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AN APPROXIMATION THEOREM FOR CONVOLUTIONS
OF PROBABILITY MEASURES

By Louis H. Y. CHEN
University of Singapore
An extension of the usual problem of bounding the total variation of
the difference of two probability measures is considered for certain convo-
lutions of probability measures on a measurable Abelian group. The result
is a fairly general approximation theorem which also yields an L, approxi-
mation theorem and a large deviation result in some special cases. A limit
theorem in equally general setting is proved as a consequence of the main
theorem. As the convolutions of probability measures under consideration
reduce to the Poisson binomial distribution as a special case, an alternative
proof of the approximation theorem in this special case is discussed.

1. Introduction and notation. Let (-2, %) be a measurable Abelian group;
that is, 27is an Abelian group and .97 is a ¢-algebra of subsets of .2~ such that
the mapping from .27 x 2”7 to 2~ defined by the group operation is (% X %7,
) measurable. The class _# of all finite signed measures on .% with the
usual operations of real scalar multiplication, addition and convolution, and
the norm defined to be the total mass of total variation is a real commutative
Banach algebra. We assume that .97 contains the singleton consisting of the
identity of 27 so that _# contains the identity measure I which is the probability
measure concentrated at the identity of 227, Let x and v be two finite signed
measures. We shall denote the convolution of ¢ and v by uv, the total variation
of ¢ by |¢| and the norm of p by ||¢||. We also define ¢ < v by p(A4) < v(A)
for all 4 e ¥

Let p,; be numbers between 0 and 1 and g, probability measures on .5

where i =1, ...,nand let 4, = >} ,p,,and p, = 2,7* 337_, p,., ¢1.,- Consider
the probability measures

(1.1) Qn = [T [(1 = pad] + Pui il

and

(1.2) 0, = elntt=D

It is well known that

(1.3) 10, — Q.| <2 T2, pi -

See, for example, Le Cam (1960). In this paper, we consider the more general
problem of bounding § Ad|0, — Q,| where & is a measurable nonnegative
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function defined on .2 such that § #dQ, < oo. Ifh =1, then § 2d|0, — Q,| =
|0, — Q.|| In the main theorem, g,,, ---, #,, are assumed to be mutually
absolutely continuous with uniformly bounded Radon-Nikodym derivatives.
This condition is satisfied if all p,,’s are equal. Despite this restriction on the
Ua:’S, the main theorem is fairly general in the sense that it also yields an L,
approximation theorem of the type considered by Erickson (1973) and a large
deviation result in cases where .2 is a subgroup of the additive group of real
numbers.

A limit theorem in an equally general setting is proved as a consequence of
the main theorem. This limit theorem generalizes a previous result of the author
(1974) who proved that if 2 is the additive group of integers and the y,;’s are
concentrated at 1, then lim,_, § 2d|0, — Q,| = 0 where & is any nonnegative
function defined on 2~ such that §{ #dQ, < co for all n, provided 4, remains
constant for sufficiently large » and max,,_, p,, — 0 as n— oo.

In the subsequent sections, all notations will be the same as in this section
unless otherwise stated. We shall omit the subscript n for brevity but shall pick
it up whenever we need it. All functions will be assumed to be real-valued,
defined on 2 and measurable. The indicator of a set 4 will be denoted by
x(4). Finally, we shall adopt the convention that the sum 33} is empty if b < a.

2. The main theorem. We first state two simple lemmas without proof.

LeMMA 2.1. If @ > 0 and m is a nonnegative integer, then (1 + a)™ < 1 +
ma(l + a)™-1.

Lemma 2.2, Let p,, - - -, p, be numbers between 0 and 1 and 2 = Y7, p,. Then
O0e?* =TI (I —p) = %e_z P —py) -
We now state and prove the main theorem.

THEOREM 2.1. Let (2, 57) be a measurable Abelian group and let Q and Q be
given by (1.1) and (1.2) respectively. If there exists a constant K such that

(21) /‘ligK/'[J fOI’ i,j:l,--~,n,

then for every nonnegative function h defined on :2° such that \ hdQ < oo and
m=20,1, ..., n, we have

§hd|0 — Q| < HM{Z 1, pf(1 — p))
2.2) X {3 + 227  hdQ + Trsh (=4 frt) § hdpr+)
+ XTemia (€7FA[rY) § hdpr

where r, is the largest integer not exceeding

K2+ ZiapllQ—p)y+ 1 and M ={1+ K27 3, p*l(1 — p))o.

Proor. We shall use arguments similar to those in Chen (1974) but in a much
more general setting. To this end, we write

0= I (P = p) T2 [+ g = nsov,
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where ¢, = p,/(1 — p), vo = [I]7-: (1 — py)}{ and for r = 1

ve =l (I —pHZ - Diigeo<iy =1 9, Ha,} -
We also define

Q0 = Lz [(1 = p) + p;12;]

and write

09 = i (1 = p) ILiws [ + 9551 = Z32i v,
where v, = [[];4; (1 — p;,){ and for r > 1, .

v, = Hj*i(l - P,-){Z te Zjl<-~-<j,;jl,w,j,.¢i ] 9ir luik} .

We now derive generalizations of the identities and inequalities in Chen (1974).
For r = 0, we have

(2-3) r, = Ziapitivil
and
(2.4) Voot = Pittivils + (1 — poviy

where v, and v,” are both taken to be the zero measure if r is negative. Com-
bining (2.3) and (2.4), we obtain

(2.5) v, = A,y + T plrl — v
Using (2.3) and (2.4) again, we obtain
rv, = N pitive/(1 — po) — D pleivie/(1 — po)

(2-6) S Aoy + Dt plev,.o/(1 — p)

< {1+ K2 S pl(1 — p)lasy, s
where it is noted that (2.1) implies y, < Ky for all i. By (2.1) again, the first
inequality of (2.6) yields

r, = K2+ 25.p (1 — piheive—
fori =1, ..., n. This implies that fori =1, ..., n,
(r— 2 S K{Zjeipi + Ziwi P11 — p}esivits
= K2+ T pl (0 — pihevi2, -

Therefore, if r = r, 4+ 1, then for i = 1, ..., n, we have v, < p,v®,. This
together with (2.5) imply that, for r > r, 4+ 1, we have

(2.7) r, < Au,_,.
Combining (2.6) and (2.7) and noting that v, < e~*I, we have, for r > 0,
(2.8) v, < Me=*2mp"[r!

which by Lemma 2.1 and noting that K > 1
< {1+ K'M(1+ 27 i p2l(1 — ple= !
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Adding the v,, we obtain

(2.9) 0 < {1+ K*M(1 + 27) B pl/(1 — p)}Q -
Now (2.5) yields
(2.10) rv, Z Apy, .y — 2t plipsvyd

W, .
By induction, (2.4), (2.8) and the fact that y, < Ky for all i, (2.10) in turn
yields
v, = Aprwfrt — N ple{DRsi A (r = k) i )
(2.11) = Apmwfrt — (D plied (1 — p)HZE0 257 — k)t =2, frl}
= Apwfrl — JKM{Y, pl(1 — p)le 2= r(r — )prfrl .
Thus for m =0, 1, ..., n, we have
Q = il
@12) = Er vt — 3RM{E L, pA( — p)} S e (r — 2)!
= Lroetprfrt — v [e? — [Tt (1 — p)lare|r!
— COM{Z p2 (1 — p)} I et !
which by Lemma 2.2
2 {1 = T p’/(1 — p)I} Zreg e 2rprjr!
— $K*M{Z 0 pl(1 — p)} 7t e A=+

Combining (2.9) and (2.12), and noting that K > 1 and M > 1, we prove (2.2)
for bounded 4. By the monotone convergence theorem, the theorem is proved.

It is noted that M — 1 as 3 7., p2, — 0 and K remains bounded, and therefore
does not affect the order of the bound in (2.2). Because of the condition (2.1),
we cannot deduce (1.3) from the theorem. However, (2.2) yields a bound on
|0, — Q.|| which is of the same order as that in (1.3) provided K does not
depend on n and 4, is bounded away from zero. We state this fact more pre-
cisely in the following corollary.

COROLLARY 2.1. The inequality (2.2) yields
(2.13) I — Qll < 2K*M(1 + 27) T p2i(1 — po) -

Proor. By choosing m = n, h = 1 and noting that K > 1, it follows from
(2.2) that

9 — Qll < K*MQ2 + 27%) T, p2l(1 — p) + Tiaa e 4fr!

By Chebyshev’s inequality, Y., e 227/rl < 2/(n + 1) < 27 32, p.  This
proves the corollary.

3. A limit theorem. It is noteworthy that the following limit theorem, which
is a generalization of Chen (1974), is a consequence of the inequality (2.9).

THEOREM 3.1. Let @, and Q, be given by (1.1) and {1.2) respectively. Suppose
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that there exists a constant K such that p,;, < Kp,,; forallnand alli,j=1,.--,n
and that
3.1 a, = 3, pi,—0 as n-— oo.

Then for every nonnegative function h such that

(3.2) lim,_, sup, §,5,2dQ, =0,
we have
(3.3) lim,_, § hd|0, — Q,] =0.

Proor. We first note that (3.1) implies p, = max,_;., p,; — 0 as n— co.
From (2.9), 8, < {1 + K*M(1 — p,)¥a, + p,)}Q.. Thus @, is absolutely con-
tinuous w.r.t. Q, such that the Radon-Nikodym derivative p, = d0,/dQ, <
¢, | 1. Forevery ¢ > 0, we have, by Chebyshev’s inequality, Q,(|o, — 1] > ¢) <
e (0, — 1)2dQ, = e*(§ p,’dQ, — 1) < e7%c,’ — 1). Therefore, for every
¢ > 0, we have lim sup, § |0, — 1| dQ, < ¢ + limsup, (¢, + 1)Q,(Jo, — 1| > ¢) <
¢ 4+ ¢~2lim sup, (¢, + 1)(c,’ — 1) = e. This implies that lim, { |0, — 1| dQ, = 0.
Now let & be a nonnegative function satisfying (3.2). Then, for every a > 0,
we have

lim sup, § 2 d|0, — Q.|
= lim sup, § Alp, — 1] dQ,
< limsup, (¢, + 1) {45, #dQ, + alimsup, § |0, — 1] dQ,
= 2sup, (45, 1 dQ,
which by (3.2) tends to zero as @ — co. The theorem is proved.
We note that the condition (3.2) implies sup, { 1dQ, = B < co and that
m3e=3(r[rl) § hdp+t = 272 S e~ r(r — )A7[R] § hdpr
< 27°m°B.
Thus the statement (3.3) can also be deduced from (2.2) by letting m ~ 1,ta,~t
and applying (3.2) to the last term of (2.2), provided we impose the additional

but weak condition p,/2, — 0 as n — co. This condition is satisfied by most
interesting cases where 4, is bounded away from zero.

4. Special cases. In this section, we considere the case where 27 is a sub-
group of the additive group of real numbers and .7 the trace of Borel sets on
&, and deduce two different types of approximation theorem from Theorem
2.1. Let F and G be the distribution functions corresponding to @ and Q re-
spectively. The following corollary is an approximation theorem for the L,
norm, denoted by ||+||,, of F — G w.r.t. the Lebesgue measure where 1 < p <
co. The normal counterpart of this problem has been considered by Erickson
(1973).

COROLLARY 4.1. Let Q and Q be as in Theorem 2.1. Suppose 2 is a subgroup
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of the additive group of real numbers and o7 is the trace of Borel sets on Z°, and
B = §|x| dp(x) < co. Then, for 1 < p < oo, we have
(4.1) IF = Gll, = €, X pd/(1 — pi)
where C,» = C,C2™, C,, =2 and C, = BK*M(3 + 22).
ProOF. By |||, < [|+[l,]|+]|z"* and (1.3), it suffices to prove
(42) IIF — Gll, = BK*M(3 + 22) 3w, pl(L — p)) -
Since F(z) — G(2) = §(—wnd(@ — Q) = — {100y (@ — Q), it follows that

*#3)  IF = Glh = e [§icwn d(@ — 0 dz + §7 |§ sy AQ — Q)] dz
S e Scwndl0 — Qdz + 7§, 4|0 — Q| dz
which by Fubini’s theorem
= {Z. |x/d|Q — Q|(x) -
Therefore, by letting (x) = |x| and m = n, it follows from (2.2) and (4.3) that
IF — G, = $K*M{X 2, p2/(1 — p)}
X AB + 227 § [x] dO(x) + X5 (e7227[r!) § |x] dp+¥(x)}
+ Diewa (727! § |x| dpr(x)
where
§Ixldpmhe) = § - Sl oo+ Xl dp(x) - - dp(x,,)
< B(r+ k)
and
D (€ P)r = 2 3 e~ 2 r!
S2h< Zpl.
Hence (4.2) follows and this proves the corollary.

If 227 is the additive group of integers and the p,’s are concentrated at 1, then
0 is the distribution of W = X, + ... + X, where X, - -+, X, are independent
Bernoulli random variables with P(X; = 1) = 1 — P(X, = 0) = p, (the Poisson
binomial distribution) and Q is the Poisson distribution with mean i. Let Z be
the Poisson random variable with mean 2. The following large deviation result
is a consequence of Theorem 2.1.

COROLLARY 4.2. For every nonnegative integer z < n — 1, we have

P(W > Z) -1 -2 n 2
4.4 ——Z 7 11 < 15{4(1 + 2 2 1 2 PRl —
4 |7z — U SIS+ I + 3G + DG + ) Bl — p)
where t is the largest integer not exceeding 2 + 1 + Y.7_, p2/(1 — p,) and
(4-5) S={l+ 27 KL p’( —p)-

PRrooF. By lettingm = nand hA(w) = 1if w > zand = 0if w < z, it follows
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from (2.2) that
|P(W > 2) — K(Z > 2)]
S S{Z /(1 — pIHB + 28WP(Z > 2) + K(Z > 2 — 2)}
+ P(Z > n)
where it is noted that K = 1. Next we see that P(Z >z — 2) = P(Z > z) +
4+ D+ )P Z=z+ 1) {1l + 2%z + 1)z + AD}P(Z>z) and that

P(Z>n) < EZy(Z>nn=2PZ>n—1)n< (A Jr, pPHP(Z > z). The
corollary follows.

5. Application of a method of Poisson approximation. In this section, we
shall indicate that, in the case where 22” is the additive group of integers and
the p,’s are concentrated at 1, Theorem 2.1 can be proved, with possible im-
provement in the absolute constants in the bound, by using the equation (2.6)
of Chen (1975), in which a method of Poisson approximation is established.
Perhaps it should be mentioned that there is a subtle difference between the
method in this paper and that in Chen (1975). The former uses recursive iden-
tities whereas the latter is based on a perturbation argument.

Let Wand Z be as in Section 4 and let W® = 3,., X,. Using independence
and m = 0 in the equation (2.6) of Chen (1975), we obtain

(5.1) EWW) = EW(Z) — Y%, p2EAS, h(W + 1)
= EW(Z) — X1, plEA(Z)AS H(Z + 1)

where 4 is any bounded function defined on the nonnegative integers, Af(w) =
f(w + 1) — f(w),
(5.2) S;h(w) = (w — D! 2=* 3z, [A(k) — ER(Z)A*[k!
and A(k) = P(W® = k)/|P(Z = k). By letting h(w) =1 if w=r and =0 if
w £ r, (5.1) yields
PW=r)=PKZ=r)+ 2" Z.p2 Zis AKP(Z =71)
(5.3) — AT AKP(Z = k + DP(Z = 1)
— S Ak + DP(Z = 1)
+ Tizt ARk + DP(Z 2 k + 2)P(Z = 1))
where it is noted that A4,(k) = 0 if kK = n.

To prove Theorem 2.1 in this special case, first use (2.8) and (1 — p,)P(W® =
NP(W =r)=P(W®» =r|W =r) £ 1 to show that 4,(k) < S/(1 — p,) where
S is given by (4.5). Then use (2.7) and (5.3) to obtain upper and lower bounds
for (W =r)forr=0,1, ..., n. The rest of the proof is clear.

As a closing note, we would like to mention that it seems very likely that an
L, approximation theorem can be proved for ¢-mixing Bernoulli random vari-

ables using (2.6) and other results of Chen (1975) without much difficulty.
However, we shall not discuss it here.
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