¢[1 — F(x — y)]F(dy) we might as well as-
sume that

M 1) = G -G ) - 1

Since F is nondecreasing we have for every A such that 0 < 4 < x

z I_F(x_y)
@ 109 2 12 LT EC =0 ry) + )
1 — F(x — A) oy
zw{F(x) F(A)} + F(4) .

Hence by (1)
@) 1l Fa—A) ) —FA) B 1= FA) _ ey

=T 1-Fx) = Fx)— F(4) 1 — F(A)

Incidentally, putting 4 = 0, we obtain 8 > 2. For every 0 < y, finite

1 — Fix — )

1 — Fx—))
e = M(y)-

1 < liminf,_, —— =)
B 1 — F(x)

< limsup,_,,
Let {x,;n = 1,2, ...} be a nonnegative sequence of real numbers, increasing
to co with n. Put

— l—F(X”—-y)
tn()’)——fjm—'

Then {t,(y),n = 1,2, ...} is a sequence of functions, uniformly bounded on

finite intervals, by the selection principle [7, 14] there exists a subsequence

T, = X, 1 oo such that everywhere on (0, o)
F(Tn _ }’)

ta(y) = -

i Fey #(y) -

The limit p(y) satisfies p(0) = 1, pu(y + s) = p(y)u(s); further p(y) is non-
decreasing in y and is finite. But then p(y) = e where y = 0.
But then for any finite 4 by Fatou’s lemma

J& evF(dy) = {4 lim, ., %(T—)y_) F(dy)
1= Fe.—y)

< lim o G 270 =

Fdy)=p—1. "
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Letting 4 — co we see that ¢(—y) < f—1, where y = 0. By the Vivanti-
Pringsheim theorem the abscissa of convergence of ¢(2) is a singularity of ¢(2),
hence y = 0 for otherwise ¢(1) would be analytic.

This implies that for any finite 4

1 — F(z, — A) _
I_F(Tn) B

lin‘l"_“,° 1 )
and since the same argument can be repeated for any subsequence we conclude
that
) lim,_, L= Fu—4) _
1 — F(1)
for any finite A.

It remains to show that (4) together with (1) implies that 8 = 2. Substitute
t, for x in (1); then for any given ¢ > 0 we can by (1) choose B so large that
n I_F(Tn_y) F(d
B 1— F(z,) (dy) < e

for n = ny(e). But then by bounded convergence and (4)

s 1 — F(r, —y) -
1; —I—JT—F(dy) FB)y<1.

Hence for n, large enough

. 1 — F(r, —y)
lim,_ (i» —— 3 » " J)F(dy) < 1
n— SO l—F(T”) (}’)_ +8
and henceforth 8 = 2. This proves one implication.
Conversely, if F e 5 then Chistyakov has shown that ¢(2) is not analytic. A
proof following Chistyakov’s ideas is contained in the proof of part (ii).

3b. Proof of Theorem 1(ii). Assume lim,_ (1 — F®(x))/(1 — F(x)) = 5 > 2.

Again we can show that ¢(—7) < 8 — 1 as before, where now y > 0 since
otherwise § = 2 by part (i). Then ¢(4) = {5 e~**F(dx) exists for Re 1 = —7 by
well-known properties of the Laplace-Stieltjes transform.

We show that 2 = —r is actually a singularity of ¢(2). This follows partially
from the Vivanti-Pringsheim theorem [14]. Indeed, pick any ¢ > 0. Then for
all x >0

SSO e‘T+“"F(dy) > e(r+e)x{1 — F(x)} .

By the above construction ¢(r,) — ¢(z, — y) — 7y, or
[Sb(rn) - Tfn] - [Qb(?.'” - .y) - T(Tn - }’)] —0.

By a classical result of Cauchy or by the fact that for any slowly varying func-
tion L(x), log L(x)/log x — 0 as x — oo [7, 9] we obtain that since 7, T co

T”_l{ﬁb(f,.) - TT'»} -0
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or
B(—1 = ) > exp{(7 + 9z, — (=)} = expr, {1 + ¢ = L]
Choose n so large that |y — ¢(z,)/z,| < ¢/2, then since ¢ > 0

$(—7 — ) > exP{%n} — oo .

Hence 2 = —7 is a singularity of ¢(2).
Now put
1
G(x) = ——— {7 e""F(dy)
o(=1) "
then G(x) is a distribution function with Laplace-Stieltjes transforms ¢ (1) =
#(4 — 7)/¢(—7r). Using some elementary algebra one easily shows that

(I — F®(x))/(1 — F(x)) — B implies
) lim, _ 1-Gx) _ B
1-Gx)  ¢(=p)
By the above considerations ¢,(2) is singular at 2 = 0; but then by (i) of this
theorem 8, = 2 or 8 = 2¢(—r). Hence from the definition of G(x)

Il

ﬂr'

F(x) = £ 5 e-nG(ay)
where G(x) € &

Conversely if F(x) is of the above form the same algebra as used to derive
(5) proves that (1 — F™®(x))/(1 — F(x)) — 8 > 2 since y > 0. This proves the
theorem.

CoROLLARY 3. If F e 5, then ¢(2) has a singularity at 1 = —y < 0.
CoROLLARY 4. If Fe .S, then x~'(x) — 1.

We remark that putting 4 = —y and 8 = 2 in (3) we proved also Lemma 3.

3c. Proof of Theorem 2. Similarly to the Feller inequalities [7] we can show
that for any 1 < x/2

X 1 — F®(x) I — F(x — 1)
(6) 200 + 0, 0) 5 QL <2 L2 T

where

J(x, 1) = {2t IT_f(;_T;)QF(du) .

Using ¢(x) as defined above we obtain
J(x, 1) = (it ety dy) .

We show that under the three given conditions J(x, g(x)) — 0 as x — co. By the
asymptotic concavity, and 0 < t S u < x2 <x —u<x —t < x,

Plx —u) + ) 2 $x — 1) + (1) .
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Now F e & iff J(x, g(x)) — 0 as x — oco. But

1 — Flx — (9] 4,
s, 90) 5 = I at)

where
a) = (1 = Flo(]} log (1 = Flo()) — 1 — Flo(x)) log { == LI}
— {1 = Flg@)]} log {1 — F()

The first term tends to zero since lim,_, u log u = 0; the second clearly tends to
zero, as does the third by condition (iii) of the theorem. This finishes the proof.

3d. Proof of Corollary 1. Assume ¢/(x) |. Then x¢'(x) < (& ¢'(u) du = ¢(x).
Moreover ¢'(u) = ¢'(t — u) for u < t/2; by integration we obtain

Py £ Px —u) = Y1) + x —1), 1SuUSx—t

which implies (i).

To prove (ii) take any ¢ > 0 and put g,(x) = ex/¢(x). By the mean value
theorem there exists a f(x) € [0, 1] such that

L — Flx — 90)] _ 4ey — —e X o X gl fex
O=le—"r  — 9 b W}—sb—(x—)sb{ ¢’(")}'

Now ¢’ | and hence this expression is bounded by

59 ¢ T~ 59)
_. [x B nge();)]sbl [x - %:l . 1 dlx — ex/g(0)]
o] e R TE)
<e 1o {1 ¢(5x)}”‘. 1 <2 for x large enough.

This shows that

| — Flx — )] _
1 — F(x)

lim, , lim,_,
The additional condition in the statement of the corollary replaces -(iii) of
Theorem 2.

3e. Proof of Corollary 2.

(i) The proof is simple by using g(x) = ex and letting ¢ — 0.

(ii) We use some results from the theory of regular variation [6, 7, 9]. It is
well-known that since @ > 0 we can replace ¢(x) = x*L(x) by ¢,(x) = x*L,(x)
where ¢,(x) is differentiable and xL,’(x)/L,(x) — 0. But then ¢, (x) ~ ax*~'L,(x)
which is asymptotically equal to a nonincreasing function since a — 1 < 0.
Hence ¢(x) ~ x*L,(x) where L(x) ~ L,(x) and x*L,(x) is asymptotically concave.
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Put

$x) = x*Ly(x)Ly(x)
where Ly(x) — 1.

Pick any ¢ < 4 and choose x so large that |Lyx —u) — 1| < e for r Su <
x — t. Hence for this range

d(x — u) + G(u) = (x — u)*Ly(x — u)Ly(x — u) + uLy(u)L(u)
> <1 - e){(x — uYtLy(x — u) + uLy(u)}

= 1 +
since x?Ly(x) is concave. For this fixed ¢ the proof of Theorem 2 can be repeated
using in (ii) g(x) = x” where y = (1 — a)/2 > 0. For (iii) choose k > 1 + [r~'];
then for x large enough e~* < Cx~*, hence

e ?l@g(x) < C(1 + e)’x*-T L(x)L-*(x") — O
by another property of slowly varying functions, since a(l — 7k) < 0.

3f. Proof of Theorem 3. As indicated in the proof of Theorem 1 it suffices
to prove that

™ tim, .. ¢ =52 Gy < 1.

Let A be an arbitrary positive quantity. Then for x > 4

— G(x — y)G(d)<G(x)—G(x—A)_l—G(x—A)

—1—__0“(*)_“ 1-Gx)  1-G(x -

1_ z-A

Since 1 — F(x) ~ 1 — G(x), I, - 0 as x — co for all finite 4 by Lemma 3.
Choose now ¢ > O and y,(¢)suchthatl —e < {l — G}l — FQ)} <1 + ¢
for all y > y,. Take 4 = y, and x = y,. Then

wl=Gx—p 1+e“1—( —Ng
I, = {; TG(—)—_ G(dy) = ESO 1= Fo) G(dy)

= 1221 — F@)(6() — 6+ F() — §2-41 — Flx — DIG(@))

_l4ef 16 G(x — )
1_5{1 1—F()+S° 1= Fx) F(dy)}'

But the integral is dominated by

F(x D) Fdy) +[1 — G(A)] 52, - FD) <1 pepye

(495 710 o=

since F ¢ & and by Lemma 3 on F again. Putting everything together we obtain
1=6 =) Gy) < tim, 1, + lim, .1, < 0 + L+ 2 + 2y

1 — G(x) — ¢
Letting ¢ — 0 we see that G satisfies (7). This finishes the proof.

limz-»oo SO
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CorOLLARY 5. If Fe &, and 1 — F ~ 1 — G then Ge .,.

Proor. Since | — F ~ 1 — G we have successively

1 — Fyy = ﬁ {7 e F(dy)
= Sy T = Pl 7 §7 el = A1 )
1
~ =enG(dy) = 1 — G (x).
P iz emG(dy) (%)

But F, e & So from the above theorem G e < and hence G ¢ .9;

Actually one can assume 1 — F ~ ¢(1 — G) for ¢ > 0 and still reach the same
conclusion.

4. An application to renewal theory. Let F be a defective distribution on
(0, oo) such that F(0+) = 0, F(x) < F(co) = « for all x = 0 where 0 < a < 1.
The renewal function associated with F is given by

U(x) = D5 F(x)

and satisfies the renewal integral equation

(8) U(x) = F(x) + F % U(x) .

As is obvious U(co) = a/(1 — a). We are interested in the common tail be-

havior of F(co) — F(x) and U(co) — U(x). The importance of .& is fully illus-
trated in the next theorem which generalizes a result of Callaert—Cohen [2].

THEOREM 4. The following statements are equivalent.

(i) FY(o0)F(x)e S,
(i) U~Y(o0)U(x) € &
(iii) lim,_, L= U7(Ux) _ 1
1 — F'(c0)F(x) l —a

PROOF OF (i) — (ii). A short and elegant proof can be based on Lemma 2 and
can be found in [1]. Another proof in the spirit of [2] can be derived by the
method used in the second part of this proof.

(ii) — (i). Let us use some abbreviations:

“1(x) = — U(e0) = U(x) — U(e0) = U(x =)
K-(x) = G(x) = Floo) — Fx) and S(x, y) = Uoo) = UG5

The integral equation (8) can be rewritten in the form

©) 1 — K()[1 + U(c0)] = §5 S(x, y)F(dy) -
Since S(x, y) = 1, we obtain that

(10) K=limsup,  K(x) < (1 —a)P=c¢.

To obtain an inequality in the other direction, take 4 such that 0 < 4 < xand
write

1 — K()[1 + U(oo)] = {§¢ + 574 + §2-a}S(x, y)F(dy) =1 + II + III..
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The integrals I and III can be easily estimated; the second requires first an
integration by parts.

I < S(x, A)F(A)
Il < {F(o0) — F(A)}S(x, A) — {U(c0) — U(A)}S(x, A)K(x — A)
+ §571 K(x — 1)S(x, )U(dr)
I < U(c0)K(x — A)S(x, A) — U(c0)K(x) .
Combination of these estimates leads to
(11 I — K(x) < U(A)K(x — A)S(x, A) + F(c0)S(x, A)
+ {51 K(x — 0)S(x, H)U(dr) .

Pick an ¢ > 0. Choose 4 so that for large enough x, 1 < S(x, A) < 1 + c¢and
$14,2-41 8(x, 1)U(dt) < e which can be done since by assumption U(x)/U(0) € &
But then for x large enough

1 — K(x) < U(co)(K + e)(1 + €) + F(co)(1 + ¢) + (K + ¢)e .

Letting x tend to infinity and then ¢ | 0 we see that K > ¢,. Hence K = ¢,. To
prove that also
K = liminf, ., K(x) = ¢,

we start again from (11). For x large and A4 as above we rewrite (11) in the
form

K(x) = 1 — UA)K + €)S(x, A) — F(c0)S(x, A) — &(K + ¢) .
Letting x tend to infinity we obtain
K>1— U(A)K + ¢) — F(co) — (K 4 ¢) .
Now let ¢ | 0 and then 4 1 oo to obtain that K > ¢,. This then shows that
lim__, K(x) = ¢, = (1 — a)*.
But then also F(x)/F(co) belongs to & by virtue of Theorem 3.
(iii) — (i). We write (8) in the form

(12) G(x) = 1 + U(co) + 15 G(x — y) F(0) = Fx = J) pgy)

F(c0) — F(x)

where G(x) — ¢ € (0, o). Since G(x) is bounded away from zero and infinity it
is clear that

F(o0) — F(x —

F(co) — F(x)
Following the same argument as in the proof of Theorem 1(i), we can find a
sequence 7, T co such that

lim sup, ., {2

Y Fdy) < oo .

F(00) = F(ty = 3) _ gy
F(oo) — F(r,)

for y = 0. Using this sequence in (12) we obtain by Lebesgue’s theorem
¢ =1+ U(eo) + ¢ §5 eF(dy).
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Since however F(co) = a« and ¢ = (1 — a)~?, necessarily y = 0. But then

_ Floo) — Fx—y)
TN = e —rm

as x — oo for all y.

Given ¢ > 0, choose 4 so large that |[G(y) — ¢| < ¢ for y > A. Then take x
so large that T(x, 4) — 1 < ¢. Then

e 15 T(x »)F(dy) — [G(x) — 1 — U(oo)]
< 5574 1G(x — y) — elT(x, y)F(dy) + §2_4 1G(x — y) — c|T(x, y)F(dy)
< ¢ §5 T(% ))F(dy) + {$Upozizs G(1) + JF(c0)(T(x, A) — 1} < M.

for some constant M.
Letting x — oo and then ¢ — 0 we see that

lim, . SgF(oo) — F(x —y) F(dy) = ¢ —1— U(c0) .
c

F(oo) — F(x)
Put H(x) = F-}(c0)F(x). Then
1 — H®(x 1 F?(00) — F(co)F(x F(oo) — F(x —
1= H(,ft)) = F(oo) { (F(lo) —(F(l)( bt (F(io) —(F(x)y) F(dy)}
and henceforth
lim, , L= A% 1 e=1-Uo)_,,
1 — H(x) F(c0) c

But then H e .>”; by using Theorem 3 also U(co)U~Y(x) €.&. This finishes the
proof.

We generalize the above theorem to the class ,; part of the theorem can be
found in [5].

COROLLARY 6. Assume that ¢(—7y) = {3 e"®F(dx) < 1 where y = 0. Then the
following statements are equivalent.

(i) F-Y(co)F(x)e.;
(ii) U-oo)U(x) e &3
1 — UY(c0)U(x) _ 1

(iii) lim,_, = .
[— F(co)F(x) 1 — ¢(—7)

PRroor. Put F (x) = {§ e’VF(dy); then (i) is equivalent to

(i) F,7(o0)F,(x) € & in view of Theorem 1.
Put U (x) = {§ e*U(dy); then (ii) is equivalent to
(i) U, Y(c0)U,(x) € &
A simple calculation shows that U, is the renewal function generated by F,;
hence by Theorem 4, (i), (i), (ii) and (ii)’ are all equivalent to

L Ufoo) — Uyx) _
(iii) llm”“”m—(l P(—=7)7"
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Performing similar operations as in the proof of Corollary 5, one can then show
that (iii)’ is equivalent to (iii).

The above theorem shows clearly how . is the natural class for a compari-
son theorem of the given character. For if the limit in (iii) is replaced by any
constant ¢, we naturally end up in a class ..

Applications to branching processes can be derived by consulting the frame-
work of [1]. In [12] an application to the ruin problem is investigated.

COROLLARY 7. [2]. With the above notations the following statements are equiva-
lent: (i) F(oo) — F(x) ~ x~PL(x);

(i) U(oo) — U(x) ~ (1 — a)~2x~*L(x).

5. On a theorem of Greenwood. In [8] Greenwood considers the following
problem. LetS,,n=1,2,...bea sequence of sums of independent, identically

distributed random variables X, let N be a stopping time for S, with finite mean.
When is

lim, . 28x > X} _ gvyo
P{X; > x}

Greenwood assumes that P{X, > x} ~ x~2L(x), for x — co. She shows that if
N A n = min (N, n), then for n = l,_2,
(13) P{Sy.n > x} ~ P{X, > x}E{N A n}.
We show that if F(x) = P{X, < x} € & then (13) is satisfied. The basic step in
the proof is the verification of the relation for x — co
P{S, >x, 8, ,=x,N=n} —P{S,_,>x,5, < x, N> n}
~ P{X, > }P[N = n)

Conditioning on X,, and using the positivity of the random variables involved
we have to show that

Plx — X, < S, < x, N=n} ~ P{X, > x}P{N > n}.

The left hand side is equal to
P{O<S,,_1§x,Ngn}P{Xl>x}—|—P{O<x—X,,<S,,_1§x,Ngn}.
Hence the first term divided by P{X, > x} tends to P{N = n}; the second is

bounded above by
§§ {(F"2(x) — F"2(x — u)}F(du)
which leads to
SZFW_I)(X) —_ F(ﬁ—l)(x _ ll)
’ 1 — F(x)
_ [1 = F")] = [1 = F* D (x0)]F(x) — [1 — F(x)]
1 — F(x)

—n—(n—1)—1=0 as x — co.

F(du)
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The above result now allows an extension of Greenwood’s results to a larger
class of asymptotic decays, however for the case of positive random variables.

REMARK. This paper deals only with a few problems on .. A sharpening
of Theorem 2 would be helpful in studying the closure properties of .& under
convolution, convex combinations, convergence in distribution, etc. A char-
acterization of . in terms of properties of ¢(2) would be highly interesting.
An extension of .%” to (— oo, co) might also be considered.

Acknowledgments. 1 express my sincere thanks to P. Ney and to a referee
for their criticisms that led to the correction of some errors in an earlier version
of the paper.
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