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A LOCAL TIME FOR A STORAGE PROCESS!

By ERHAN CINLAR
Northwestern University

Content process X of a continuous store satisfies X; = Xo + 4: —
{6 r(Xs)ds, t = 0. Here, A has nonnegative stationary independent incre-
ments, and r is a nondecreasing continuous function. The solution X is a
Hunt process. Paper considers the local time L of X at 0. L may be the
occupation time of {0} if the latter is not zero identically. The more inter-
esting case is where the occupation time of {0} is zero but 0 is regular for
{0}; then L is constructed as the limit of a sequence of weighted occupation
times of {0} for a sequence of Hunt processes X approximating X. The
Z-potential of L is computed in terms of the Lévy measure of 4 and the
function r.

1. Introduction. Throughout this paper R, = [0, o), 2, is the Borel subsets
of R,,and N = {0, 1,2, ..-}. Weare given a function r on R, which vanishes
at the origin, is positive elsewhere, and is nondecreasing and continuous on
(0, o0) [we are allowing a jump at 0]. Also given is a probability space (W, &, P)
over which there is defined a stochastic process 4 = {4,; ¢ = 0} having non-

decreasing right continuous paths of the pure jump type, and with stationary
independent increments. Then,

(L.1) Ele= ] = exp[—1 §5 (1 — e~)p(dy)]

for all t = 0, 2 = 0; here 8, called the Lévy measure of 4, is a nonnegative
o-finite measure concentrated on (0, o) and satisfying

(1.2) 3¢ A DBEy) < oo .

We define &, = d(4,: s < r) and put
(1.3) Q=R, xW, X°=2x%, F'=.7 x%,.
For each x e R, we write ¢, for the Dirac measure concentrating its unit mass
at x and define
(1.4) Pr=¢, xP.
We let o#”be the completion of 577 with respect to the family of probabilities
{P7: x e R,} and define 7 to be the relative completion of . ° in .77 with
respect to the same family. It is now clear that {_%; r = 0} is a right-continu-

ous nondecreasing family of “complete” c-algebras.
For each o = (x, w) € Q we consider the equation

(1.5) Xy(x, w) = x + A,(w) — §s r(X,(x, w))ds, t
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It was shown in [3] and [4] that there is a unique solution, denoted by X,(w)
which is right continuous and has left hand limits everywhere. We will shortly
sketch the construction of this solution; but first we complete the stochastic
description.

If not already rich, W can be enlarged to have a family of shift operators
¢, W— W satisfying

(1.6) A W) = A(W) + Ag,w) .
Then, we define the shifts 6,: Q — Q by

(1.7) 0.(x, w) = (X(x, w), @, W)

for every 1 = 0 and @ = (x, w) € Q. It was shown in [3] and [4] that
(1.8) X = (Q, 57, 57, X,, 6,, P

is a Hunt process.

To go back to the construction of the solution to (1.5), of which we will
make repeated use, first suppose the Lévy measure 8 of A is finite. Then, for
almost all we W, t — A,(w) has only finitely many jumps in any finite interval.
For any exceptional w we put X,(x, w) = 4-oo for all xe R,. For a “good” w,

if ¢, 1,, - -+ are the successive jump times of t — A4,(w) with a,, a,, - - - the cor-
responding magnitudes, then

(1.9) X, = q(X;,, 0 — 1) st <t,,,
and

(1.10) Xpppy = 4(Xe s bur — 1) + @ui s neN
(where 1, = 0, x, = x, and q is the solution of (1.5) for 4 = 0, that is,

(1.11) g(x, ) = inf{y > 0: {2z (1/r(2))dz < 1})

define the unique solution of (1.5) and X,(x, w) = x, for 1 < co and we set
X.(x, w) = co. Finally, for x = +co, we put X,(c0o, w) = + oo for all ¢.

If B(R,) = + o0, t — A,(w) has infinitely many jumps in any open interval
and the above construction does not work. In this case, we employ an approxi-
mation procedure as follows. For anyne N, 8([1/n, o0)) < oo and the measure
B, defined by

(1.12) B.(B) = B(B n [1/n, o)), Be %,
is the Lévy measure of the pure jump nondecreasing Lévy process
(1.13) Ar = e (A, — As—)[u,—A,_gl/n) ’ t=0,

over the probability space (W, &, P). Since the Lévy measure 8, of A" is finite,
the construction of the preceding paragraph goes through to obtain a solution
XM(x, w) to

(1.14) X, = x + AMw) — {§r(x,) ds, t=0
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for every o = (x, w) e Q. Then, letting 6,%(x, w) = (X,*(x, w), ¢, w), with 57
S#,, P* as before, we obtain that

(1.15) X~ =(Q, 27, 2, X, 0., P7)

is a Hunt process. This was shown in [3] along with some further results con-
cerning the properties of X*. The next step, which we put without proof for

ease of referencing, obtains the solution X for arbitrary o-finite Lévy measures
B. Proof may be found in [4].

(1.16) PROPOSITION. Forany w € Q, as n — oo, X,"(w) increases to X (w) which
is the unique solution to (1.5). Further, the convergence is almost surely uniform
over finite intervals.

In this paper we are interested in the emptiness of the store, namely the set
{t: X, = 0}. With this purpose in mind, we had already standardized the input
process A and the release function r. Somewhat more generally, the input will
be of the form A, 4 a, ¢ for some a = 0. But the drift component can easily be
absorbed into the function r by redefining r and changing the position of the
point zero. One more condition which we will be putting on r is to insure against X
never becoming zero (otherwise we have no problem left). The condition is that

(1.17) mx) = S %y) dy < oo

for some x > 0 (which implies that m(x) < co for all xe R,). Noting that m(x)
is the time required to empty a store of initial content x in the absence of fur-
ther inputs, what we impose is no restriction. This condition, however, is not
sufficient for insuring that X ever reach 0 (see below, case 4).

Our approach to investigating the local behavior of X at 0 is via a study of
the hitting time of 0, local times at 0, and the inverses of those local times. In
Section 2 we concentrate on the “time to emptiness,” namely the hitting time
S =inf{r > 0: X, = 0}. We compute its transform f*(x) = E*[exp(— 4S)] for
all xand 2, and give some approximations. In Section 3 we consider the problem
of constructing local times. By a local time at 0 we mean a continuous additive
functional whose support is the singleton {0}. It exists if and only if 0 is regular
for {0}, i.e., if and only if § = 0 P°-almost surely, which is also equivalent to
having f*(0) = 1 for some (and therefore all) 2. Finally, in Section 4, we con-
sider the inverses of the local times constructed. These inverses are increasing
Lévy processes, and we identify their exponents.

The following is a cross-file account of our results concerning the “emptiness
set” E = {t: X, = 0}. We write f(x) = f(x) = E*[¢e~*]. Depencing on f and
the Lévy measure 8 of the input process 4, there are four cases:

(1) BR,) < oo;

(2) B(R,) = +oco but § (I —f)df < oo;

(3) B(R,) = +oo0, § (1 — f)dB = +oo, but f(0) = 1;
(4) B(R,) = +oo0, { (1 —f)dB = +oo, f0) < 1.



STORAGE PROCESS LOCAL TIME 933

In the first case the input is a compound Poisson process. If the store is empty,
it stays empty for a positive time, namely, until the time of the first input. Then
a nonempty period starts and lasts for some time, and so on. The empty and
nonempty intervals alternate; lengths of the empty periods are independent and
identically distributed exponential random variables; and the lengths of the non-
empty periods are independent and identically distributed variables independent
of the empty-interval lengths. In this case the local time at 0 is simply the
occupation time process L = {L,; t = 0} with

(1.18) L, = §t14(X,)ds, 1=0.

In the second case, the set £ does not contain any open intervals; it has an
empty interior, and its every point is a limit point of £ (namely, E is a gener-
alized Cantor set). However, the Lebesgue measure of E is positive and the
local time at O is still the occupation time as defined in (1.18). The technique
we use to get this result is as follows. We compute, directly, the A-potential of

(1.19) Ly = §§o(X,") ds

(to which case 1 applies); then express the same A-potential in terms of the
potential operator of X" by using a general formula from Blumenthal and Getoor
[1]; show that the latter converges to a nonzero potential; and observe that L~
defined by (1.19) converges to the occupation time of 0 by X. A simple sufficient
condition for this case to hold is that §(R,) = 4 oo and lim,,7(x) > 0. As
such this case subsumes the results of Kendall [5] and Prabhu and Rubinovitch
[9] who assumed that r = 1 on (0, o).

By far the most interesting case is the third. The set £ has the same structure
as in case 2 except that its Lebesgue measure is now zero. Since f(0) = 1, 0 is
regular for {0} and a local time L at 0 exists by the general result in Blumenthal
and Getoor [2, Chapter V, Theorem (3.13)], or Maisonneuve [8]. But L is no
longer an occupation time. In [2] and [8], it is characterized as an additive
functional whose increasing is restricted to the set £ = {r: X, = 0}. The familiar
result of Lévy [7] displays the Brownian local time as a right-derivative at x = 0
of the occupation times. Without some such connection, one may question
whether the term “local time” is fully appropriate. Our construction of L in
this case is to partially answer this. We find suitable constants c, increasing to
infinity, and consider the sequence of local times c, L* (the nth for the process
X™) with L™ defined as in (1.19). We show that this sequence has a subsequence
which converges (almost surely) to a continuous additive functional of X, and
by identifying the A-potential of the limiting functional, we show that it must
be the local time L at 0 (normalized). The construction looks close to the usual
ones starting with a given potential (cf. Blumenthal and Getoor [2, page 162
ff.]). Our method of using local times of X" to get a local time for X is remi-
niscent of the method used by Stone [10] for diffusions.

Finally, case 4 is devoid of any interest, because f(0) < 1 implies that the
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hitting time § is infinite almost surely (see Remark (2.17)). Then, the set E is
empty except possibly for the point + = 0 which is in E if X; = 0. Hence,
effectively, we only have three cases.

2. Time to emptiness. Considering the content process X specified by (1.8)
we define

(21) S:inf{t>O:Xt=0}.
In this section we will compute
(2:2) fix) = E*f[e-*],
for all xe R, and 2 = 0. Our computation of f* will first be for processes X
corresponding to input processes A with finite Lévy measures. Then, the general
case will be obtained by a passage to the limit using the construction of X as
the limit of processes X each of which had, corresponding to its input processes,
a finite Lévy measure.
(2.3) PROPOSITION. Suppose b = B(R,) < oo. Then, f3(0) =1, and for
x > 0, f(x) satisfies
(2.4)  fi(x) = exp[— (2 + b)m(x)]
+ §5® ds exp[—(2 + b)s §F B(@)f*(y + 9(x, 9)) -

There is one and only one bounded solution of (2.4); it is
(2.5) [H(x) = §& Ri(x, dy) exp[— (2 + b)m(y)] , x>0,
where R* = 3 =_, (Q*)" is the potential operator corresponding to the sub-Markovian
kernel Q* given by
(2.6) Q%g(x) = {7 dsexp[— (2 + b)s] §§ B@)9(y + 9(x, 5))
for all x = 0 and bounded measurable functions g on R,.

REMARK. Note that Q%x, B) is the Laplace transform of the measure
QO(x, B, +) where »

Q(x,B,C) = P*{X, B, TeC, T < S}, B,CeR,,

wherein T is the time of first jump for X. Then, if T, T,, - - - are the succes-

sive jump times of X, R*(x, B) becomes the Laplace transform of the measure
R(x, B, ) where

R(x, B, C) = E*[ 1, lB(XT”)lc(T”)I‘T"<S,] :

In particular, R%(x, R,) is the expected number, starting at x, of jumps of X
before X reaches 0.

Proor. Let T be the time of first jump for 4. Since b = (R,) < oo, T is
almost surely positive, has the exponential distribution with mean 1/b, and the
magnitude of the jump at 7" has the distribution g/b.

If X, = 0, then X, = O for all ¢ €[0, T) and therefore S = 0. Hence f*(0) = 1
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for all 2 = 0. Next assume x > 0; on the set {T > m(x)} we have S = m(x)
and on the set {T < m(x)} we have § = T + S o 6, P*—almost surely in both
cases. Using the strong Markov property at T, these arguments yield the equ-
ation (2.4).

For fixed 2 > 0, the kernel defined by (2.6) is sub-Markovian, and 0'(x, R, <
Q°(x, Ry) = 1 — exp[—bm(x)] < 1 for all x > 0. It follows that R* is positive
and that RY(x, R,) < R(x, R,) < oo for all x > 0. The second term on the
right side of (2.4) is Q*f*(x); hence, (2.4) is equivalent to
(2.7) fi=g+ Qi
with an obvious definition for g. It is now clear that R%g is a solution to (2.7);
that is, (2.5) is a solution to (2.4).

To show that (2.5) is the only bounded measurable solution, note first that
any other solution to (2.7) can differ from R*g by only a measurable function
h satisfying A
(2.8) h = Qh, () 2 O

But this implies that & = (Q*)"h < (Q%)"1 whereas
(2.9) lim,_. (QH"1 =0

for all 2 > 0 since

b
A+b
so that (Q*)*1 < (b/(2 4 b))*1 — 0. Hence k = 0 is the only solution of (2.8). []

sup, Q(x, R,) = <1

From some points of view, especially if the function r and the measure g are
of simple form, the following provides a more tractable characterization for fA
In general however, the solution of the integro-differential equation appearing
next can best be obtained by the technique of the preceding proposition. We
are writing D for the differential operator.

(2.10) CoROLLARY. Suppose b = B(R,) < oo. Then, for any fixed 2 > 0,
the function f* has a nonpositive continuous derivative on (0, co) and satisfies

(2.11) —r()Df(x) = Af4(x) + §& B@)f(x) — fH(x + y)]
for x > 0 with the boundary condition f*(0) = 1.

Proor. Clearly the function m and therefore x — g(x, s) are differentiable
with continuous derivatives on (0, co). Thus, it follows from the form of Q*
given by (2.6) that, if g is differentiable with a continuous derivative then so is
Q’g, and noting that m'(x) = 1/r(x) and g(x, m(x)) = 0, we obtain

r(x)DQ%g(x) = exp[—(2 + bym(x)] {5 f(dy)g(y)
+ §5* dsexp[—(2 + b)s] {7 B(dy)g'(y + (%, $))gu(x, s)r(x) ,

where g, is the partial derivative of g with respect to the first argument (and g,
below with respect to the second).
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Note that m(q(x, s)) = m(x) — s, and therefore r(x)q,(x, s) = —qyx, s). Put-
ting this into the above formula and integrating by parts, we obtain

n(x)DQg(x) = § f(dy)g(x + y) — (2 + 6)Q’g(x) .
Replacing g by (Q%)"~'g, we see that for n > 1
(2.12)  r(x)D(QY)g(x) = § By Q@Y '9(x + y) — (2 + b)(QY)"9() -

In particular, (2.12) holds for g(x) = exp[—(2 + b)m(x)], and since Rig =
21 (QY"g is finite, then (2.12) shows that 3 D(Q*)"g converges. Therefore, on
(0, o0), Df* = DR*g exists and is equal to }; D(Q*)"g. Taking the indicated
sums in (2.12) we obtain the desired result.

Next we consider the general case where § is not finite. Considering the

process X" defined by (1.15) we note that the preceding applies to compute, for
any 1 = 0, the function

(2.13) [Hx) = Efe*], x20,
where
(2.14) S, =inf{t > 0: X;» = 0}.

Once the f,* are known, the next proposition may be used to compute f* for
the general case.

(2.15) PROPOSITION. The sequence of stopping times S, is increasing, and
lim, .S, =S8 on {X, > 0}.

Thus, for any 2 = 0 and x > 0,

(2.16) FH(x) = lim, o fA(x) -

ProofF. It is clear that (2.16) follows from the first statement. Since X, <
X,»* for all ne N and ¢t = 0, we must have S, < S,,, for all ne N. Hence
lim, S, = S, exists and is a stopping time. Since X,* < X, for all n, §, < S.
We next show the reverse inequality on {X, > 0}.

On the set {S, < oo} we have Xgn = 0; therefore, since the X" increase,
Xz =0 on {S, < oo} for all m < n. By the quasi-left-continuity of X™ this
implies that X7 = lim, Xg = 0 almost surely on {S, < oo} for any meN.
This in turn implies that

Xsozlimngt)zo on {S, < oo}.
Thus, on {0 < S, < oo}, S5 = S.

We have shown that § = S, on {S, > 0}; this completes the proof after noting

that on {X, > 0} we have S, = m(X,) for all n so that §; = m(X,;) > 0.

(2.17) REMARK. For any we W and t = 0, X,(x, w) < X,(y, w) whenever
x < y; therefore, S(x, w) < S(y, w) for x < y. It follows that x — f*(x) is non-
increasing (and this is equally true of each f,%). This fact, coupled with the
monotonicity of the convergence of f,? to f* implies that the convergence to f*
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is uniform over [¢, oo) for any ¢ > 0. If f4(0) = 1 we can further take ¢ = 0.
Otherwise, if f%(0) < 1 we shall shortly see that f%(0) = 0 = lim, £,%(0) = 1.

In principle, this completely specifies /4. But it is useful to find alternative
solutions and we need to get at least some bounds. The following is aimed at
this. One recurring idea is that, if the release function r were to be replaced by
a function 7 < r then the solution X, corresponding to # would be greater than
the original X,. This is easy to see from the interpretation of r(x) as the rate of
output when the content is x.

(2.18) PRrOPOSITION. Forany x >0,y =0,4>0

(2.19) [Hx) = fAx +y) S yetor(x)
where ¢*(c) is the unique solution of
(2.20) cz =2+ § Bdy)(l — e %)

foranyc>0,4>0.

ProoF. For each xe R, define T, = inf{r > 0: X, €[0, x]}. Since the dis-
continuities of X are always upward jumps, X(7,) = x almost surely on {X;, > x,
T, < oo}. Ontheset {X;, > x} we have § > T, and therefore S = T, + So 0, _.
Applying the strong Markov property at T, and noting that X(7,) = x almost
surely on {X; > x}, we have

(2.21) E””[e“s] — Ez+y[e—sz]Ez[e-1S] s
for all x, y € (0, o).
Let X,°(x, w) be the solution of the equation (1.5) with r replaced by 7 defined

as '(0) = 0, '(u) = c for u > 0. Then, X° = (Q, 57, 27, X, 0,°, P*) is again
a Hunt process and we define

S =inf{r > 0: X,°=0}.
Then, for any x,y > 0and we W
(2.22) Tx +y,w) = §7(y, w)
by the fact that r = r(x) = ¢ on [x, o). This implies that
(2.23) E*ti[e~Tz] = Ev[e~*""].
On the other hand, for the process X° the expression (2.21) becomes
Er+y[e—1S°] — Eu[e—XS"']Ex[e—XSC]
which implies that
(2.24) Ef[e735°] = e~"©

for all x = 0 for some constant ¢*(c).
Now putting (2.24) into (2.23) and that into (2.21) we get

i+ ) = fA(x) exp[—ye? o 1(x)]
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from which (2.19) follows. That ¢?(c) satisfies (2.20) was shown by Kendall
[5]. O

In fact the proof of Proposition (2.33) below can be given first for the special
case r(x) = c for x > 0 by using (2.24). This yields the estimate (2.30), and
thus (2.20), without the appeal to Kendall’s result.

It is clear that the solution ¢*(c) of (2.20) is finite. Therefore, (2.24) implies
that P*{S° < co} > 0 for all y. Since m(x) < co by hypothesis, r(x) > 0 for every
x > 0, and (2.22) now implies that

(2.25) P*t¥T, < oo} = PYS™™ < o0} >0, x>0.
At x = 0 these ideas yield the following information.

(2.26) CoROLLARY. If r(0+) = lim, , r(x) > 0, then f*(0) = 1 and
(2.27) DfF}(0) = lim, wl_—){_l(x) < ¢A(r(0+)) < oo .

If (0+) = 0, then
(2.28) lim, ,, =) — | o
X

Proor. If r(0+) = c > 0 we have S < §° and hence

(2.29) £1(%) 2 exp[—xpX(e)] .
This shows that f%(0) = 1 and coupled with the monotonicity of f? shows that
(2.27) holds.

In all cases, S(x, w) = m(x) for all xand w. Therefore, f3(x) < exp[—Am(x)],
which implies that

(2.30) liminf, L =/ 5 4
X r0+)

Hence, if r(0+) = 0, (2.28) holds. [J

Unfortunately, (2.28) does not settle the question of whether f(0) is 1 or not
when r(0+) = 0.

The following brings together a number of observations concerning this mat-
ter. In particular, this contains the statement that the case 4, where f(0) < 1,
is totally without interest.

(2.31) PROPOSITION. The following are equivalent: (a) O is regular for {0}; (b)
f4(0) = 1; (¢) f3(x) > 0 for some x > 0; (d) f*(x) > 0 for all x; (e) P*{S < oo} > 0;
(f) P{S < oo} > 0 for all x.

Proor. The only nontrivial implication is (e) = (b). By Proposition 2.15,
S, /'S almost surely. Since § is infinite, S, < S almost surely; and on the set
{§>S,} wehave § =S, + So6;. Thus,

(2.32) E[e~"| 225,] = exp(—4S,)/*(Xs,) -
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By the martingale convergence theorem, the left side converges to exp[—4S],
whereas, on the right side, the first factor converges to exp[ —4S]. Hence, on
the set {S < oo}, we have f4(X; ) — 1 almost surely. If (e) holds, then {§ < oo}
is not empty, and this shows that f%(0) = 1. []

(2.33) PROPOSITION. For any fixed 2 = 0, f* is uniformly continuous and differenti-
able on [0, o). The derivative Df* is continuous and satisfies

(2.34) —r(x)Df*(x) = Af}(x) + {7 B@)/ (%) — [1(x + )]

for every x > 0. If f3(0) < 1, then f(x) =0 for all x = 0. If f4(0) =1, then
Df*(0) is finite or infinite according as r(0+) > 0 or r(0+4) = 0.

Proor. If f4(0) < 1 then f*(x) = O for all x = 0 by the preceding proposition
and all the claims are true. Suppose f4(0) = 1. Then, the convergence of f,* to
f*is uniform (by Remark 2.17), and each f,* is continuous (by Corollary (2.10)).
Hence f? is continuous. Thus, f* is uniformly continuous on the compact [0, 1];
and the estimate (2.19) shows that f? is uniformly continuous on [1, c0). Hence
f* is uniformly continuous.

Concerning the differentiability, the situation at x = 0 is covered by Corollary
(2.26). If B is finite, (2.34) follows from Proposition (2.10). Suppose § is not
finite; Corollary (2.10) applies to f,? and we can write '

(235)  —r()DfAx) = AAX) + § B ym, (D) — fi1(x + )]

for all x > 0.
By Proposition (2.15), f,* | f*, and by Proposition (2.18),
(2.36) 0 < fi'(x) = fi'(x +y) < inf (1, ¢y)

for some constant ¢ < co for all x = ¢ >0 and y = 0. In view of (1.2) the
bounded convergence theorem applies to show that the last term of (2.35) con-
verges to the last term in (2.34). This and (2.17) imply that the right-hand side
of (2.35) converges to the right side of (2.34) uniformly for x in[¢, ], 0 < ¢ < 7.
Over [¢, 7] then, the left side of (2.35) converges to some function —rg* uni-
formly. By (2.35) and the continuity of f,?, the functions Df,* are continuous;
hence, using the bounded convergence theorem on the Riemann integrals
§e.py DS (x) dx, it follows that f* is differentiable over [¢, 7]. As the derivatives
Df,* converged to —g*, we must have —g* = Df%. []

The following is a supplementary result. Since f* is a regular excessive func-
tion, this shows its continuity on (0, o) as a corollary.

(2.37) PROPOSITION. Every regular excessive function is continuous on (0, co).

Proor. Define T = inf {t: X, < x,} for x, > 0 fixed. By (2.25), P*{T' < 00}>0
for all x > x,. Let g be a regular excessive function. Then, almost surely,
t — g(X,) is continuous everywhere t — X, is. Pick @ = (x, w) such that x > x,,
T(x, w) = t, < oo, and t — g(X,(®))is continuous everywhere t — X,(w)is. Since
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the only jumps of X are upward, 1 — X,(w) is continuous and is equal to x, at
t,, and hence

(2.38) limt“0 g o X(w) = g(x,) = lim,, g o X(®).

Since 1 — X,(w) has no downward jumps, and by the definition of ¢, = inf {z:
X,(w) < x,}, for some #, > ¢, and x, < x,, the path + — X,(w) achieves every
value in the interval [x, x,] as ¢ increases to #,. This fact put together with
(2.38) implies that g is continuous at x,. Since x, > 0 is arbitrary this completes
the proof.

We end this section by pointing out a deficiency in our computations. This
concerns the probabilities

(2.39) F(x) = PHS < oo}, x=0.

We have seen in Proposition (2.31) that 0 is regular for {0} if and only if F(x) > 0
for some x, and therefore for all x. If § is finite, or if r(0+) > 0, we have
F(x) > 0. The remaining case of doubt is when

(2.40) BR,)=oc0, r0+)=0.

Since m(x) < oo, we must of course have r(x)/x — co. It follows from Proposi-
tion (2.33) that, with

9(x) = =DF(x),  n(x) = p((x, )) ,

we have

(2.41) r(x)g(x) = §& n(y)9(x + y)dy .

If this equation has a continuous bounded solution g = 0, then F(x) > 0 and 0
is regular for {0}. Otherwise, if the only continuous solution to this is g = 0,
we have F = 0.

A related problem of less interest concerns the recurrence properties of the
point 0, namely, whether F(x) = 1 or not. In [3] we had given a solution to
this problem when 3 is finite. There, we also have a complete solution of the
limiting behavior when S is infinite for the case where r(x) = cx (which is of
no interest to us here—then m(x) = oo and F(x) = 0 for all x).

3. Local time at zero. We are interested in the existence and characteriza-
tion questions for a local time at x = 0. It is known that, cf. Blumenthal and
Getoor [2, Chapter V, Theorem (3.13)], a local time at x = 0 exists if and only
if 0 is regular for {0}, and all local times at O are constant multiples of each
other. In this section we will obtain the local times in the first three cases
mentioned in the introduction. In view of Proposition (2.31) these are the cases
where P*{S < oo} > 0 for some x, and the remaining case is totally without
interest since P*{S = oo} = 1 for all x in that case 4. The main results of this
section are Theorems (3.1), (3.10), (3.17), and (3.62). As in the preceding
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section we first consider the case S(R,) < oo and then take limits to obtain the
case B(R,) = oo.

(3.1)  TuroreM. If B(R,) < oo, then L = {L; t = O} defined by

(3.2) L, = \{1,(X,)ds, t=0,
is a local time and its A-potential

(3.3) ul(x)y = E* {7 exp[—At]dL,, 2>0,
is given by

(3.4) ui(x) = [1(x) xeR,.

2+ S B = f1O)

Proor. Let {L,} be defined by (3.2) and #? by (3.3). That it is a local time
is evident once we show that u*(x) is not identically zero. So, the only thing
we need to show is (3.4).

Since Lg = 0 and Xy = 0 almost surely on {S < oo}

(3.5) u(x) = E* (g e " dL,
= E*[e~"EX® (e~ dL,] = f3(x)u*(0)
for all xe R,. Let T be the time of first jump for 4. On the set {X, = 0},
L, =t for all t < T and thus
(ce*dL, = \Te*dt + (e ™dL,

(1 — e=3T) 4 e=T(§{z e=* dL,) o 0, .

N

Using the strong Markov property at 7 and the normality of X, we get
(3.6)  w(0) = 5 [1 — §5 ds be~be] + {7 ds e~ {7 (dy)eui(y)

_ ﬂl_b [1+ § Ady)i(y)]

where we wrote b = B(R,). Putting (3.5) into (3.6) we obtain an equation
involving u*(0) only. Solving for #*(0) out of that we get

(3.7) w(0) = [2+ (1 — [ dp].
The conclusion follows from (3.7) and (3.5). [

Next we consider the cases where (R,) = +oco. The preceding theorem
applies to show that, for each ne N,

(3.8) L= i Lo (X,) ds, t=0

defines a local time at zero for the Markov process X" and its A-potential is
given as

(3.9) ul(x) = E* {7 e dL = [2 + {5, (1 — fu") dB]7'fa!(%)
(where f,? is as defined by (2.13)).
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Below we write f, f,, etc. for ', f,', etc. for simplicity. We note in passing
that § (1 — f*)dB is either finite for all 2 > 0 or else is infinite for all 2 > 0.

The following theorem settles the second case. We recall that, by Corollary
(2.26), a simple sufficient criterion for the condition of this theorem is that
r(0+) > 0.

(3.10) THEOREM. If { (1 — f)dB < oo, then
(3.11) L, = {§{I,y(X,)ds, t=0

defines a local time whose -potential is

(3.12) W) = o S{:(i)f‘)dﬁ , xeR,,

forall 2 > 0.

Proor. If B(R,) < oo, this is already proved. Suppose now that f(R,) =
+ oo and observe that the finiteness of { (I — f)dp implies that f(0) = 1, and
therefore, 0 is regular for {0}. So, the existence of a local time is guaranteed,
and we want to show that it is a constant multiple of L defined by (3.11); namely,
we need to show that L does not vanish identically.

Since X* 1 X as n — co, L,” decreases as n increases. By the bounded con-
vergence theorem, we must have .

(3.13) L, =lim, L»

for all + > 0. Therefore, u,* decreases and

(3.14) u*(x) = lim, u,*(x) forall xelR,,4>0.
By Proposition (2.15), as n —oo, f,* | f* on (0, co) and therefore Iy, (1 —

fu)1 (1 — f. By the condition of our theorem, the bounded convergence

theorem applies to show that the last term of (3.9) converges to the right hand

side of (3.12). This and (3.14) shows that (3.12) holds. Since *(0) > 0, L does
not vanish identically. []

(3.15) REMARK. The same proof shows also that, if § (1 — f)df = + oo,
then

(3.16) (0 1y(X,)ds =0

almost surely; that is, the occupation time of {0} is zero.

In this case also there can be a local time at 0 and the next theorem shows its
construction from the occupation times L* defined by (3.8). Below, by the local
time at 0 we mean the one whose 2-potential is equal to f for 2 = 1.

(3.17) THEOREM. Suppose

(3.18) AR =40, [(1—fldf=+o, fO)=1.
For each ne N let

(3'19) Co = 1 4+ s;n(l —fn)da@
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Then, there exists a sequence K such that for all t = 0.
(3.20) L, =lim,_ .,.xc,L"

exists almost surely, and L = {L,;t = O} is the local time for X at x = 0. Its A-
potential is

(3.21) ul(x) = flx) — (A — HUf(x), xeR,;
here U* is the A-potential (or, resolvent) of the process X.

Proof will be broken down to several lemmas. It will further be seen that
¢, L, — L, in probability as n — oo.

(3.22) LEMMA. Let U,* be the A-potential operator for the process X* and set
(3.23) v = f, — (A — DHUSS,, Ai>0,

Then, v,* is the A-potential of c, L", and as n — oo, v,* approaches the right hand
side of (3.21). Further, the convergence is monotone decreasing for 2 < 1.

Proor. It is shown in [1, page 52] that v,% is the 2-potential of t/e local time,
for the process X, satisfying v,'(x) = f,(x) for all xe R,. Noting the definition
(3.19) of ¢,, v,' = c,u,'; and hence, from the uniqueness of local times up to
multiplication by constants, v, must be the 2-potential of c, L".

As n— oo, f, | f and X,* 1 X,; hence, f, o X;,* | fo X, for all + = 0 almost
surely. Therefore, by the bounded convergence theorem,

(3:24) U fu(x) = E* {7 e "fy(X,")dt | E* \T e f(X,) dt = U'f(x).
Thus, v,? > v =f — (A — 1)Ufas n — co. []

It follows from [1] that
(3.25) vi(x) = flx) — (4 — DU f(x)

is the 2-potential of the local time L at zero satisfying v'(x) = f(x). We will
show that this L is the limit of ¢, L* as n — co over some set K — N.

(3.26) LEMMA. Forany 4 > 0,
(3.27) lim, , .. sup,s, e~ *[v,4(X,") — v, (X,™)| = 0
almost surely.

Proor. It is sufficient to show (3.27) with v,%(X,™) replaced by v*(X,). It
follows from [1, page 53] that we can write

(3.28) vAx) = 0,10 x), vix) = (),
where b,?, b are positive constants where, in view of Lemma (3.22),

(3.29) lim,, |b,* — b} = 0.
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Now, we can write (dropping the superscripts 2)
[0u(X,") — V(X)] < |6y fu(Xe") — BFU(XP)| + [Bfu(X07) — B(X)]
+ [6f(X,") — bf(X)|
< |6y — B + BlIfu — Il + BfIX) — fX)] -
Foranyr >0,0< X,— X" < 4, — A" < A, — A" = a,forall 1 < r. Hence,
(3'30) SUP;<. lvn(th) - v(Xt)l
< [b. — b + bllfs — Sl + bsup. [f(x) — flx + a,)] -

Asn— oo, A" 1 A, almost surely and therefore the last term of (3.30) vanishes,
by the uniform continuity of f* (cf. Proposition (2.33)), almost surely. This
together with (3.29) and (2.17) shows that, almost surely,

(3.31) lim,_, sup,<. |v,(X;") — v(X,)] =0.
Hence, noting that

(3.32) SUP,s.. [0 (X") — v(X,)| < e*2]b, — b]
we obtain

(3.33) lim,, ,, ., SUP5o €%V, (X,") — V}(X,)| < 2e7**

almost surely. This completes the proof since = can be taken arbitrarily large. []

The proof of the following lemma is fashioned after that of Theorem (3.8) in
[2, page 162]. However, since our L are for different processes, our situation
is somewhat more complicated.

(3.34) LEMMA. Let, for each ne N,
(3.35) B = \te~*c,dL", t=0
for fixed 2 > 0. Then, for any 6 > 0,
(3.36) lim, ,,_. sup, P*{sup,,, |B* — B,"| >} =0.

Proor. Note that E°[B,"] = v,%(x) and clearly B, is 5%, measurable. So,
(3.37) E*[B,"| 57] = B + e~ v, (X,") .
Hence, if we define
(3.38) M = B + e *v,}(X,"),
then (527, M,*, P*) is a nonnegative martingale for each n ¢ N and x ¢ R,, and

M = lim,_ , M,* = E*[B,"| 57.,,] = B."
almost surely. From the extension of Kolmogorov’s inequality to martingales,
(3.39) P*{sup, [M,» — M,"} = ¢*} < 0 *E*{[M,." — M "]}
= 0’E*{[B.” — B.,"]’} -
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We next estimate this last term. Now,
Kn,m = [Bw” - me]2
(3.40) = 2 {*[dB* — dB] {7 [dB,* — dB,"]
=2\r[dB — dB,|[B." o 0," — B," o 0,"]e™
so that
E*(K, ) = 2E* \g [dB,» — dB,"le~*[v,(X,") — v, (X/™)]
< 2E% (@ e M, (X)) — v, (X ™) dB”
(3.41) + 2E% {3 e v, (X,") — v (X,™)| dB™
< 2E7(B." + B.")(sup, e (v, H(X.") — va(X")))]
< 2{E*[(B." + B"YE[(sup, e [0} (X") — va (X M)TP
where the last inequality used the Schwartz inequality. Noting that (a + b)* <
24® + 20,
(3.42) E*[(B." + B.™)] < 2E°[(B."] + 2E°[(B.")]
whereas
E*[(B,")?] = 2E* {; dB,* \7 dB,*
= 2E* (e e, dL" - e M0, }(X,")
(3.43) < 2E® (Fe?c, dL - v,%(0)
= 20,%(x)0,}(0) = 20,(0)v,%(0)
= 2b,*b,*
independent of x. Hence, from (3.42) and (3.43) and (3.29)
(3.44) lim, ,_, E*[(B.,* + B.,™?] £ lim, ., [4b,%0,* + 4b,7b,*]
= 8 < oo .
Now it follows from (3.41), (3.44), and Lemma (3.26) that
(3.45) E’[K,,.]— 0 n, m— oo

uniformly in x. This implies, through the definition (3.40) of X, , and the esti-
mate (3.39), that as m, n — oo

(3.46) Pe{sup, [M;» — M;"]! = 6% — 0

uniformly in x. By the definition (3.38) of M™ and Lemma (3.26), (3.46) in
turn implies (3.36), thus concluding the proof of (3.34). []

Let Z* be a positive random variable which is independent of X and with
distribution function 1 — e*, + > 0. Let X* = (X, Z%) be the process X “killed
at time Z2,” that is, X,? = X, for t < Z* and X,* = oo for t = Z?. [Of course,
Z* must in general be defined on a larger space than Q but we will not dwell
on these technical points.] By the definition (3.35) it is clear that, for each
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ne N, B" is a continuous additive functional of (X", Z%; in other words, in
terms of the process X* alone,

By, =B"4 e *B"of,".

(3.47) LEMMA. There exists a subsequence K C N such that the sequence
{B.*; k e K} converges uniformly for t ¢ [0, co) almost surely. The limit is a con-
tinuous additive functional {B,} of (X, Z?).

Proor. By Lemma (3.34) we can find a sequence K — N independent of x
such that
P*{sup, |B* — B,7| > 1/2%} < 1/2*

for all x when j, k € K, j = k. This implies the first statement.
Let A be the set of those w e Q for which BX(w), k e K, converge for all
t < ZYw). Define

B(w) = lim, ¢ B*(w) 1< ZNw), wel
(3.48) = lim,, 1, B,(®) t = ZNw), wel
=0 t g 0 , w¢g A

It is clear that r — B, is continuous. Next we show that it is an additive func-
tional of (X, Z%), namely, that it satisfies

(3.49) B,,, = B, + e B, 0 0,

for each ¢, s = 0 almost surely.
First we note that, for any we W, x — X,"(x, w) is nondecreasing; hence,
x — B/"(x, w) is a nonincreasing function. Since X, = X,*, this implies that

BM(X(x, w), ¢, w) < BMX,M(x, w), ¢, W)

for all 5s,+ = 0, (x, w) € Q. That is, in view of (1.7) defining ¢, and the similar
definition of 4,",

(3.50) B"of, < B"o0,.
Hence, on {Z? > t + s} n A, since 6,7'A c A,
B, 4 e "B o 0, = lim,[B/* 4 e *B}* o §,]
< liminf, [B* + e~*B} o 6,"]
= liminf, B:,, = B,,, .
By a similar reasoning for {Z* < 7 4 s}, we see that on the set A
(3.51) B,,,= B, + e *B o0,.
On the other hand,
E*[B,] = lim, . E*[B/*]
(3.52) = lim, E*[B_* — E*""(e=*B_¥)]
= lim, v,*(x) — e~*lim, E*[v,*(X,")] .
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By Lemmas (3.26) and (3.22), this becomes
(3.53) E*[B,] = vX(x) — e~"P,v(x)
where {P,} is the transition semi-group of X. Using (3.53) we also have
E*[e""B, o 0,] = E*[e"*E*"(B,)]
(3.54) = e~ P, (v} — e~P v)(X)
= e MP,vi(x) — e MHOP, vi(x).

From (3.53) and (3.54), it follows that

E°[B,,,] = E*[B, + e *B,0 0,].

This together with (3.51) imply (3.49) and thus complete the proof of Lemma
(3.47). 00

We now proceed to the completion of the proof of Theorem (3.17). The
continuous additive functional B defined in the preceding lemma depends on 4
which was fixed starting with Lemma (3.34). To show this dependence we now
write B%; then, B* is a continuous additive functional of (X, Z?) and has poten-
tial vA(x) = E*[B.'] = E*[B(Z%)].

Let # > 0, Z* be an exponentially distributed variable with parameter u
which is independent of X and Z*. Then,

(3.55)  E*[BYZ* A Z¥)] = E*[BNZ})] — E*[BN(Z') — BN(Z¥); Z¢ < Z7)
= vX(x) — pU*mi(x) .
Using the resolvent equation and the definition (3.25) of v%,
(3.56) v pU it = pite,
Hence, from (3.55) and (3.56),
E*[BY(Z* N Zt)] = E*[B{Z* N Z¥)] = v,

It follows from the symmetry of this expression in 2 and p that B> = B,» almost
surely on the set {Z* A Z* > t}. By the independence of X, Z*, Z* this implies
that there exists a continuous additive functional C = {C,; t = 0} of the process
X such that, for each 2 > 0,

B} =C, if r< 2%,
= sz if ¢ g AR
Then, for all xand 2 > 0,
(3.57) E* (¢ e dC, = E*[B,}] = v*(x) .

Since v is also the A-potential of the local time L at 0 satisfying v'(x) = f(x),
from the uniqueness of potentials, it follows that C, = L, for all r almost surely.
We have thus shown that

. v
limgg ¢, L* = L,
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for all + = 0 almost surely. Since the limit L does not depend on the sequence
K chosen, we conclude that (3.20) holds. Of course, (3.21) is just (3.25) and
(3.57). This completes the proof of Theorem (3.17). []

In addition, it follows from the proof that, the A-potential u* of L can also
be obtained as

(3.58) ul(x) = lim, ¢, u,*(x)
with ¢, as defined by (3.19) and «,* by (3.9).

4. Inverses of local times. In this section we limit ourselves to the cases
where 0 is regular for {0}. In all these three cases we had obtained local times
L for the process X at 0. We define

(4.1) r, = inf{s: L, > 1}, t=0.

It follows that, for any bounded Borel measurable function #: [0, co] — [0, oo]
with A(c0) = 0, we have

4.2) $o h(t)dL, = {3 h(z,) dt

almost surely. In particular, then

(4.3) ul(x) = E°\y e *dL, = E* \y e~*"edt .
Each z, is a stopping time and

(4.4) Te =T+ 7,00,

for all 7, s = 0 almost surely. Since X, = 0 almost surely on {r, < co}, the
strong Markov property at r, implies that, considered as a process over (Q, 57,
P®) for any fixed x, (r,) has stationary and independent increments. This, to-
gether with the fact that r, = §, implies that

(4.5) E*[exp(—4t,)] = fA(x) exp(—1g(4)) , t,A=0
for some exponent g, that is,
(4.6) 9(2) = ak + {5 (1 — e **)u(ds)

for some constant a > 0, called the drift rate, and some measure v on (0, co],
called the Lévy measure of (r,) (such that s A 1 is integrable with respect to v).
On the other hand, (4.3) and (4.5) imply that

4.7) 9(2) = 1/u%(0),
where u? is the 2-potential of L.

We now use (4.6) and (4.7) together to identify the drift term a and the Lévy
measure v in each of the three cases. First we define

(4.8) F(x, B) = P*{S ¢ B}, x=0,Be.%,.

The following identifies @ and v in the first two cases:
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4.9) PROPOSITION. Suppose § (1 — f)df < co. Then,
(4.10) a=1, v(B) = §, B(dX)F(x, B), Be %, .
Proor. According to (3.4), (3.12), and (4.7),
9(A) =2+ § (1 — [ dp
= 2+ (0,000 B(AX) (0,01 F(x, ds)(1 — e?*).

Now (4.10) is immediate from Fubini’s theorem. []
(4.11) RemARk. If §is finite, so is v; and conversely.
Next is the identification of ¢ and v in the third case.

(4.12) PROPOSITION. Suppose § (1 — f)dB = oo, f(0) = 1. Then, with c,, de-
fined as in (3.19) and F,(x, B) = P*(S, € B}, xe R,, Be F2,, we have

(4.13) a=0, v=lim,_. ci Voo BEX)F(x, +)

n

where the convergence is in the weak topology.

Proor. Let v,(B) be defined as the quantity which is claimed to be converging
to v(B). Then,

(4.14) [ea O] = /ey + 0,00 valds)(1 — €.
By Theorem (3.17) and Lemma (3.22), ¢, u,' — u* as n — co. Hence, (4.6),
(4.7), and (4.14) imply that @ = 0 and that

(4.15) § g, A(d)(1 — €73%) = lim, § g v,(ds)(1 — €75) .

If we define m(s) = v((s, o0]), m,(s) = v,((s, o0]), then (4.15) implies that the
Laplace transform of the right continuous nenincreasing function m, converges
to the Laplace transform of m which is also right continuous and nonincreasing.
It follows that m,(s) — m(s) as n — oo, and this implies the claimed conver-
gence of v, to v in the weak sense. []

Finally, let E = {r: X, = 0}. Since X is continuous at 0, the set E is almost
surely closed. Its complement in R,, therefore, is a countable union of open
intervals. Let F be the set of all left extremities of these contiguous intervals.
Then, E\F is the smallest right closed set whose closure is E. From
Maisonneuve’s results in [8], it is known that

(4.16) E\F = {t: z, =t for some s}.

Well-known results concerning the sample path properties of the additive pro-
cess (r,) can now be used to study E\F and its closure E (which differs from E\F
by the countable set ). A short resumé of some such results was given in the
introduction.
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