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INFINITE F-DIVISIBILITY OF INTEGER-VALUED RANDOM
VARIABLES

By Ian R. JAMES
CSIRO Division of Mathematics and Statistics, Melbourne
Consider m =2 nonnegative, integer-valued random variables
X1, « oo, X satisfying 2P X < n If (Xi™, «--, Xun™) is one
member of a family of random vectors, indexed by different values of the
bound », Darroch has proposed a definition of ‘‘independence except for
the constraint,” termed F-independence, which relates members of the
family through their conditional distributions. In this paper we study the
~ .. limit theory for sums of nonnegative, integer-valued variables, when the
sums are bounded and the variables F-independent. The F-independence
analogue of infinite divisibility, termed infinite F-divisibility, is defined
and characterized, and it is shown that limit distributions of sums of F-
independent, asymptotically negligible variables are infinitely F-divisible.
Conditions under which the limit is binomial are given. Our results apply
to families of random variables, induced by the F-independence definition,
and their role in the theory is discussed.

1. Introduction. Let X;™, ..., X, ™ be m > 2 nonnegatwe, integer-valued
random variables which satisfy the constraint Xl‘"’ + -+ 4+ X,™ < n. Under
the usual definitions of independence, the constraint by itself is sufficient to
make X,™, ..., X, ™ dependent, apart from exceptional cases, and to answer
the question of whether they are associated in any way other than by competi-
tion for space we require a modified definition of “independence” which takes
the constraint into account. Darroch (1971) has proposed one such definition,
termed F-independence, which is appropriate when (X,™, ..., X,,™) can be
considered as one member of a family of related vectors indexed by different
values of the bound n. More precisely, let ¥, (1) = {(X;, ..., X,,"); ne I} be
a family of vectors of nonnegative, integer-valued random variables, each vector
satisfying X, 4 ... + X, < n, where I = {N,, N, + 1, ..., N,}, N, integral,
I <= N, < N,. (If N, = oo, Iis the set of integers greater than N, — 1.) Denote
by 9, (i;|i,; k # j) the conditional probability that X, = i, given X,™ = i,

k # j, which we assume is defined and positive for i, -+, i, = 0,4, + «-- +
in < n, nel. F-independence then relates members of ¥, (/) by the conditions
(1.1) 9;M 0 k= j) = ;|05 k=), j=1,2,-,m

whenever n — 3,0, =n — ¥,., i/, n,n’ eI, i.e. the conditional distribution
of X, depends on the size of the bound n and the values of the other variables
only through its conditional range.
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Since one of the important areas of probability theory is the study of limit
distributions of sums of independent variables, it is natural now to look at the
corresponding theory when the variables are nonnegative, integer-valued and
bounded in sum, and F-independence replaces independence as the criterion of
“no-association.” In Section 2 some further preliminary results on F-independ-
ence are stated, and we discuss the necessity of introducing the family ¥, (I).
The concept of infinite F-divisibility, which is the F-independence analogue of
infinite divisibility, is defined and characterized in Section 3, while in Section 4
it is shown that limits of sums of asymptotically negligible, F-independent, in-
teger-valued variables belong to infinitely F-divisible families. Asa by-product
of this result we deduce that limit distributions of sums of independent, non-
negative, integer-valued variables satisfying some unusual nonnegligibility con-
ditions, are infinitely divisible. Finally, in Section 5, the binomial distribution
is derived from assumptions similar to the well-known Poisson process axioms.

Although the theory of F-independence for positive, continuous, bounded-sum
variables has been given in [2], the theory of infinite F-divisibility for continuous
variables apparently requires a number of regularity conditions not necessary
in the discrete case, and it is not presented here.

2. Preliminary F-independence results. As in the previous section let / =
{Np, N, + 1, .-+, N} and ¥ (1) = {(X;'™, - -+, X,,™); ne I}, where X,™, ...,
X, are nonnegative, integer-valued with X, + ... + X, < n. Denote by
w™(iy, - .-, i,) the probability that X;™ =i, j=1, ..., m, and suppose that
this is positive fori; = 0, 4, + -+ 4+ i, < n, nel.

DEFINITION. X,™, ..., X, ™ are F-independent in the family W,([) for each
n € I if for some positive functions a, b,, - - -, b, ¢,

(2.1) WOy, -y i) = a(m)by(@y) -+ bp(fn)e(n — Iy — oo =),
;20,4 + - +i,<nnel

The main result in [1] establishes the equivalence of (2.1) and (1.1) when
N, = 1, while the same result for general N, can be proved similarly and is
established in [6]. In many cases of interest the property (2.1) holds with I the
set of positive integers. This is true for example in the multinomial family with
parameters (n, q;, -+, 4,), ¢; > 0,9, +'- -+ + g, < 1, where w™ (i}, ..., i,) =
nl T1745 (9559 )6Y)s Gmar = 1 — 2™1 G5 iy = 1 — 2™, i;; and in the Dirichlet
compound multinomial family (see [7], page 309 for alternate names) with pa-
rameters (n, &y, «++, &p,y), @; > 0,7=1,...,m + 1, where w™(i, .. -,i,) =
nl(TIm4 aUafi J(ay - - - -+ @, )™, with i, = n — 37, i;and all = a(a 4
1) ... (¢ 4+ j — 1). However, there exist important families, such as the hyper-
geometric families, for which (2.1) holds only for a finite N, (see [1]). In any
case, the added generality of arbitrary N, and N, causes no extra complications.

If (2.1) holds we shall simply say that X, ..., X,,™ are F-independent, on
the understanding that (X,™, ..., X, ™) belongs to an F-independent family
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¥,.(I). Note that the property defined by (2.1) is termed “complete F-independ-
ence” in [1] (definitions of F-independence less than complete are obtained for
example by imposing (1.1) only for j =1, ...,k < m) but we shall not be
considering anything less than “complete” F-independence in this paper.

Further discussion regarding interpretation of the model (2.1) and tests of F-
independence hypotheses may be found in [1], [3]. -

Under the concept of F-independence, w™(iy, - - -,i,) is a function of i, - - -, i,

and also the bound n. For fixed n = n,, say, if we omit the index n,, (2.1) gives
the functional form ‘
(2.2) Wiy, - oy ip) = d(iy + -+ + i) TI™ 8,(05) » say.
For m = 3, (2.2) is equivalent to the conditions (1.1) considered only for n =
n' = n,, i.e. the conditional distribution of each X;™0 depends on the remaining
variables only through their sum. Thus property (2.2) may be termed sum-
dependence (the consequences of which in a more general setting are being in-
vestigated separately). For m = 2 of course the equivalence does not hold since
(1.1) is vacuous for n = n’ = n,.

Suppose that X,™0, ..., X, are sum-dependent with probability function
(pf) given by (2.2). Then S$™ = X, + ... + X, ™ has pf p(i) = d(i)b(i),
where for 0 < i < n,, :

(2.3) b(d) = by(d) % -+ - x byp(i) = 2 ba(h) -+ bulin) 5

summation being over the set {i,, - -, i,;i{;, =2 0,4, + --- + i, = i}. Since d(i)
is arbitrary, it follows that any bounded, nonnegative integer-valued variable
with positive pf is the sum of any number of sum-dependent variables. On the

other hand, if other members of ¥, (/) are also considered, and X;™, ..., X ™ ~
are F-independent, then S™ = X,™ 4 ... 4 X, ™ has pf of the form
(2.4) () = a(n)b(i)e(n — i), 0i<mnel,

where b(i) again is the convolution (2.3) for 0 < i < N,. Members of the family
{S™; n e I} are related by (2.4) in that specifying b(/) and c(i) fori = 0,1, - . -, n,
completely determines p (i) for n < n, and partly determines p™(i) for n > n,.
Thus not every family of nonnegative, bounded variables has members which
are sums of F-independent variables from some family ¥, (/).

Note that if p™ (i) has the functional form (2.4), its factorization into func-
tions of n, i and n — i is not unique. ‘According to our next result, however,
if b has the convolution property (2.3), then no matter what factorization is
used, the function of i must always be a convolution.

LemMA 2.1. Suppose a(n)b(i)c(n — i) = a'(n)b'(i)c'(n — i) for 0 < i < n,nel,
where a, b, ¢, a’, b, ¢’ are positive functions. Then there exist positive constants o,
a,, A such that a(n) = a,a,2"a'(n), b'(i) = a,26(i), ¢'(i) = a,A%c(i). The converse
is also true.

ProoF. A proof for the case I = {1, 2, - .-, N,} is in[1], and this carries over
to general I. []
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It follows from the lemma that if b(i) = b,(i) x - - - x b, (i) for 0 < i < N,, then
(i) = [a™2b,(i)] % « - - * [@,/™ A, (i)].

We conclude this preliminary section with a result which will be required in
the later sections.

LemMA 2.2, Let p,™(i) = ay(n)by(i)c,(n — i) >0 for 0 <i<n, nel, k=
1,2, -+, Thenif p‘™(i) — p™(i) > 0 as k — oo, there exist sequences {0,}, {1},
{4} of positive numbers such that [0, A4, ] ay(n) — a(n), 0,4,b,(i) — b(i),
i Ale (i) —>c@), 0Zi<n, nel, for some a,b,c>0 (so that p™(i) =
a(m)b(iye(n — i). '

Proor. By considering the ratio p,*V(i)p, (i — 1)/(p, ‘”“’(z — 1)« p,'™ (i)
for 1 <i < n < N, it follows that ¢,(i)4,/c,(i — 1) converges to a positive limit
with 2, = ¢,(0)/c,(1). Thus ¢,(i)2,’/c,(0) also converges to a positive limit, and the
same result for b,(i)4,%/b,(0) follows by considering the ratio p,(i)/p,"(i—1).

In view of Lemma 2.2 we may assume without loss of generality that b,(i)
and c,(i) themselves converge whenever p,™ (i) does.

3. Infinite F-divisibility of integer-valued variables. Let ¥(/) = {X™; nel}
be a family of nonnegative, integer-valued variables with 0 < X < n. Let
p™(i) be the pf of X, assumed to be positive for 0 < i < n, nel, and put
P(I) = {p™; ne ).

DeriNiTION. W(I) (or P(I)) is infinitely F-divisible (inf F-div) if for each
integer m = 2 there exist families ¥, (/) of vectors of exchangeably distributed,
1nteger-valued F-independent variables (X%, ..., X% ) such that X™ =
Xm 4+ oo + XM, nel

We shall say that X is inf F-div if the family to which it belongs is. One
can easily verify that an equivalent definition is obtained if “exchangeably
distributed” is replaced by “identically distributed.”

TueoreM 3.1. W(I) is inf F-div if and only if there exist positive functions a,
b,c and B,,m = 2, such that p™(i) = a(n)b(i)e(n — i), 0 < i < n, nel, where
for each m,

(3.1 b(i) = Bu(i) * -+ % B(i) =4 Bu™ (), i=0,1,...,N,,
the m-fold convolution as defined in Section 2.

Proor. The proof of sufficiency is trivial, while necessity follows immediately
from Lemma 2.1 and the observation that if X, ..., X are exchangeably
distributed and F-independent, then they have a pf of the form w,, ™ (i, - - -,i,) =
aM(n)rm(il) e rm(im)CM(n — = = im)‘ Q

Note again that however p™(i) is factorized into functions of n, i, n — i, the
function of i must be a convolution of the type (3.1).

Infinite F-divisibility does not impose restrictions on the function ¢, and there-
fore does not on p™(i) when considered only for a single value of n, say n = n,.
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However, if both ¥(/) and {n — X™; ne I} are inf F-div, then b(i) = 8,™(i)
and c(i) = p,™(i), i =0, 1, - .-, N,, for some 8, 0,,, m = 2. This follows since
n — X has pf of the form s(i) = a(n)c(i)b(n — i). Thus each p™ is, apart
from a normalizing constant, a product of two functions, one of i and one of
n — i, both satisfying convolution properties of the type (3.1). Two important
examples of such families are the binomial and binomial-beta families (see [7],
page 189 and page 231 for alternate names) with 7 = {1,2, ...}. If X is bi-
nomial with parameters (n, ¢), 0 < ¢ < 1, then for any m = 2 it can be expressed
as the sum of m variables having a multinomial distribution with parameters
(n, g/m, - ., q/m) (Section 2), while if X is beta-binomial with parameters (n,
a, B), the variables in the sum are Dirichlet compound multinomial with pa-
rameters (n, ajm, - -, a/m, B8) (Section 2). The variables n — X™ are also re-
spectively binomial and beta-binomial.

The property b(i) = ,,™(i) for m = 2 is of course similar to the infinite di-
visibility property for pf’s on the nonnegative integers. It differs in that if 7 is
finite we require it to hold only on a finite subset of the nonnegative integers,
while even if 7 is infinite, (i) (or A*4(i) for any 4 > 0) need not be summable.
Conversely, any positive infinitely divisible pf possesses the convolution property
(3.1) and thus generates a class of inf F-div families. For example, the Poisson
and negative binomial distributions generate the families with pf’s p™(i) =
a(n)e(n — i)/i! and p™(i) = a(n)c(n — i)at’l/i! respectively. The binomial and
beta-binomial families are special cases of these.

A more convenient characterization of inf F-div is obtained by modifying the
proof of a result of Katti (1967), which characterizes infinitely divisible pf’s on
the nonnegative integers.

THEOREM 3.2. b(i) = 8,™(i) form =2,i=0,1, ---, N, if and only if there
exist nonnegative numbers t,, - - -, Ty, with =, > 0, such that

(32) lb(l) - Z}c;lo b(k)Ti—k ’ i = 1, 2’ M} N2 .

ProoF. Suppose first N, < oco. To prove the necessity half, put g,(i) = 0 for
i > N, and b,(i) = B,"(i), i =0,1, ..., so that b,(i) = b(i) for i < N,. We
then mimic the proof in [8]. Namely, if f,(z), &,(z) are the generating functions
of b,(i), B.(i) respectively, then f,(z) = k,™(z), which gives on differentiating
and rearranging, f,/(2)h,(z) = f.(2)h,/(z). Equating coefficients of z* for
k < N, — 1, and letting m — oo, gives (3.2) with r, = klim,,_, mB,(k). 7, =
b(1)/b(0) > 0. Conversely, put ,(z) = 6Y/™(0) exp[(1/m) };%2, 7;z7/j]. Then the
coefficients of the powers of z in the power series expansion of #,(z) are all
positive, and b(k) is the coefficient of z* in 4,"(z), k = N,. This completes the
proof for N, finite. If N, is infinite, the above proof can be applied for i =0,
I, .-+, N < oo, and since 7, and §,(k) are invariant with respect to N for N = k,
the result follows. If b(i) is summable, the proof of Katti (1967) may be used
directly. [
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Using (3.2) one obtains immediately that the hypergeometric families are not
inf F-div for any N,, since 7, is negative.

We may note here two other properties which characterize infinitely divisible,
nonnegative, integer-valued variables [4]:

(A) X has a compound Poisson distribution (and is integer-valued);
(B) X is distributed as )}, iZ,, where the Z,’s are independent Poisson vari-
ables with parameters 4;, ;2 4, < oo.

A characterization of inf F-div corresponding to (A) follows by observing
from the proof of Theorem 3.2 that (3.2) is equivalent to b(i) = Y 5., 0*'(i)/k!,
where 6(0) = b(0), (i) = z,/i, i =1,2, ---, N,. Thatis, if Y%, ..., Y{ have
a pf of the form

W™ (s, - o5 i) = a(m)[ ] 7= @G Je(n — iy — - -+ —i,),
(Y and Y% are not identically distributed for r = m), then an inf F-div dis-
tribution corresponds to the distribution of X, ™ = Y% + ... 4 Y, com-

pounded with a Poisson distribution for m. If both X and n — X are inf
F-div, then X has a pf of the form

PO = a(n) 313 4mg 07 (D) (n — i)fml K.
This corresponds to the pf of X{*) = Y, + ... + Y% , compounded with in-
dependent Poisson distributions for m and k, where Y, ---, Y  have pf of
the form

Wil -+ o5 in) = a()[[17=1 $()I"(n — i) .
The F-independence analogue of (B) does not appear to have a clear interpre-
tation.
The final results for this section have well-known counterparts in infinite di-
visibility theory, and can be easily proved using the inf F-div characterizations
above.

THEOREM 3.3. Let W,(I) = {X;";nel}, j=1,2, ..., be a sequence of inf
F-div families.

(@) If X\, ..., X, are F-independent, n ¢ I, then {S,"™; S, = X;"™ + ... 4+
X, ™, nel}is inf F-div. '

(b) If X; — X™ as j — oo, where X™ has pf p™(i) > 0for0 <i<n,nel,
then {X™; n e I} is inf F-div.

4. Sums of F-independent, integer-valued variables. Suppose we have a family
of double sequences X" of nonnegative, integer-valued variables, indexed by
nel, with j=1,2,...,9(m), v(m) =2, m=1,2, ..., where X&) 4+ ... +
X o < n for each m,

mv(m)

DeriniTION. If the variables in each row, X%, ..., X" .. are F-independent

ml? mv(m)d

for ne I, and v(m) — oo as m — oo, the family will be called a triangular F-array.
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If in addition max,g;c,m, Pr [X() = k] — 0 as m — oo for k > 1, the triangular
F-array will be called null (cf. [5], page 174).

Let wm(”’(il, coesby) = @M1 Bumi(is)]em(n — iy — - -+ — i,) be the positive
pf of X%, -, X ) sO that the row sum S, ™ = X + ... 4 X® = has pf
Pn™() = am(n)bm(z)cm(n — i), with b,,(1) = B,,(i) * - -+ * Bpym(i). According to
Lemma 2.2 we may assume that if p,™(i) — p™(i) = a(n)b(i)c(n — i) > 0 as
m— oo, 0 <i < n, nel, then a,(n) — a(n), b,(i) — b(i) and ¢, (i) — c(i).

LeMMA 4.1. For a null triangular F-array, if p,™(i) — p™(i) > 0 as m — co,
0=<i<n, nel, then max,_;,m Bni(k)/Bn;i(0) — 0 as m — co for k > 1.

Proor. Since max; w,™(0, ---,0,k,0, --.,0)— 0 as m — co, where the k
corresponds to variable j, k = 1, we have

max; @y, (1)bn(0)n(n — k)P (k)/Bus(0) — O,
and a,, b, c, converge to positive functions. []
THEOREM 4.1. For a null triangular F-array, suppose that each row sum S,,™ —

X" asm — co, where X™ has pf p'™(i) > 0 for0 <i < n,nel. Then{X™, nel)
is inf F-div.

PrOOF. Suppose firstly that N, < oo, and put B,,(i) = 0 for i > N,. Put
d,(0) = Boui(i) %+ -+ * Bryem(@), i =0,1,2, .-, so that d,(i) = b,,(i) for i < N,.
~ Then if f,(z) and 4,,,(z) are respectively the generating functions of d,(/) and
Bmi()s fu(2) = T13% hwj(2), which gives on differentiating and rearranging,

[l (2) = ful2) D300 1 j(2) [P (2) -
Let 7,,(j) denote the coefficient of z*~! in the power series expansion of
h,,;(2)/h,;(2), so that on equating coefficients of powers of z we obtain
kb, (k) = 22825 bu(i)Timim » = 25% Tnl)) -
By Theorem 3.2 we need only show that z,,, — 7, = 0 as m — oo. Now it fol-
lows that

Tkm(j) = kﬁm](k)/‘@m](O) - i‘:;l1 ﬁm](l)fk—zm(])/ﬁmy(o) ’
k = 2,and 7,,(j) = Bni(1)/Bn;(0). From Lemma 4.1, max;z,,(j)—0asm— co,
and since ;" B,,,(i)/B,;(0) is bounded above by 5(1)/5(0) in the limit as m — oo,
we have
4.1) 7, = klim,,__, 2™ B, .(k)/B,.;(0) =0, 7, = b(1)/6(0) > 0.
If N, is infinite the proof follows as in Theorem 3.2. []

COROLLARY. The form of b(i) is determined by (3.2) with the ¢, given by (4.1).

In the next section the corollary is used to derive the binomial distribution.
Note that conversely to Theorem 4.1 it is trivially true that an inf F-div family
is the limit of row sums in a null triangular F-array.
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ReMARK. If b(i) and B,,,;(i) are pf’s on the nonnegative integers, the proof of
Theorem 4.1 implicitly shows the following: let {Y,.;j = 1 ..., v(m), m =
1,2, ...} be a triangular array of nonnegative, integer-valued variables with
Ym, oy Yy my mutually independent in each row, v(m) — co as m — oo, and
max,;c,m Pr{Y,; = k] >0asm—oo, k = 1. ThenifY,; 4 --- + Y, ,(u—Y
as m — oo, with Pr[Y = 0] > 0, Y is infinitely divisible, and has pf given by
(3.2) with 7, = k lim,,_,, 2™ Pr[Y,,; = k]/Pr[Y,; = 0]. Note that our “neg-
ligibility’” conditions do not require that Pr[Y,; = 0] —» 1 as m — oo (cf. [5],
page 174) but if this is not the case, then Y,,; cannot converge properly.

5. The binomial distribution. Let {X"),j=1,...,9(m),m =1,2,...;nel}

2
and {Z(,j=1,.--,(m),m =1,2, ...; nel} be two null triangular F-arrays

myd

for which X = lim,,_, X® + --- + X®,,and n — X = lim,,_, Z®" +--- +
, "
Z®m- Then

THEOREM 5.1. Provided maX,g;<,m, V(M) Pr [ X7 =k]—0and max,_; ;. t(m) X
Pr[Z) =k]—0 as m — oo for k=2, X™ (and n — X™) has a binomial
distribution.

Proor. If we adopt the notation of Theorem 4.1, then it follows that
max; v(m)B,,;(k)/B,;(0) — 0 as m — oo, k =2, so that r, = 0, k = 2. Then
ib(i) = 7,b(i — 1), or b(i) = b(0)z,’/i!. A similar argument for n — X™ gives
¢(i) = ¢(0)o,’/i! say, and X' has a binomial distribution with parameters (n,

©/(zy 4 ay)). [

Theorem 5.1 can be viewed in a point process context as follows: consider
arrivals of two types, e.g. males and females, at some location, where at time
T a total of n arrivals have occurred, X males and n — X females. Divide
(0, T] into m subintervals and let X*), Z) denote the numbers of male and
female arrivals in the jth subinterval. Then if X7, - .., X are F-independent,
and separately Z\7), - .., Z, are F-independent, for each m, and, further, the
arrivals are sparse in the sense of Theorem 5.1, it follows that the male (and
female) arrivals have a binomial distribution. In this context the conditions of
Theorem 5.1 resemble the well-known Poisson process axioms. (Note that if
X, Y are independent Poisson variables, then conditional on X 4+ Y = n, X is
binomial. Our conditions do not explicitly assume any particular interaction
between male and female arrivals, although if n is a realization of a random
bound, and p™ is the conditional pf of X given X 4 Y = n, say, it follows
implicitly that X, Y have a pf of the form p(i, j) = ¢,(i + j)$,())Ps())-)

General counting processes with F-independent increments can be considered
analogously to counting processes with independent increments. For brevity

the topic is not pursued here.
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