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ASYMPTOTIC RESULTS FOR ESTIMATORS IN A SUBCRITICAL
BRANCHING PROCESS WITH IMMIGRATION!

By M. P. QUINE
Michigan State University and The University of Sydney

It is shown that certain estimators of the offspring and immigration
means in a subcritical simple branching process with immigration are
strongly consistent and obey the central limit theorem and law of the
iterated logarithm under natural conditions.

1. Introduction and main results. Let {X,n=20,1,2,...} be a simple
branching process with immigration, that is, a temporally homogeneous Markov
chain with state space / = {0, 1, 2, - . .} and transition probabilities

PX, =jl Xy =0) = {f*+b};, nzl;
the probability distributions { f;} and {b,} are called the offspring and immigration
distributions respectively.

The principal aim of this paper is to provide asymptotic results for estimators
of the two means

Y%

/21:21',;, 22—_—Zibi,
in the case when the condition
(A) o<l bl

is satisfied. Some of the results obtained constitute improvements of the work
of Heyde and Seneta (1972, 1974).
The estimators investigated are

— 2t Xi(Xiyy — 17'S,)
2t (X — n7IS,)?

22 = & . 2ita1 (X — X))
" 2n R (X, — nlS,)
of 2, and 2, respectively; S, throughout denotes X,".X;.
We will need the following notation: let ¢, ¢,> denote the variances of the
offspring and immigration distributions respectively, and put

Hr= '22/(1 - '21) s
¢t = po 4 o,
1

r= K {2(] — A)b; + pZ(j — 4)f; +
- M

A

1,n

and

32101%2}
1 — 22"

Received February 14, 1975; revised June 2, 1975.

1 Research supported in part by NSF research grant number GP-31123X2.

AMS 1970 subject classifications. Primary 60J80; Secondary 62MO05.

Key words and phrases. Branching process, estimation, consistency, central limit theorem, law
of iterated logarithm.

319

7)

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ' 3}?

The Annals of Probability. EINERY
WWW.jstor.org




320 M. P. QUINE
We also write ¢* as k,’, and put

2 c4 & 2 2
k= <7al + 2) (1 — A9e .
=2

Let N, denote unit normal random variables.
+ The main results are as follows:

THEOREM. Assume condition A. If ¢ < oo,

(1.1) ' An— A as. i=1,2.
Fori=1or2,
(1.2) nt(A;, — )k — 5 Ny,
and A
YA, — A,
(1.3) lim sup%(z(%;gloﬂ_% =1 as
lim inf%ﬁ’;;_;%? = —1 a.s.,

as long as k, < co.

REMARK. These results for i = 2 improve those implied by Heyde and Seneta
(1972, 1974) (who actually deal with estimators of 4, and ). The present esti-
mator of 2, is somewhat different from their D, or D,*. However, the present
techniques can be used to improve their results concerning these two estimators.

2. Proofs. The theorem follows from known results about Markov chains
once a few facts are established. Firstly, note that (as is not difficult to verify)
the state space / contains a countable irreducible set /* on which {X|, X,, ...}
have their support. In view of A4, the state

£ =inf{i: b, > 0} = inf {i: i ¢ I}

is accessible at all times n > 1, so that I* is aperiodic. Let % ,. be the o-field
of all subsets of I'*.

Heathcote (1966) showed that under certain conditions (which Quine (1970b)
weakened to condition A), ’

2 bilogj < o0 = {Xn} positive recurrent
Yrabjlogj=00—=V0>0:PX,<0)—>0 as n— oco.

Thus if 37 b;logj < oo, I* forms a positive class. If ¢ is any function from
F . x F ;. to the real line, it therefore follows from Theorems 1.1 and 1.3 of
Billingsley (1961) that in this case, if {z;} is the limiting distribution-of {X,},

(2.1) nr YN, X)) — 2 mP(Xy = j| X, = D¢, j) a.s.

as long as the limiting series converges absolutely. The reader should bear in
mind that the limiting distribution is independent of the distribution of X,.
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It can be shown, for example by differentiation of the functional equation
(1) = p(t) + ¢(x(0))

where exp(r)= 3 =; exp(#j), expp(r)= 2 b; exp()), and expy(r)= X, f; exp(%)),
that the stationary distribution {r,} has mean g, variance ¢*/(1 — 4,) and central
third moment 7 (the finiteness of these stationary moments is assured by Fatou’s
lemma and (2.4) below; see also Quine (1970b), Section 3).

By suitable choices of ¢ we may now show that when the limits are finite,

n7S, — ¢ a.s.,

" 2c?
(2.2) nEM( Xy, — X, — T
1y c
n2 "X — Y 4+ ¢ a.s.,

nE (X, — p)P—>7r as.
For example, to prove the second part one puts ¢(i, j) = (j — i)* in (2.1) so that
I E (X — X)) — 2 m(j — )P(X, =j| X, = i) a.s.
=22 — 2 Xying 3 JP(X, = j| X, = i)
since {r,} is a stationary distribution, and
2
1+ 2
after a little algebra. Equation (1.1) follows quickly from (2.2).
Before proceeding to prove the remainder of the theorem, some moment
results must be established. These results serve to identify various constants in
the theorem. It should be borne in mind that the moment restrictions we will

put on X, at this stage are not necessary for the validity of the theorem. Writing
EX, = p,, we have

Var§, = Var §,_, + Var X, + 2 "2l E(X, — p,)(X, — )
(2.3) = Var§,_, + Var X, ‘
+ 2 20 (AT Var X, 4 pp, + A0 — 1) — tatt]
= Var§,_, + Var X, + R,,

say. The sort of arguments used in Quine (1970a; 1970b, Section 3) show that

My Ho
(2.4) Var (X,) = Q" | Var X,
E(X, — u,)° E(X, — po)’°

x2
+ (=07 (- Q)|
2 (J — &)
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where
Fl — A 0 -1
I—Q)'=| —op 11— zlz 0
| —F;, =346 1 =4}
i 1. 0 0
1—2,
= o 1 0
(I=2)(1—22 1—2;
F, T 32,0 32,07 1
LT=2)(1=23)  A=)(A=2(1=2Y) (A=2(1—27) 11—

F, denoting X(j — 4,)%;. It follows without trouble that if ¢*, E(X;?) < oo,

cZ
11—

b

2.5) . Var X, —

and that if 7, E(X®) < oo,
(2.6) E(X, — p)’ > 7.
It also follows after some computation that
2jA.c?
R (R (oS
which, together with (2.3) and (2.5), shows that if ¢?, EX < oo,

2 24,¢2

2.7 -1Var S, ¢ 1

@7) " i T T =
c2

2R, ~

We now turn to the results (1.2) and (1.3) when i = 2. It is clear from the
definition of 4, , and from (2.2) that both results will be proved if we can prove
analogous results about n~'S,. But these results are merely applications of the
theory in Section 1.16 of Chung (1967). Assume ¢* < oo, so that in particular
{X;, i = 1} has support on a positive class. Then using (2.7), and Theorems
1.16.1 and 1.16.3 of Chung (ibid.) (we take his X to be our X;,,),

(2.8) (1 — 2,)(S, — np)jent —_ N,

This result was given previously by Pakes ( 1971) under the additional conditions
fo+fi<1,b,>0and X, =0.

Define T = inf {j: j = 1, X; = #}/(X, = £). Chung (ibid.) shows that if in
addition to 4, ET* < oo and ES;* < oo, then the law of the iterated logarithm
holds for §,, specifically, writing v, = cnt/(1 — 1)),

S, — nu

li S S
1 sup v,(2 log log n)}

a.s.,

with the corresponding result for the lim inf. We remark that T relates to state
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« for convenience only; as noted by Chung (ibid., page 102) the second moment
conditions hold for all i e I* or for none. In passing we note that in the same
reference it is shown that in this case the distributions of

max, g g, v, [S; — jel, MaX,g;<, va~'|S; — ji

converge to known laws. More details may be found in Chung’s monograph.
The condition ET? < oo holds if 4,, }; jf;logtj < oo, since in this case the
chain is geometrically ergodic, as noted by Pakes (1971). Pakes actually re-
quires a stronger condition than A, but inspection of his proof, bearing in mind
the strengthening in Quine (1970b, pages 414, 418) of the theorem of Heathcote
(1966), shows that A suffices. ES,* can be shown to be finite when ¢* < co: we
have

(2.9) ES;* = EX7X} + 2E Y7, STt X, X; .

Now the finiteness of EX,”X;* when ¢* < oo can be shown using arguments along
the lines of Heyde and Seneta (1972), pages 241-242; we note in passing that
in our case,

ES, = pET,

which can be proved directly or using Theorem 1.14.5 of Chung (1967). As
for the cross product term,

EYI DS X X; = EXNFL i XX I(T =z j) = Xje;» say,
and
e; = E RIS T = X4 X, + 4)
é Z1ej—1 + Zldj—l + Z2E sz;ll I(T g])X

19

where 2d; = EZX?I(T = j) = EZ,"X;* < oo as noted above. Thus the cross
product term in (2.9) will be finite if E };%.,S;_, /(T = j) is. But this equals

EX,"'S; < ETS, < ET* max,_;<, X;
< EiT*Et max, ;.. X;* < EYT'EYSTX 2

so that the finiteness of (2.9) when ¢* < o follows from geometric ergodicity
(which implies all moments of T are finite). It is now clear that the LIL result
for S, implies (1.3) in case i = 2.

The easiest way to prove the remainder of the theorem appears to be to in-
troduce a functional of the process:

M, = (X, — )Xy — 4 X, — 1)

We note in passing that £,"M; is a martingale relative to the o-field & ,,, gen-
erated by X,, ---, X,,,; see also Heyde and Seneta (1972).
It is easy to check that X, = (X,,,, X,) is Markovian. If

T’:inf(igl:XizXHl:/c);
then
P(T’:lIXO—_-Xl:IC):b‘fo‘:a,
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say, and if
T=infi>1:X,=x)—1,
T"=inf(iz1: X,,, = Xppyy = &),
then for j > 2,
PT =j|X,= X, =)
=IgPT=i,T"=j—i|X,= X, = &)
= YA PT =) —i|T=i,X,= X, =)P(T = i| X, = X, = )
=000PT =j—i|lX,= X, =)P(T =i|X,= X, =),
SO that if Hand G are the p.g.f.’s of T" and T, conditional on X, = X, = k, then
H(s) = as + H(s){G(s) — as} .
Rearranging and differentiating, one finds that, conditional on X, = X, = &,
ET’ = a'ET,  ET™ = a Y(ET* — 2ET + 2a~{(ET)

and that the rth conditional moments of 7’ and T converge or diverge together.
However, as noted earlier, }; b;logj < co implies positive recurrence of {X,}
so that E(T| X, = X, = k) < oo and hence E(T"|X, = X, = ) < co. Thus in
this case, {X,} has support on a positive class. We now apply the results of
Chung (1967, Section 16) to the functional M, of X,, taking his X, to be our

X,+1- Firstly, we see that M, will obey the central limit theorem as long as
B = lim n'S"EM? < o .

However, using (2.5) and (2.6) one finds

c4

B =o'+ —— 11 ¥ P

Thus when 7 < oo,

n~tX"M,/B -, N,.
Furthermore,
2.10)  mi(h,, — &) = "M = (1= Zyni(p — n7S) 4 g (X — X

n-13 X2 — nS2

Using (2.2) we see the denominator converges a.s. to ¢*/(1 — 2,?). Using (2.2)
and (2.8), we see that the second term in the numerator converges in probability
to zero, and the last term does likewise since X, converges in distribution.
Equation (1.2), for i = 1, follows.

It also follows from (2.10) and the previous a.s. results concerning S that in
order to prove equation (1.3) for i = 1 it suffices to prove the LIL result for
Z*M;. In view of earlier arguments it should be clear that to do this we need
only establish the finiteness of E(Z,”’M;)’. However, the cross product terms
vanish since M, is a martingale difference sequence. The finiteness of the di-
agonal terms can be established using the earlier methods. Details are omitted.
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