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WEAK CONVERGENCE OF HIGH LEVEL CROSSINGS AND
MAXIMA FOR ONE OR MORE GAUSSIAN PROCESSES

BY GEORG LINDGREN, JACQUES DE MARE,
AND HOLGER ROOTZEN

University of Umea and University of Lund

Weak convergence of the multivariate point process of upcrossings of
several high levels by a stationary Gaussian process is established. The
limit is a certain multivariate Poisson process. This result is then used to
determine the joint asymptotic distribution of heights and locations of the
highest local maxima over an increasing interval. The results are gener-
alized to upcrossings and local maxima of two dependent Gaussian pro-
cesses. To prevent nuisance jitter from hiding the overall structure of
crossings and maxima the above results are phrased in terms of e-crossings
and e-maxima, but it is shown that under suitable regularity conditions the
results also hold for ordinary upcrossings and maxima.

0. Introduction. The asymptotic Poisson distribution of the number of high
level crossings by stationary Gaussian processes is well-known and has been
established under weaker and weaker conditions by a number of authors, most
recently by Berman (1971). The more general notion of e-crossings was intro-
duced and examined by Pickands (1969), and his results were later refined by
Qualls and Watanabe (1972).

All these results deal exclusively with the number of crossings in one specific
interval of increasing length. However, as will be shown in this paper, the
asymptotic Poisson distribution is only one aspect of weak convergence of the
point process of crossings (regular or e-crossings) towards a Poisson point pro-
cess. Another obvious consequence of the weak convergence is the asymptotic
distribution of the locations of the crossings.

Moreover, it will be shown that the point process on R* of crossings of two
(or, generally, n) levels converges weakly to a certain 2-variate (n-variate) Poisson
process. This generalizes the results by Qualls (1969) in two directions. Firstly,
it generalizes his result on the joint asymptotic distribution of the number of
crossings of two or more levels to weak convergence; and secondly it generalizes
his results from regular crossings to e-crossings.

The technique used to obtain convergence towards the Poisson process is the
following. By means of the theory for weak convergence of point processes in
the formulation developed by Jagers (1972) and Kallenberg (1973) the problem
is reduced to proving convergence of the joint distribution of the maxima in
several disjoint intervals. This will be done by the usual methods to obtain
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asymptotic distributions of maxima for Gaussian processes as in Qualls and
Watanabe (1972) and Leadbetter (1974a).

As one application we will—in Section 3—show that the weak limit theorem
for multiple level crossings determines the joint asymptotic distribution of the
heights and locations of the highest local maxima. To obtain sufficient generality
we introduce the notion of e-maxima, which by definition are separated at least
a distance ¢ apart. For stationary sequences weak convergence has been studied
by among others Leadbetter (1974b) and Welsh (1971, 1972, 1973). Welsh’s
results implicitly give a joint asymptotic distribution of heights and locations
of maxima. The location of the maximum of a stationary process is also studied
by Leadbetter (1974a).

As a generalization of a result by Lindgren (1974) we will also—in Section
4—prove related results for crossings and maxima of dependent Gaussian
processes.

In Section 5, finally, we show that the results in Sections 2-4 hold under
suitable regularity conditions if ordinary crossings and maxima are substituted
for e-crossings and e-maxima.

1. Preliminaries. In the sequel we will consider a stationary and continuous
Gaussian process X with mean zero and covariance function r. At zero r satisfies
the condition

(1.1) r(t) = 1 — |t]*C(1) + o(]t|*C(0)) , t—0,

where 0 < a < 2 and C(r) varies slowly. Qualls and Watanabe (1972) noted
that since |¢|*C(¢) is determined only up to o(|¢f|*C(¢)) we can choose a monotone
version of [#|*C(¢) in some positive neighbourhood of zero. The inverse of
(2]#|*C(¢))t will be denoted by G(r), and will be well-defined for small s. In par-
ticular, if C(r) = C then G(t) = (£#/2C)"=.

At infinity r will satisfy the mixing condition

(1.2) r(t)logt—0, t— oo or (2 (1)’ dt < o0,
as in Berman (1964), Pickands (1969), and Qualls and Watanabe (1972).

DeFiNITION 1.1. A continuous function f: R ~ R has an e-upcrossing of
the level u at ¢, if

U= f(t) = SUP,—ecrcso f1) -

Note that this definition permits a local maximum at f,, However, in our
context these events have probability zero for any fixed level u, since maximum
of a Gaussian process over a fixed bounded interval has continuous distribution;
cf. Ylvisaker (1968).

We now state the extension by Qualls and Watanabe (1972) of Pickands’
(1969) Poisson limit theorem for e-upcrossings.

THEOREM 1.2 (Pickands; Qualls and Watanabe). If X is a zero-mean, stationary
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and continuous Gaussian process with covariance function r satisfying (1.1) and (1.2),
then there are levels u, , such that the number of e-upcrossings of u,. , by the process
X in the interval [0, T] is asymptotically Poisson distributed with mean value x when
T tends to infinity. Furthermore

TP(supyc,; X(t) > 4y ) — x
and the mean number of e-upcrossings during [0, T] converges to x.
REMARK 1.3. We can choose the levels u, , as
(1.3) Up, = (2log T)t

_ logx 4 }loglog T + log G(1/(2 log T)*) + log (2xt/H,)
(2log T)t

where H, is a certain positive number given by Pickands and Qualls and Wata-
nabe, but any level u, , 4 o(1/(2 log T)*) will do as well in the theorem.

REMARK 1.4. Levels corresponding to different mean values x > 0, y>0in
the limiting distribution will be arbitrarily close to each other when T tends to
infinity, since

REMARK 1.5. An inverse relation of (1.3) up to o(1/(2 log T)}) is
(1.4) T, = xueG (‘37) H(2m)t.

2. Weak convergence of the point process of c-upcrossings. In this paper
we will use the notion of point processes as random integer valued measures
on R*. Weak convergence of point processes is defined as in Jagers (1972) and
Kallenberg (1973).

Now consider a stationary and continuous Gaussian process X with mean zero,
unit variance and covariance function r satisfying (1.1) and (1.2). Let x > y be
positive numbers and let the levels u; , and u, , be defined by (1.3). Define the
point processes &, and »;, of time-normalized e-upcrossings:

2.1 §r(B) = # e-upcrossingsof u,, by X(t):teT.B
nr(B) = # e-upcrossingsof u,, by X(t):reT-.B,

(B a linear Borel set). Furthermore, let & be a Poisson process with intensity x
and let » be the binomial thinning of ¢ with deletion probability 1 — y/x, i.e.
7 is the Poisson processes with intensity y generated by independent deletion of
points in the §-process. Then the product measure & x 7 is a point process, i.e.
a random integer valued measure on R®.

THEOREM 2.1. If X is a zero-mean, stationary and continuous Gaussian process
with covariance function r satisfying (1.1) and (1.2), then the point process &, x 7,
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defined by (2.1) converges weakly to & x n where & is a Poisson process with intensity
x and 7 is a binomial thinning of & with deletion probability 1 — y/x.

Proofr. To prove the weak convergence we will use the following criterion by
Kallenberg (1973), Theorem 2.5. If ¢, ¢,, (T > 0) are point processes without
multiple points on R* such that for all bounded rectangles R, P({(3R) > 0) = 0,
(R denotes the boundary of R), and if
for all bounded rectangles R there is a sequence

(2.2) ({Rn;j:j=1, -+, k,)pn_, of partitions of R into rectan-
gles with lim,,_, max,g g, diam (R,;) =0 such that
lim,, ., lim sup,_., 5™ P(C;(Rn;) > 1) =0,

and

(2.3) for all finite unions U of rectangles P({,(U) = 0) —
PEWU)=0), T— oo,
then {, converges weakly to {, T — co.
To prove the theorem we have to check that (2.2) and (2.3) hold. We will

then make substantial use of the one-level version of the theorem, i.e. that
&r — & weakly, so we prove this first.

1. Proof of (2.2) in the one-level case. Here R is a real bounded interval and
we take a sequence of partitions which for each m =1, 2, ... divides R into
m subintervals R,,, - - -, R,,, of equal lengths. Then

max, ., diam (R,;) >0, m— o
and
lim,, ., limsup, . 2™, P(é,(R,;) > 1)

= lim,,_, 217, (1 — e~*®mjl _ X|R,, ;|e~=Emil)

. x|R
— lim,__ m (1 — e~wmm _ XR| e“"'”“”") -0,
m

where the first equality follows by Theorem 1.2.

2. Proof of (2.3) in the one-level case. Let U = |Jr_, R,. Then, as T — oo,

P({6r(Uioi Ry) = 0}) = P(N1: {€x(R,) = 0})
- P(Ni. {S(Ri) = 0}) = P({E(U?ﬂ Ri) = 0}) >
by Lemma 2.3 below. Hence we have proved that £, — & weakly when 7 — co.

Obviously we also have 7, — 5 weakly. To prove &, x 7, — & x 7 we will now
use this result.

3. Proof of (2.2) in the two-level case. We have R = I x J where I and J are
bounded real intervals. For m =1,2, ... we partition both I and J into m
intervals of equal lengths 1., .-+, I, and J,.,, -+, J,.., respectively, and then
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partition R as follows,
Ruiii=1,....om}={l,;xJpy:j,k=1,...,m}.
Then max, ;.. diam (R,,,) — 0, m — oo and
P(Er x np(ln; X Jpp) > 1)
= PErUng) > L nelUme) Z 1) + P(Er(Tn) Z 1, 70(Jmi) > 1)
S Pr(Tny) > 1, 60(Um) 2 1) + P(er(Tn;) Z 1, €2(Jpi) > 1) + 0(1),
T — oo, since
Pr(Ume) 2 1, £p(Jpi) = 0) >0,
Pr(Jm) > 1, 61(Jpp) £ 1) >0, T— oo,
by (2.5) of Lemma 2.2 below. Thus '

L =1lim, . limsup, . 37, 317 P(&p X 9p(Ip; X Jpi) > 1)
= lim,, o lim sup, o, 37, S5y P(Er(Tmg) > 1, £2(Upi) 2 1)
+ lim,,_, lim SUPy oo 2071 i1 P(ErUmi) = 1, E0(Tmi) > 1).
By the first part of the proof we know that &, — & weakly so
L= 1im, o 27 20 PEUn) > 1, €(Um) 2 1)
+ lim,, o 20 B PEUy) 2 1, 6(p) > 1)
= lim, o (X7 20 2P(ET; U Tu) 2 3)

+ L D 2P N i) 2 1,6 U Jai) > 1}
Now the first sum is of order m?. o(m-?), m — oo, and in the second there are
at most 2m nonzero terms, each of order o(m=?) since no more than 2m of the

intersections I,; N J,,: j,k =1, ..., m, are nonempty. Hence L = 0and (2.2)
is satisfied.

4. Proof of (2.3) in the two-level case. Let U= |Jr, R, where R, = I, x J,,
a cartesian product of real intervals. Then
P({ér x no(Ui R) = 0})
= P(N71{6r x 72(R;) = 0})
= P(Ni-1{€(1;) = 0 or 7,(J;) = 0})
= 2hsism P(ci(T)) — Zisiy<igsm P(¢;(T) 0 e, (T)) + - -+,
— P(ey(T)y n -+ N eg(T)),
where {c(T):j=1,...,2"} = {1, A(T): A(T) = {£,(I,) = O} or A(T) =
{nr(J;) = 0}}. Each c¢(T), j=1,...,2* is an intersection (7., A4(T) where
A(T) is either {§,(I,) = 0} or {9,(J;) = 0}. Now, by Lemma 2.3 below,
P(cjl(T) n cja(T) n-...n c:.k(T))—>P(cj1 ne,N---N cjk) , T — oo,
where the events c; are defined as c(T) but from the & x n-process. Hence
P(€r x (Ui R) = 0) = P(§ x p(U, R) = 0), T— oo,
which proves (2.3) and concludes the proof of the theorem.
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During the course of the proof, we left two technical details unproved. We
will now fill in the missing parts by means of two lemmas.

LEMMA 2.2. Assume the hypothesis of Theorem 2.1 and let I be a bounded in-
terval. Set ty =inf{teT.I: X(t) = u,,} and define recursively t, = inf {t >
tiy+ et X(0) Z up ), i = 2,3, .. Let the number of e-separated points over the
level u,, , during T - I be

Ny(l) =max{i:i=0 or t,eT-I}.

Then

2.9 P(N(I) > &,(1)) -0, T — co
and consequently

(2.5) P(yr(1) > &,(I)) - 0, T—co.

Proof. Since Ni(I) = 7.(/), relation (2.5) is an immediate consequence of
(2.4). To prove (2.4) we define §,(I): n=1,2, ... as the number of ¢/n-
upcrossings of the level u; , by the process X(f) during T .I; in particular
§,(I) = &,*(I). Note that it is enough to take / = [0, 1]. We then have

P(N(I) > &) = P(§."(T) > &4(I)) + P(N(I) > &.7(D))
where
P(E(1) > &,(1) = E(§,"(T) — £4(1)) — 0, T— oo,

by Theorem 1.2. Furthermore, if M(B) = sup {X(¢): t € B},
PN(1) > &) < P (U M ([ ke (k4 ) e]) > ur})
< (TJe + DP(M((0, ¢/n]) > up ) —>xfn,  T— oo,
by Theorem 1.2. Since n is arbitrary, we have proved the lemma.

LEmMMA 2.3. Let D, ---,1,,J,, ---,J, be bounded real intervals and assume the
hypothesis of Theorem 2.1 holds. Then

PN {€2(1) = O}, N3 {n2(J5) = 0})
- P(N= {E() = 0} N3 () = 0)), T— oo.

Proof. Let I = T, /;and J = J%,,J;. We note that it is enough to prove
the lemma for 7 and J disjoint, since if not so then

P({&(1) = O} 0 {,(I N J) 2 1}) = 0 = P{E(I) = 0} n {n(I n J) = 1})
by Lemma 2.2. Further we note that it is sufficient to prove
(2.6) PM(T-I) <up,, M(T-J) <ug,)
— P(M(T - 1) < up JP(M(T - J) < up,) =0
as T — co, where, as usual, M(B) = sup {X(¢): t e B}. This follows since e.g.

P(§r(I) = 0, M(T - I) > uy,,)
< N PM([T-inf I, T-inf I, 4 ¢]) > uy ) —0
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by Theorem 1.2, and since, still by Theorem 1.2, &,(/) is asymptotically Poisson
distributed whenm = n = 1. Form,n > 1 we get the desired result by repeated
applications of (2.6) with x = y.

The proof of (2.6) now proceeds in two steps. First we make a discrete ap-
proximation of the X-process and then get the asymptotic independence by
standard methods, as e.g. in Leadbetter (1974a).

For T sufficiently large we now define the set

Ar = {kaG(1/(2log T)}): k integer},
where a is a positive number which will tend to zero at a later stage. In par-
ticular, if C(r) = C we have G(1/(2log T)}) = (4Clog T)-V= in the definition
of 4,. We are now going to estimate {X(r): re R} by the discrete process
{X(r): te A;}. Writing
M, (B) = M(A; n B) = sup{X(r): te A, n B}
we want to prove v
2.7) lim, o lim supy_o, [P(M(T - 1) <ty ., M(T - J) < uy )
—PM(T 1) <up,, M(T-J) < up )| =0.

But
0< PIM(T - 1) <y M(T - J) < wty,) — P(M(T - 1) < upyy M(T - J) < 0y

< P(MUT 1) < iy M(T - 1) 2 uy) + POM(T - J) < tig s M(T - J) = uy,,)

< T PMD) <ty o MUI) 2 ) + T - M) <ty M) = 1y,) + o(1)

= 2T {PM (1) < up,) — P(M(L) < ug )}

+ 23 T {P(Mo(J;) < ur,) — P(M(J5) < ug,)} + o(1),
which tends to zero if first 7 — oo and then a 1 0, since by Lemma 2.3 and
Theorem 2.1 in Qualls and Watanabe (1972) each term tends to zero. Thus
(2.7) is proved and the first part of the proof of the lemma is concluded.

To prove the asymptotic independence assume first that the distance between

ITand Jis y > 0, i.e.
r=inf{ls—t|:sel,teJ} >0,
and proceed as in Leadbetter (1974a), Lemmas 6.1 and 6.6. By a well-known
inequality—see Leadbetter (1974a), page 23, for references—we get
P=|P(MT - 1) < up,, M(T - J) < u, )
= P(M(T - 1) <up) - PMUT - J) < up )|

< {]r(si — 1) exp{— - |;l(Ts"z_ o } csie Ay 0 (T - 1),

z,.eATn(T.J)}.

We have then reduced the problem to the one-level case and can estimate the
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sum under the hypothesis (1.2). Omitting details we get P — 0 as T — oo, and
we are finished with the asymptotic independence for the discrete approximation
if I and J are separated by y > 0.

Thus we know, by (2.7), that

P(M(T - 1) <ty M(T - J) < ttg,)) — P(MT - 1) < ey o MUT - J) < t7,)
is arbitrarily close to zero if T is sufficiently large and a is sufficiently small.
But for any small @ we have the asymptotic independence, i.e.
PM(T - 1) < ugpy M(T - J) < 4y )

is arbitrarily close to

PM(T - 1) < upp) - (M(T - J) < ug,) s
which in turn, still by (2.7), approximates

PIM(T - 1T) < up,)- P(M(T - J) <ug,,) -
This shows (2.6), i.e. that

PM(T - 1) < ug o M(T - J) < Uy )
—PM(T 1) <up,)-P(IM(T-J) < up,)—0

as T — co. As noted in the beginning of the proof this gives
P(§r(I) = 0, 9,(J) = 0) - P(§(/) = 0, n(J) = 0),

and the lemma is proved for 7 and J separated by a positive distance. Approxi-
mation of J by a sequence of sets J* on distance 1/n from I will yield the final
result.

We conclude this section by stating the n-level version of Theorem 2.1.

THEOREM 2.4. Let X be a zero-mean, stationary and continuous Gaussian process
with covariance function r satisfying (1.1) and (1.2). Let0 < x, < x,_, < +-+ < x,
be real numbers and let & , (B) be the number of c-upcrossings of the levels Ur ., by
the process {X(t): te T - B}. Further, let £, be a Poisson process with intensity x,
and define recursively the Poisson process &, as the binomial thinning of & with
deletion probability 1 — x,[x,_;, k =2, ..., n. Then

Tk—1

STYz]x xET’z”qulx e x &,

n

weakly, when T — oo.

The proof of this theorem follows the same lines as the proof of Theorem 2.1
and is not given here.

3. Joint distribution of heights and locations of the highest local c-maxima.
In this section we are going to consider the joint asymptotic distribution of the
heights and locations of maxima of the process X in an expanding interval
[0, T]. Since the condition (1.1) on the covariance function r does not ensure
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a finite number of local maxima we will introduce the notion of local e-maxima
which, by definition, are separated by at least the distance e.
Let

M(T) = sup{X(r): 1[0, T]}
be the global maximum in the interval [0, T] and call its location
S(T) = inf{te[0, T]: X(1) = M(T)}.
Let ¢ > 0 be fixed.
DerFinNITION 3.1. The second local e-maximum and its location are
M(T) =sup{X(#): t€[0, T], t g (S(T) — &, S(T) + ¢)},
S(T) = inf{t [0, T]: X(¢) = MLT), t ¢ (S(T) — &, Si(T) + ¢)},

respectively. The nth highest local e-maximum is defined recursively.

Further justification of Definition 3.1 is given by the facts that the asymptotic
results do not depend on ¢ and that, under further restrictions on the covariance
function, the local ¢-maxima will be shown to coincide asymptotically with the
ordinary local maxima.

THEOREM 3.2. If X is a zero-mean, stationary and continuous Gaussian process
with covariance function r satisfying (1.1) and (1.2) then

(3.1)  Par(M(T) — by) < 1, S(T) < 0, T, ar(M(T) — by) < 1,
S(T) < 0,T) > 0,0,e~ (1 + e~r2a — e~1), T— o,
for0<o,0,Z 1, py < py, where

a, = (2log T)t
and
b, = (2log Tyt — 2108108 T + log Gg/l(jglt;%f)*) + log (2z%/H,)

PrOOF. Sety = e~1and x = e~*. Then (3.1) follows if we prove that, with
ur, and u; , defined by (1.3),
P, = P(M(T) < uy,, S(T) < 0,T, M(T) £ uy ,, S(T) < 0,T)
tends to ¢,0,e7%(1 + x — y) when T — oco. To achieve this we will consider
crossings of finer and finer grids of levels. For notational convenience we
assume that e.g. g, < 0, and then split P, into four parts as follows,
P = Pluy, < M(T) < uy ,,, S(T) < 0, T, M(T) < uy,, S(T) < 0, T)
+ P(M(T) < uy,,, S(T) < 0,T, M(T) < u; ., S(T) < 0,T)
+ P(up, < M(T) < ug,,, S(T) < 0,T, M(T) < uy ,,
0,T < 8(T) = 0,T)
+ PM(T) < ug ., S(T) = 0,T, M(T) < up,, 0,T < S(T) < 0,T)
=Pry+ Pry+ Pry+ Pr,, say.
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We first evaluate P, ,. Let n < m be arbitrary, fixed integers—later on we will
let them go to infinity—and put x, = (k/n)x, k = n, n + 1, ..., m. Then
(3.2) P, 2= DptPup, < M(T) S up,, S(T) = o,T,
Up gy < My(T) = Up s S(T) < o,T) .
Now recall the notation &, ,(I) from Theorem 2.4 and write N, , for the number
of e-separated points above the level u, , in the interval [0, ¢, T]; cf. Lemma 2.2.
Then the sum in (3.2) is not less than
P P(Er ey (00 1) = 0, 67y, ([0, 01]) = 2,

(3.3) 600 [0, 0:]) = 1, £,.(00, 0,]) = 1,&7,,((0, ,]) = 0)

— P(Np., > &7, ([0, 0a]) — PM([0,T — &,0,T]) > #r,0,) -
To see that (3.3) is a true lower bound check Figure 3.1 and reason like this.
When M([0,T — ¢,0,T]) < 4y, and &, ([0,,1]) =0 there are no local e-
maxima above u; , in [0,T, T], and we have, for all levels u, , = u; ,_, that

€,.(0,0,]) < # local e-maxima above u,, during [0,0,T] < Ny, -

Thus either

NT,z - Ei’,z([o’ o) > 0
or
€, 4[0,0,]) = # local e-maxima above u,, during [0,0,T].

But N, , — &, ([0, 0,]) is increasing in z, i.e. decreasing in the level, so

Nizp = €1,0,(10, 01])
implies that

€,.(0,0,]) = # local e-maxima above u,, during [0,0,7T]

for all levels u, , above u; , . This shows that (3.3) is a lower bound for the
sum in (3.2).

X(t)

A
Ur.y
UT.X /‘\\
u
TyXk
uT'ka j\\/\ ][ \\
u VA
T-xm: 7 L o~ 7V
! s R AN A
L ' ]
0 Ch 1 t/T

F1G. 3.1. Approximate determination of heights and locations of maxima
through knowledge of the crossings of a fine grid of levels.
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Now the last two terms in (3.3) tend to zero by Lemma 2.2 and Theorem 1.2,
respectively, so by applying Theorem 2.4 to the terms in the first sum we get that

liminf,_, Py, = Y m) e-okn1d-op . > (Xp4101) e k101

k=n

l-2) 0
| A T Xe41 X X

x 1 — e-(m-—mz/n

= 0. x — py)e-(nthz/n |
P(x =) P S

which tends to ¢,%(x — y)e=* if first m — oo and then n — co. Hence we have that
(3-4) liminf,_, Py, = 0}(x — y)e==.
We can now get an upper bound for P, , in a similar way:

Pry = Zis Prg(lon 1) = 0,67, ([0, 01]) = 2,
(3+5) 2,00, 1)) = 1, £2,:([0, 01]) = 1, £7,,([0, 0,]) = 0)
+ 2 P(Er,0y ([0, 01]) > 2,67, ([0, 01]) = 1)
+ P(Nr s, > €1,0,([0, 1])) + P(M([0,T — ¢, 0,T]) > 4r,,) -
As above, Theorem 2.4 gives that
lim sup,_. Pry < 0,5(x — y)e==,
which together with (3.4) gives that
lim;_, Py, = 6(x — y)e~*.
The limits of P, ,, P, ,and P, , can be calculated in a quite similar way. They
are g2e~?%, (0,0, — 0,%)(x — y)e~*, and (0,0, — 7,%)e~*, respectively. Adding the
four terms gives the desired result that
lim,_, P, = 0,0,¢ (1 + x — y),
and the theorem is proved.
REMARK 3.3. One can note that the asymptotic distribution of heights and
locations in Theorem 3.2 coincides with the asymptotic distribution of heights

and locations of the suitably normalized maxima in a sequence of independent
standard normal variables.

4. High level crossings and maxima for dependent processes. High level
crossings for two or more dependent processes occur in some practical situations,
e.g. in stochastic models for alarm systems in which a stochastic process X; is
predicted by means of some other process X,. A catastrophe and an alarm then
correspond to high level crossings by X,(f) and X(¢), respectively.

One remarkable feature of dependent Gaussian processes is that regardless
of how high the correlation—short of perfect correlation—the number of
high level crossings by the two processes are asymptotically independent. This
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has been shown by Lindgren (1974) for covariance functions that are twice
differentiable.

The technique used in Section 2 of this paper is directly applicable in the
two-process case and gives, as will be shown below, the weak convergence of
the flows of e-upcrossings towards two independent Poisson processes.

Let X, and X, be two stationary, continuous Gaussian processes with mean
zero, whose covariance functions r, and r, satisfy conditions (1.1) and (1.2) with

r(n) = 1 — [|%Cy (1) + o(|1|**C(1)) 1—0,

where 0 < @, < 2 and C,(r) is slowly varying, k = 1, 2. The exponents a, and
a, may very well be different.
Also suppose that the cross-correlation function

ra(f) = C(Xy(5), Xy(s + 1))

satisfies

(4.1) sup, |ry(7)] < 1

and

4.2) rap(f)logt -0, t— oo, or §2n rp(1)* dt < oo .

Incidentally, we note that (4.2) implies that r,(f) — 0, t — oo.
Let x, and x, be positive numbers and define the levels u, , and u; , by (1.3):

(4.3) Ur,, = (2log T)h

_logx, + floglog T + log G(1/(2log T')}) + log (27%/H,,)
(2log T)t

where G, and H, are as in the preliminaries. For ¢ > 0 let
§,%(B) = ¢ e-upcrossings of the level u,, by X():reT-B

define the time-normalized point process of e-upcrossings, and let further £* and
&* be independent Poisson processes with intensities x; and x,, respectively. Then
we have the following theorem.

THEOREM 4.1. If X, and X, are zero-mean, stationary and continuous Gaussian
processes with covariance functions r, and r, satisfying (1.1) and (1.2) and with
cross-correlation function ry, satisfying (4.1) and (4.2) then the point process on R,
&, x &%, of e-upcrossings converges weakly towards the product §' x &* of the two
independent Poisson processes.

Proor. The point is, as it was in the proof of Theorem 2.1, that the con-
ditions (2.2) and (2.3) for weak convergence of point processes can be deduced
from the standard Poisson limit theorem amended with a proof of the asymptotic
independence of extremes, i.e. a proof of Lemma 2.3 or its alternative formula-
tion (2.6).
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Starting with the asymptotic independence we again let U = 7., R, R, =
I! x I? be a finite union of two-dimentional rectangles, and set I' = J7_, I/},
P = Jr,, 12 Also define

M*(B) = sup {X,(t): t € B}
for k = 1,2. Writing u; , instead of u, , we have to show that
4.4) P(MYT - I'Y < up, MT - I*) < uyp,)
— P(MNT - 1" < uT,l)P(Mz(T P < Upq) — 0
as T — oo. Approximating over the discrete sets
1 .
A’“:{aG<_———>: mteer}, k=1,2,
TEN\ Qlogryi /Y B
and letting
MK(B) = sup{X,(t): te A* n B},
it follows as in the proof of Lemma 2.3 that
lim, o lim sup, ., [P(MXT - I') <y, MXT - I*) < g )
- P(MI(T 1) < Ur s Mz(T . ]2) < uT,2)| =0.
It is only the asymptotic independence of the maxima of the discrete processes
that requires some extra calculation, i.e. that
(4.5) PMXT - 1" < Up g, MXT-IP) < Urp o)
— PMNT - I') < up  )P(MXT - I?) < upy) >0,
when T — co. By the same inequality as referred to in the proof of Lemma
2.3 the difference in (4.5) is bounded by a constant times

|ria(s: — )| _ N
*9) x {(1 — (s, — 1)) *p(=20u):

i€ A0 (T, t,e A2 0 (T.12)} ,

where

Qij - !

= Uk — 2r,(s;, — t Uy JUp, + UL ).
1 — rlz(si — l‘j)z ( T,1 12( i J) T,1%T,2 T,2)

Putting u, = min (u, ,, 4, ,) we see that

2
2u,

2
0..> Ur 2 —2ry(s; — 1)) = s
( 1o ) T —"

YT — s, — )

and, since furthermore, |r,,(s; — t;)| is bounded away from 1 by condition (4.1)
we get that (4.6) is bounded by a constant times

2 (s — t:‘)l exp{— 1+ |ru(i~ — 1) } ’

where s, and ¢; range over the discrete sets A,' n (T .I') and A,* n (T - %),
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respectively. This sum is of the same type as the bound in Lemma 2.3, the
main differences being that the ranges of s, and ¢; are not necessarily compati-
ble and that the sets T . I* and T - /> may be nondisjoint. We have therefore
to exercise a little more finesse when estimating it.

Let the number of s,’s and ¢;’s be bounded by

_ T. A
T aG(1/21log T)) ’

n

where
A =2supf|t|:tel* U I’}.

For each fixed s; we sum over ¢;, extending the sum over the set {r;: 7; € Al
|s; — t;] £ T - A}. If we write

p; = sup {|ru(s — 1;)|: 0 < 5 < aGy(1/(21log T)})},

we can use stationarity to obtain the new bound

2
(4.8) n 3 {pjexp{— U } e A |1 < T.A} :
L+ p;
We now split the sum in (4.8) into two parts,
(4'9) lejléq(Ti + thj|>q(Ti ’

where ¢(T) — co when T — oo with a rate to be specified later. Since, by (4.1),
there is a constant ¢ > O such that p; < 1 — ¢ for all j, we can estimate the first

sum by
q9(T) __u
MGG (1)(2 Tog Ty exp {—5" c} '
Writing G(T) = min (G,(1/(2 log T)}), G,(1/(2 log T)})) this is not greater than

AT?e~*7 _g(T)logT exp <”r2 l—c )
alog T - (G(T))* T 2—c

(4.10)

Now it follows from Remarks 1.3 and 1.4 that

2
T?e="T .k

log T - (G(1/(2 log T)})®

is bounded for k = 1,2, and that #%, — u% , = constant + o(l). This implies
that the first factor in (4.10) is bounded and we get the bound

q(T);og_T”_ . Tra-o/@-0 — ¢(T)log T - T-</®-9,

which tends to zero when T — oo if, for example, ¢(T) = T? with 0 < 8 <
¢/(2 — c¢), which concludes the estimation of the first sum in (4.9).

To estimate the second sum we can proceed exactly as in Section 2. There
is no difficulty in substituting G, and G, in the appropriate places and to replace
u} , by ub ; and u; , since, as noted, #} , — u} , is bounded.
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This remark finishes the proof of (4.4). It then follows as in the proof of
Theorem 2.1 that condition (2.3) is satisfied.

To prove (2.2) we again proceed as in the proof of Theorem 2.1 and partition
as in Step 3 of that proof. We get

P& % &4y X To) > 1) S P(Er¥(Ty) 2 1, 672(I5) > 1)
+ P(ETI([:PIJ) > 1’ 51'2([3”),) g 1) .

That the terms to the right are of the order O(m~?) . O(m-') = o(m=?) follows
from the independent-maximum result as it does for one process, but we omit
the details.

REMARK 4.2. An immediate consequence of Theorem 4.1 is that the heights
and locations of the highest local ¢-maxima in the two processes are asymp-
totically independent.

5. Ordinary crossings and maxima under regularity conditions. The notions
of e-upcrossings and e-maxima were introduced to prevent nuisance jitter from
hiding the overall structure of crossings and extremes for nondifferentiable pro-
cesses. In this section we will see that if the number of upcrossings per time
unit has finite expectation then Theorem 2.1 will hold with ordinary upcrossings
substituted for e-upcrossings. Similarly, Theorem 3.2 will hold for ordinary
maxima if the expected number of local maxima is finite.

We first state a version of Theorem 2.1 for, what is called by Berman (1971),
a standard process. Suppose that the covariance function r satisfies

(5.1) )y =1—= 2,2 + o(r%, t—0,
so that the average number of ordinary crossings per time unit is finite. Define,
for0 <y < x,
(5.2) §,%(B) = # upcrossings of the level u,, by X(r):teT-B

7:°(B) = § upcrossings of the level u,, by X(1):reT.B
where

Uy, = (2log T) — log z + log (27/4,}) .
" (2 log T)}

Then the following theorem is a consequence of Theorem 2.1 and the fact that
as T — oo every regular upcrossing of u, , u, , is also an e-upcrossing.

THEOREM 5.1. Let X be a zero-mean, stationary and continuous Gaussian process
with covariance function r satisfying (5.1) and (1.2). Then &,° x 7,° defined by (5.2)
converges weakly towards & x 7 where & is a Poisson process with intensity x and 7
is a binomial thinning of & with deletion probability 1 — y/x.

As noted above, condition (5.1) implies that the number of upcrossings
during a finite interval has finite expectation. Now assume that the process is
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continuously sample differentiable and that its normalized derivative is a stand-
ard process, i.e.

(5.3) —r'(t) = A, — 4,1%2 4 o(1%), t—0,
where 4, is the fourth spectral moment. Then the expected number of local
maxima per time unit is (2z)}(4,/2,)}.

Define the overall maximum M,(T) = sup {X{(¢): [0, T']} and its location
S$,(T) = inf{t [0, T]: X(t) = M,"(T)} as in Section 3, and let M,(T') and S, (T)
be the height and location of the second local maximum of X(r) in [0, T]. The
following theorem takes the place of Theorem 3.2.

THEOREM 5.2. If X is a stationary, zero-mean Gaussian process with continuously
differentiable sample paths and with covariance function r that satisfies (5.3) and
(1.2), then

P(aT(Mlo(T) — b)) < s SAT) = o,T, aT(M;’(T) —br) = S2°(T) < a,T)
—0,0,e7 "] + e — e~m), T — o,
where
a, = (2log T)}
b, = (2log T)t — log (2m/4,})/(2 log T)t .

ProoF. The main step in the proof of Theorem 3.2 is the use of Theorem 2.4
together with the transition from the local e-maxima M,(T) and My(T) to the
number of e-upcrossings, as is demonstrated in inequalities (3.2)—(3.3) and
(3.5). The same approximation technique works here. Only replace the number
of e-upcrossings £, , by the number of ordinary upcrossings &% , in the appro-
priate places. The term P(N, , > &;, ([0, 0,])), which tends to zero according

to Lemma 2.2, and that appears in (3.3) and (3.5), should then be replaced by
the probability that

N%., = ¢ interior local maxima of X{(r) above urp, in [0,0,T]
and

0

T,ep = &7.2,([0,0,]) = § upcrossings of ur, in [0,0,T]

differ by at least one, and the probability P(X(0) > u,, ). Thus we have to
show that

P(N%., —§&7.121)—0

T,2,,
as T — co. This can be seen as follows. For any z > 0 we have that either
Np.—¢€7.20
or
NY,— &% .= -1 and X, T) > u,, .
Thus
P(N7, — &7l = 1) < E(IN7. — &%)

= E(N7,. — €7,0) + 2P(X(0,T) > uy,) -
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Here

EE) = "21: 2t exp(—4ut ) = o,z (1 + o(1)), T oo,

while the expected number of interior local maxima above the level u = u, , is

E(V$) = T (a1 — @, — 2

+ 427 [2) ) P(us/ (2, — 7))}

cf. Cramér and Leadbetter (1967), page 247, equation (11.6.14).
Since, for some constant K > 0,

2L Qn — QA — B} S K - T g, — L))
§K-%¢(u)—>0, T oo,
and
o, T

(AfA3)} - 2,21 [2,) p(u)D(uds (A, — A7)}) = 7T g exp(—3u’)(1 + o(1))
2 27

=o0,z-(1 +0(1)), T — o,
we have that

E(Ng',z_gg',z)_)09 T—)OO

We can now finish the proof as in Theorem 3.2, estimating the remaining proba-
bilities by means of Theorem 5.1.
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