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BOUNDARY CROSSING PROBABILITIES FOR SAMPLE
SUMS AND CONFIDENCE SEQUENCES!

By Tze LEUNG LAI
Columbia University

By making use of the martingale {g°exp(yW(r) — (/2% dF(y),
Robbins and Siegmund have evaluated the probability that the Wiener
process W(t) would ever cross certain moving boundaries. In this paper, we
study this class of boundaries and make use of certain moment generating
function martingales to obtain boundary crossing probabilities for sums of
i.i.d. random variables. Invariance theorems for these boundary crossing
probabilities are proved, and some applications to confidence sequences
and power-one tests are also given.

1. Introduction. Suppose X, X,, - -. are i.i.d. random variables with mean 0
and variance 1. Throughout this paper, we shall let S, denote the sample sum
X+ -+ + X, (S, =0). By the zero-one law, P[S, > b, i.0.] is either 0 or 1
for any sequence (b,) of real numbers. Following Lévy, we say that (b,) belongs
to the upper class if the above probability is 0 and to the lower class if the
above probability is 1. (Actually, the usual usage of the terms upper and lower
class refers to the sequence n-tb, rather than the sequence b, itself, but here
it is more convenient to consider the original sequence b, instead.)

Suppose (b,) belongs to the upper class. It would be interesting to find the
boundary crossing probability P[S, = b, for some n = m]. Such boundary
crossing probabilities have statistical applications in power-one tests of one-sided
hypotheses and in confidence sequences for the unknown parameters of parame-
tric families of distributions. These statistical applications have been considered
by Darling and Robbins [2], [3], [4], [5], Lai [7], [8], Robbins [11] and Robbins
and Siegmund [12].

In this paper, we shall study boundary crossing probabilities for S, by using
suitably chosen martingales. Let us consider the following simple example which
sheds light on how martingales can be used. Suppose P[X, =1]=p =1 —
P[X, = —1]withp < . Thenforb =1, 2, .- -, it is well known that P[S, = b
for some n > 1] = (p/(1 — p))’, and the usual proof is to use the Markov prop-
erty of the random walk S,. Alternatively, this result can also be proved by a
martingale type of argument used by Wald [15]. Let p,=p, p,=1—p,
Sin Xy« oy X)) = ptS%(1 — p)»=Sw” (i = 0, 1), and consider the sequential
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test which stops with
N =inf{n = 1: fiu(Xy - - o5 X)[foulXs, - -+, Xo) 2 (1 = p)/p)"}
=inf{ln=1:5,=2b=inf{n=1:8, =05}.
Wald’s argument gives us

P[N < ool = XZ5i Stwent fon = (P/(1 — P))* 2t Stwen fin
= (p/(1 = p))*P,[N < o]

= (p/(1 = p))’
where P, is the probability measure under which X, X;, ... are i.i.d. with
PX,=11=p,=1—P[X, = —1].
We observe that the likelihood ratio f,,(Xi, - - -, X,)/fou(X5> - - -, X,) used above

is a martingale. Now let (b,) be a strictly increasing sequence of positive inte-
gers and consider P[S, = b, for some n = 1]. Define N* = inf{n >1:S§, = b,}.
While {Sy,,, n = 1} is a Markov chain, the other stopped random walk {Sy..,,
n = 1}, though Markovian, does not have stationary transition probabilities
since the stopping boundary (4,) is changing with time. Though we cannot use
standard Markov chain techniques in the case of a moving boundary, martingale
arguments enable us to study P[N* < oo] for a certain class of sequences (b,).

In Section 2, we shall consider the case where X, X;, .- - are N(0, 1) random
variables. The sequence (S,, S,, - - -) has the same joint distribution as the se-
quence (W(1), W(2), - --), where W(t) is the standard Wiener process, and the
martingale (¢ exp(yW(r) — (¢/2)y*) used in [14] gives the probability that the
process W(r) would ever cross a certain class of moving boundaries which we
shall study in Section 2. In Section 3, we shall consider the case where X,, X, - - -
have a moment generating function ¢ which is finite on (0, a) for some 0 <
a < oo, and we shall make use of the martingale {§ (¢(y))™" exp(yS,) dF(y) to
obtain confidence sequences and power-one tests for the unknown parameters
of the binomial, Poisson and gamma distributions. In Section 4, we shall prove
certain invariance theorems relating to the boundary crossing probabilities for
the Wiener process.

2. The normal case and the Robbins-Siegmund boundaries. Let X, X,, - -
be i.i.d. N(0, 1) random variables. Let F be any measure on (0, co) and define

L
M Sl = i exp (xy — 5 y) dF()
Since f(S,, n), n = 1, is a nonnegative martingale, it follows that (cf. [11], page
1400) for any ¢ > 0,
2) P[f(S,, n) = ¢ for some n = m]

= PLA(Sws M) Z €] 4 7" (s, mr<e1 [(Smy ) AP -

Suppose the measure F satisfies f(x, &) < oo for some h = 0 and all real x, and
is therefore finite on any bounded interval. Assume that F is nontrivial, i.e.,
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F(0, c0) > 0. Given any ¢ > 0 and ¢ > A, the equation f(x, /) = ¢ hasa unique
solution x = A,(t, ¢). We shall call the function ¢+ A4,(z, €), t = h, a Robbins—
Siegmund boundary (abbreviated R-S boundary). Robbins and Siegmund [14]
have shown that if we replace S, by the Wiener process W(r), then equality
holds for the corresponding version of (2), i.e.,

P[f(W(t), ) = ¢ for some = h]
= P[f(W(h), h) = €] + 7" Stpmamm<a AIW(R), k) dP .

This relation can be written in terms of the R-S boundary A,(z, ¢) as follows:

P[W(t) = Ag(t, ¢) for some t = k]
=1, if h=0 and < {pdF
(3) = ¢t (¢ dF, if h=0 and ¢> {FdF

=) o ()
if >0,

where @ denotes the distribution function of the standard normal distribution.

Hence by a martingale approach, Robbins and Siegmund [14] have obtained
a class of boundary crossing probabilities for the Wiener process W(r). Exten-
sions of their method to study boundary crossing probabilities for other Markov
processes X(r) are given in [9] and [10], where we characterize space-time mar-
tingales of the form u(X(¢), f) and make use of them to evaluate boundary crossing
probabilities.

The class of all R-S boundaries has the following nice properties:

(A) If g is a R-S boundary, then so is g + a for any real number a.

(B) If g(f) = Ag(t, €), t = h, then the function v(t) = g(r + a), t = (h — a)*,
is a R-S boundary for any real number a.

(C) If g(t) = Ag(t, ¢), t = h, then the function u(r) = ctg(t/c), t = ch, is a
R-S boundary for any positive number c.

(D) Every R-S boundary is a concave function. (This property can be easily
proved by using the Schwarz inequality.)

In [14], Robbins and Siegmund have proved the following limit theorem: Let
X, X;, - - bei.i.d. random variables with mean 0 and variance 1. If =24,(t, ¢)
is ultimately nondecreasing, then
“4) lim,, ., P[S, = mtA,(n/m, ¢) for some n > hm]

= P[W(t) = Ag(t,¢) for some ¢t = h]. .

Hence for large m, the probability that the sequence (S,, n = hm) would ever
cross the R-S boundary u(r) = m?A,(t/m, ¢) is approximately equal to

1 — ©(Ap(h, )[ht) 4 = {5 O(Ap(h, )/ht — yhtydF(y)  if h>0,
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with no parametric assumptions about the X,’s. The statistical significance of
this fact has been discussed in [11].

We shall devote the rest of this section to the study of the analytic properties,
the asymptotic behavior and other characteristics of R-S boundaries. First let
us consider the analytic properties. If f(x, 1) < oo for all real x, then we can
differentiate f(x, f) with respect to x and ¢ under the integral sign for + > A, and
using the implicit function theorem, it is easy to see that A,(e, ¢) € C*[4, oo).
In fact, the R-S boundary is not only of class C=, but also for ¢ > A&, there
exists a neighborhood of ¢ in which A4,(-, ¢) can be expanded in a Taylor series.
To show this, we note that the function f(z, w) is an analytic function for all
complex z and all complex w with Z2(w) > h. Take any real number ¢, > h. Let
X, = Ag(ty, €). By the implicit function theorem for functions of several complex
variables ([6], page 24), the equation f(z, w) = ¢ (z, w complex) has a uniquely
determined analytic solution z = z(w) in a (complex) neighborhood of ¢, such
that z(¢) = x,. The function z(w) is therefore an analytic extension of A,(z, ¢).

If g is a R-S boundary, then g is strictly increasing. Since g is concave,
(9(?) — g(R))/(t — h)is decreasing for ¢ > h. The asymptotic behavior of g(f) =
Ap(t,e)as t — oo is closely related to y, which is defined by

(5) Ye=sup{y:y >0, FO,y) =0}
= 0, if the above set is empty.

THEOREM 1. Let F be a nontrivial measure on (0, co) which satisfies f(b, k) < oo
for some h = 0 and some real number b, where f is defined by (1). Then for any

e >0,
lim,_, A.(t, &)/t = yz/2

where y; is defined by (5).

Proor. We first prove that lim sup, .., 4.(?, €)/t < y,/2. Suppose this were
false. Then there exist @ > }, 6 > y, and a sequence ¢, 1 co such that 4,(z,,
d) > adt, for all n. First consider the case where y, > 0. Then F(0, y,) =
lim,,,  F(0,y) = 0. Since § > y,, we have 0 < F(0, §) = F[y,, 6). Therefore

e = (o, €Xp <,VAF(tm €) — %)ﬂ) dF(y)

gexp{yg,,(@-%)}-F[yF,B)-—>oo as n— oo,

leading to a contradiction. In the case where y, = 0, we have F(0, §) > 0 and
so we can choose ¢’ € (0, 6) such that F[¢’, 6) > 0. Therefore

t
€ = (50,5 €XP <.yAF(t1v €) — 7"}’2> dF(y)

> (exp {01, (a0 — I\) Flo, 5) > oo as n— oo,
(P{ ( 2>}> )

again leading to a contradiction. Hence we must havelimsup, .., 4,(¢, €)/t<y,/2.
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In the case y, = 0, we have already proved that lim,_ A4(¢, ¢)/t = 0. Let
yr > 0 and assume that lim inf, ., 4.(?, €)/t < yz/2. Then there exist d € (0, 1)
and a sequence ¢, T oo such that 4,(z,, ¢) < dy,1,/2 for all n. Hence for y = y,,
YAp(t,, €) < 0t,y*/2 and so by the dominated convergence theorem,

e < S[yF,m, exp((d — 1)t,y*/2)dF(y) — 0 as n— oo,
leading to a contradiction. Therefore the desired conclusion follows. []

Theorem 1 shows that if g is a R-S boundary, then g(rf) = O(r) as t — co. It
is easy to see from (3) that lim,_,, P[W(t) = g(¢) for some ¢t > h] = 0. Therefore
P[W(f) < g(¢) for all large ¢] = 1, and so all R-S boundaries belong to the upper
class.

In [13], [14], we have seen linear R-S boundaries ¢t (¢ > 0), together with
examples of R-S boundaries which are asymptotic to (2¢ log log #)}, or (ct log #)},
or t%(3 < a < 1). We now exhibit some other R-S boundaries below:

(a) If dF(y) = exp(—exp(1/y))dy, 0 < y < oo, then
Ap(t, €) = t/(logt — 2log, t — log2 + o(1)) as t— oo,

where we write log, ¢ = log log ¢, etc.
(b) IfdF(y) = dy/y(log|y|)**?, 0 < y < 1/e, and = 0 elsewhere, where § > 0,
then
Agp(t, ¢) = {2¢[(1 4 0)(log, t — log 2) + $log,t + Llog (1 + 0) \
+ log (¢/z*) + o(1)]} as t— oo.
(c) If F is any measure on (0, co) such that f(b, &) < oo for some real b and
h =0, and F({2¢}) = ce7*¢ (¢ > 0), F(0, 2c) = 0, then

Ag(t,e) =ct +d + o(1) as t—oo.
(d) If dF(y) = dy, 2¢ < y < oo and = O elsewhere, then

Ag(t, e):ct—|—2i(10gt+logce+o(1)) as t— oo,
C

Let F be a nontrivial measure on (0, oo) such that f(b, &) < oo for some real
b and 2 = 0. Suppose g(#) is a real-valued function defined for all large ¢ and
lim, ., f(g(¢), ) = ¢ > 0. Then g(f) ~ Ay(t,¢) as t - co. Now let &(y) be a
real-valued function on [0, oo) such that §(y) = O(exp(By?)) as y — oo for some
B > 0andlim,,, §(y) = §(yr). Then

lim,_., §7 60) exp (y4x(t, ) = - 3*) dF(y) = e(0s)

Hence defining the measure F, on (0, co) by dF,(y) = |§(y)| dF(y), we have
Ap (1, €l§(yr)) ~ Ap(t, €) if £(yz) # 0. In particular, letting & be of compact
support and {(y,) = 1, it follows that there exists a measure G of bounded sup-
port such that Ay(t, ¢) ~ Ay(t, €) as t — oo.



304 TZE LEUNG LAI

THEOREM 2. Let F be a nontrivial measure on (0, co) which satisfies (b, h) < oo
for some real b and h = 0. Suppose that y, = 0, and that there exist a > 0 and a
nonnegative Borel function ¢ on (0, a) such that for any Borel subset A of (0, a),
F(A) = §, ¢(x)dx. Let ¢ be any positive number.

() Ifinf, o4 ¢(x) > 0, then AL(t, ¢) = O((tlog 1)}) as t — oco.
(i) If sup, . o,q) P(x) < oo, then (tlog 1)t = O(Ay(t, €)) as t — oco.
(iii) Ifinf,. o4, P(x) > 0 and sup,. ., ¢(x) < oo, then A(t,¢) ~ (tlog )t as

t— oo.
(iv) Iflim, ,, ¢(x) = L exists and is a finite positive number, then

Ag(t, €) = {1(log 1 + 2 log (¢/L(2x)t) + o (1))} .

Proor. For notational convenience, we shall write A(f) = Ay(t, ¢). Now
lim, ., A(f)/t = yz/2 = 0, and so for all large , 4A4(f)/t < a. It is not hard to
show that

©  dimetom georexp {2 (y - KOV g)dp = e

To prove (i), let ¢(x) = K > 0 for all x € (0, a). Then it easily follows from
(6) that
¢ = lim sup,_., (27)tKt~* exp(4%(1)/2t) ,

and so as t — oo, A(f) = O((t log #)}). Similarly to prove (ii), we let 0 < ¢(x) <
K, for all x € (0, a) and obtain from (6) that

¢ < lim inf,_, (27)}K, % exp(A4X(1)/21) ,

and so (¢ log t)! = O(A(?)) as t — co.

To prove (iii), let 0 < K < ¢(x) <K, for all x € (0, a). Take C,>log{(¢/K)(2r)~#}
and C, < log {(¢/K,;)(27)~%}. Then it follows from our preceding argument that
for all large ¢,

C, + (log#)/2 < A(1)[2t < C, + (log1)/2

and therefore A(f) ~ (tlog 1) as t — oo.
To prove (iv), since lim,_,, ¢(x) = L € (0, o), it follows from our proof of
(i) and (ii) that

lim,_, (27)tLt=t exp(A%(£)[2f) = ¢
and so the desired conclusion follows. []

3. Moment generating functions and boundary crossing probabilities for sums
of i.i.d. random variables. Suppose X, X,, --. are i.i.d. such that ¢(y) =
Eexp(yX,) < co for all ye (0, @), where 0 < @ < co. Lete > 0 and let F be
any measure on (0, co) with support contained in (0, @). Let b, = inf{x:

§5 (9())™" exp(xy) dF(y) = ¢}. Since {7 (¢(y))~" exp(yS,) dF(y) is a nonnegative
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martingale, we have
P[S, = b, for some n = m]
™ = P[§5 (¢(y)~"e*» dF(y) 2 ¢ for some n 2 m]

= P[Sn 2 bn] + €7 Nispc, I8 (9(9)) ™" €xp(ySa) dF(y) dP
< et (¢ dF.

If ¢: (—o0, 0)— (0, o] is the moment generating function (abbreviated
mgf) of some random variable X (i.e., ¢(y) = E exp(yX)), and D is any subset
of the real line such that ¢(y) < oo on D, then we shall say that ¢ is subnormal
on D if ¢(y) < exp(y*/2) for all ye D, and ¢ is supernormal on D if o(y) =
exp(y*/2) for all y e D.

Suppose X, X;, - - - are i.i.d. with mgf ¢ such that ¢ is finite and subnormal
on (0, a) where 0 < @ < oo. Let F be any nontrivial measure on (0, co) with
support contained in (0, @) and f(x, m) < oo for all real x, where f is defined by
(1). Then f(S,, n), n = m, is a nonnegative supermartingale, and so we have

P[S, = Ay(n, ¢) for some n = m]
(8) S P[Sa = Ap(m, €)]

=+ e SEO Sr[Sm<Ap(m,e)] exp (ysm - "g“y2> dap dF(}’)
< ety dF.

Darling and Robbins [5] have shown that given any ¢ > 0 and any sequence
b, with n~%6, 1 co and b,/n | 0 as n | co and Y, n~¥b, exp(—b,%/2n) < oo, we
can construct a probability density function ¢ on (0, o) such that by choosing
m sufficiently large, we have (& ¢(y) exp(yb, — (n/2)y*)dy = ¢ for all n = m.
Letting F be the probability measure on (0, co) with density function ¢y, we have

from (8) that if X, X,, - - . are i.i.d. with mgf ¢ which is subnormal on (0, o),
then

P[S, = b, for some n = m] < P[S, = AF(ﬁ, ¢) forsome n=m] < et

The following examples deal with statistical applications of the inequalities
(7) and (8).

ExAMPLE 1. Suppose X;, X,, .- are i.i.d. Bernoulli random variables with
parameter p, i.e., P,[X, =1]=p, P [X,=0]=1— p = gq. The mgf E, exp(yX))
is supernormal on (0, @), where «, is some positive number depending on p,
and is subnormal on [2, c0). Now let Z, = (X, — p)/(pq)}. Then E,ev?1 is sub-
normal on (0, o) if p = 4; and if p € (4, 1), there exists 2, > 0 such that £, ev%1
is subnormal on (0, 4,), while if p € (0, 1), there exists 2,* > 0 such that E ev#1
is supernormal on (0, 4,*). Given any p,e (0, 1), we can choose k, = (p,q,)*
and B, > 0 such that writing X, = (X; — p,)/k,, we have the subnormality of
E, exp(yX;) on (0, B,). (For example, we can choose k, = 8, = 1). Lete > 0,
S,=X,+ ... +X,, and let F be any probability measure on (0, B,). Then
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if p < pos
P,[S, = Ag(n,¢) for some n= 1] < P,[S, = Ax(n, ¢) for some n = 1]
<1fe.

By choosing y, = 0, this result can be used for open-ended power-one tests of
H,: p < p,versus H,: p > p,. Alternatively, we can let G be a probability meas-
ure on (0, oo) such that y, = 0 and {5 exp(xy) dG(y) < oo for all x € (— o0, ),
and define b, = inf {x: {§> e*¥(p,e? + q,)~" dG(y) = ¢}. Then writing S, = X, +-- -
+ X,, it follows from (7) that for all p < p,, P,[S, = b, for some n = 1] <
P,[S, = b,forsomen = 1] < 1/e. Also if p > p,, then P [lim, ., {5 e*S»(p,e¥ +
¢,)"" dG(y) = oo] = 1, since y, = 0.

ExAMPLE 2. Suppose X, X,, - - - are i.i.d. with the gamma density f(x), i.e.,
fo(x) = 0-FxP~" exp(—x/[0)/T'(B) , x>0,

where ¢ (> 0) is unknown and B (> 0) is known. Let Z, = §-¥(8 — (X,/0)).
Then for y = 0, E, exp(yZ,) < exp()*/2). Hence if e > 0and F is a probability
measure on (0, co0), then for all § > 0, letting S, = X, + ... + X, P)[S, <
6(Bn — BAy(n, ¢)) for some n = 1] < 1/¢, and we therefore obtain a one-sided
confidence sequence for the scale parameter of the gamma distribution.

ExaMPLE 3. Suppose X, X,, --. are i.i.d. Poisson random variables with
mean A. Then E; exp(yX;) = exp(4(e? — 1)). To construct a power-one test of
H,: 2 < A,versus Hy: 2 > 2,(4, > 0), we let F be a probability measure on (0, co)
with y, = 0. Set S, =X, + -.. + X, and b, = inf {x: { exp(xy — niy(e? —
1)) dF(y) = ¢}. We obtain from (7) that if 2 < 4,, then

P[S,= b, forsome n> 1] < P,[S, = b, forsome n> 1] < 1/e.

The above methods for finding power-one tests of one-sided hypotheses can
be extended to other stochastically increasing families of distributions.

4. Some invariance theorems. The main results of this section are contained
in Theorem 3 and Theorem 4. A counter-example is also given to show that if
we do not assume the regularity conditions of the type we impose in our theo-
rems, then the desired result may fail to.hold. Theorem 5 gives us another way
of interpreting the result of Theorem 4.

Suppose X, X;,- - - are i.i.d. with EX, =0, EX?=1and ¢(y)=Eexp(yX;)<co
for all y € (0, @), where 0 < a < oo. Let F be any finite nontrivial measure on

(0, o) with support contained in (0, pa) for some p > 0. For any real number
m = p?, define

©) fu(%, 1) = {5 exp(xy — mtlog ¢(y/m*)) dF(y) , t>0.

Then for alln > 1, Ef, (S,/m*, njm) = (¢ dF < oo, and so f,,(S,/m?, n/m) is finite
almost surely. Let 7 > 0 and [rm] denote the largest integer < rm. Then
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Su(S,/mt, njm), n = [tm], is a martingale, and so for every ¢ > 0,
P[ fn(S,/mt, njm) = ¢ for some n = tm]
(10) = PLfu(Stem/m?, [em][m) = €]
+ €7 StspiSemymb temymr<el S(Stemy/m?, [tm][m) dP .

This inequality enables us to prove the invariance theorem below.

THEOREM 3. Suppose X,, X,, - - - arei.i.d. with EX;, = 0, EX* = 1 and ¢(y) =
Eexp(yX,) < oo forall y e (0, a), where 0 < a < oo. Let F be a finite nontrivial
measure on (0, co) with support contained in (0, pa) for some p > 0. Then for any
e>0and =0,

lim,, ., P[{; exp(yS,/m?* — nlog o(y/m?)) dF(y) = ¢ for some n = tm]
= P[W exp (yW(t) — %)ﬂ) dF(y) = ¢ for some t = z-:l.

LemMmA 1. Under the assumptions of Theorem 3, ¢ is a convex, strictly increasing
and twice continuously differentiable function on [0, ), and ¢(y) = 1 + y*/2 + d(y),
where lim,_,, 6(y)/y* = 0. Hence given any k > 0 and any ¢ > 0, [mt] log ¢(y/m?)
converges to ty*|2 as m — oo uniformly for t € [0, k] and y € [0, c].

LEMMA 2. Under the assumptions of Theorem 3, if F has bounded support, then
forany k > 7 =0, asm— oo,
MAXyz iz fu(Stmar/mt, [mE][m) —, MaX,z i WD), 1)
where f,, is defined by (9) and f by (1), and —, denotes convergence in distribution.
Proor. We shall show that given any sequence of real numbers m, such that
p* < m, 1 oo, we have
max,,s. fm”(S[mvt]/m,*, [m,t]/m,) —, max,.... f(W(1), ) as v1oo.

As in Theorem 13.8 of [1], we can construct processes {X* (), t = 0}, v = 1,
2, ..., having for each v the same distribution as {S,, ,;/m,}, t = 0}, defined on
a common probability space Q, and a standard Wiener process W(¢) on the same
space, such that for any subsequence (v;) increasing rapidly enough, we have

maX,g,; | X¥i'(t) — W(t)| — 0 almost surely as j— co .

Clearly fof each v, max ..o, fo,(Sim, /M, [m,¢]/m,) has the same distribution
as max, g, fu (X(?), [m, t]/m,). Now F has bounded support, say F[c, co) =
0. By Lemma 1, [, 1] log o( y/m,%j) converges to #)*/2 as j — oo uniformly for
te[r, k] and ye[0, c]. Also for almost every we Q, X®i(t, w) — W(t, ) as
J — oo uniformly for te[z, k]. Since exp(yW(t, w) — (t/2)y?) is continuous in
y, t and F is a finite measure, it is obvious that

S 0.0 EXp(PXV9(t, @) — [m, 1]/log p(y[/m} ) dF(y)
— §0,0 €XP (y w(t, w) — —;— y’) dF(y)
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as j — oo uniformly for ¢ € [r, k]. Therefore the desired conclusion follows. []

ProoF oF THEOREM 3. First consider the case r = 0. If ¢ < {° dF, then
clearly P[f,(S,/m}, njm) = ¢ for some n = 0] = 1 = P[f(W(t), t) = ¢ for some
t = 0].

Now assume thate > {° dF. Takeany k > 0, ¢ > 0 and let F, be the measure
on (0, co) defined by F,[c, c0) = 0, F,(0, x) = F(0, x) for 0 < x < c. Since
¢ > {00 dF, Ap(0,¢) >0 and so P[max,,., (W(1) — Ap(t,€)) = 0] =0. It
then follows that

P[ fu(S,/mt, nfm) > ¢ for some n = 0]

Z P[maXogizi §0,0) €XP(PSimu/m? — [mi] log o(y[mt)) dF(y) = €]
t
- P[maxostsk $0,00 €XP (}’W(t) - —2*)’2> dF(y) z e]
as m—co (by Lemma 2)
= P[W(t) = Ap (2, ¢) for some ¢ > 0]
— P[W(t) = Ap(2,¢) for some t > k]
— et (P dF, letting k — co and then ¢— co.
Therefore lim inf,, ., P[ f,.(S,/m?, n/m) = ¢ for some n > 0] = ¢~* {*dF. On the
other hand, since f,,(S,/m*, njm), n > 0, is a nonnegative martingale, P[ f,,(S,/m?,
njm) = ¢ for some n > 0] < ¢7' {# dF. Hence we have proved the case where
r=0.
Hereafter we shall assume that = > 0. For any ¢ > 0, define
Ju(%: 1) = i, €Xp(xy — mt log ¢(y[m?)) dF(y) ,
(11) Jn'(%, 1) = Yoo, €XP(xy — mtlog ¢(y/m?)) dF(y) ,

F G ) = Saexp (xy — £ y7)dF(p)

Take any d € (0, ¢). Then we have
P[fu(S,/m}, njm) = ¢ for some n = tm]
(12) =< P[f.(S./m}, njm) = 6 for some n = tm]
+ P[fn(S./m?, njm) = ¢ — & for some n > tm].
Since fm°(Sn/m*, n/m), n = 1,isa nonne;gative martingale, we have
(13)  P[f.(S./m}, njm) = ¢ — & for some n > tm]
= (¢ = ) Efu’(Stem/mt, [tm][m) = (¢ — 8)7 {1y, dF .
By (10), we have '
P[fn(S,/mt, nfm) = 6 for some n = tm]
(14) = PLfn*(Stemfm?, [cm][m) = 0]
+ 07 Sts e r<a1 fu'(Stema/mts [em][m) dP .
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By Lemma 2, f,,(Si my/m?, [tm]/m) —, f°(W(z), t) as m — oo, and so we have
S (Stemrfm?, [em] M) g oisppymb temymr<ar = a SAV()s O poiier,er<an -
From this, it follows that
lim,, .. E(f(Stemy/m?, [Tm]/m)l[f,,f(s[,m]/m*,[rm]/m)<a])
= E(f*(W(z)s )iseimier,er<n)
= S0 q)(AFc(T’ d)[tt — yrt) dF(y) .
Moreover we have
My, .. P fu'(Stem/mt, [em]/m) = 0] = P[ f((W(z), 7) = 9]
=1— O(4; (7, 9)/}).
Hence from (12), (13), (14), we obtain
lim sup,, ., P[f,(S,/m}, njm) = ¢ for some n = tm]
(15) = 1 — O(dp (v, 9)[ct) + 07" {oo,0) O(Ap (7, 0)[zt — yrt) dF(y)
+ (e — 0)7' {00 dF .
Since lim,_, AFc(r, 0) = Ag(z, 0), we have upon letting ¢ — oo in (15) that
(16) lim sup,, .., P fu(S,/m?, njm) = ¢ for some n = tm]
S 1 — ®(A(r, )[e) + 57 §7 O(Ag(z, 0)ft — yrd) dF(y) .

It is easy to see that Ay(z, 8) | Ax(r,¢) as d | ¢, and so by letting 6 1 ¢ in (16),
we obtain

lim sup,, ... P[ f(S,/mt, njm) = ¢ for some n = tm]
< 1 — O(Ag(e, o)feh) + &7 §5 B(Ay(x, e)fet — yet) dF(y) .
We can prove that
lim inf,, ., P[f.(S,/m*, njm) = ¢ for some n > tm]
Z 1 — Q(4(e; )fet) + e {7 Q(Ap(t, €)/zt — yri) dF(y)
in a similar way as that of (i) of the following theorem. []

While Theorem 3 considers the case where F is a finite measure, the following
theorem studies the situation when F may not be finite.

THEOREM 4. Suppose X,, X,, - - are i.i.d. with EX, = 0, EX;* = 1 and ¢(y) =
Eexp(yX,) < oo forall y = 0. Let F be any nontrivial measure on (0, co) such

that f(b, h) < oo for some real b and h = 0, where f is defined by (1). Lete > 0
and © > h.

(i)  liminf, . P[{F exp(yS,/m* — nlog¢(y/mi)) dF(y) = ¢
for some n = tm]

= P[S;" exp (yW(t)' — é-y“’) dF(y) = ¢ for some t > r].
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(ii) If ¢ is supernormal on (0, o), then

lim,, ., P[5 exp(yS,/mt — nlog ¢(y/m?)) dF(y) = ¢ for some n = tm)]
= P[S;,” exp (yW(t) — %y”) dF(y) = ¢ for some t = r:] .

Proor. (i) Take any ¢ >0, d¢(0,1)and k > = + 1. Then for all large m,

P[fu(S,/mt, njm) = ¢ for some n = tm]
= P[maxrwstsl;fmc(S[mt]/mk’ [mt]/m) = e]

— P[max,+5§t§,, §(0,0) €XP (yW(t) — %y"’) dF(y) = e] as m— oo .

The last relation above follows from Lemma 2. By letting k — oo and 4 | 0,
we obtain that

Pl:maxr+ﬁstsk §0,00 €XP ()’W(’) - —;‘yz) dF(y) =z 5]

- P[S(O,c) exp ()’W(t) - —;—)’2) dF(y) = ¢ for some t > r}

=1- q)(AFc(“" 0)/7}) + &7 ((0,0) P(Ap (7, &)/t — yrt) dF(y)
— 1 — O(Ay(z, €)/tt) + 7 {2 O(Ax(7, &)/rt — yrt)dF(y) as ¢— oo .
The desired conclusion then follows.

(if) We assert that if ¢ is supernormal on (0, o), then f,,(S;,mi/mt, [tm]/m) —,
f(W(z), v) as m — oo. To prove this, given any sequence of positive numbers
m, 1 co, we construct processes {X*'(¢),t = 0}, v = 1, 2, - - -, having for each v
the same distribution as {S, ,,/m.}, t = 0}, defined on a common probability
space Q, such that for any subsequence (v;) increasing rapidly enough,
maX,g,. |[X*9(f) — W(t)] —>,5.0 as j— co. Hence for almost every we Q,
lim;_, X¥i'(z, ®) = W(z, ), sup; |X*i(z, w)| < oo, and for all y > 0,

lim, ., exp(yX*(z, @) — [em, ] log ¢(y/m} )) = exp ( (e @) — y”) .

Choosing £, € (k, 7) and j, such that « — 1/m, > k, for all j = j,, we have from
the supernormality of ¢ on (0, co) that [zm, ] log gp(y/mgj) = h,y*2if y = 0 and
Jj = j,. Also

§ exp(y sup; [X*3'(z, w)| — $h,y*) dF(y) < co ..
Therefore by the dominated convergence theorem,
lim,_,, fm,,j(X("f’(T, ), [tm, ]/m, ) = f(W(z, 0), 7) a.s.

It is then clear that f,,(S;..;/m?, [tm]/m) —, f(W(z), ) as m — oo.
By (10), we have

P[fn(S,/mt, njm) = ¢ for some n = tm]
= P[fM(S[r'rn]/mb’ [Tm]/m) = e] + e S[fm( )<el fm(S[rm]/m%’ [Tm]/m) dpP .
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Since f,(St.my/mt, [tm]/m) —, f(W(z), 7), it then follows that
lim sup,, ., P[ fu(S,/m?, njm) = ¢ for some n > tm]
= P[f(W(t), t) = ¢ for some > 7]. 0

Let X}, X,, ---, S,, ¢, F, ¢, 7 be as in Theorem 4. If ¢ is not supernormal on
(0, o0), then the conclusion in (ii) of Theorem 4 may not be true. Consider the
following example. Let X, X,, - - - be i.i.d. with P[X, = 1] = P[X, = — 11=14.
Then ¢(y) = Eexp(yX;) = coshy and ¢ is subnormal on the whole real line.
Let F be a measure on (0, o) defined by dF(y) = exp(y#)dy, y > 0, where
1 < B <2 Now f(x, ) < oo for all > 0 and all real x, and we can choose
© > 0 such that P[W(f) = A.(1, ¢) for some ¢ > r] < 1. On the other hand,
Su(x, 1) = oo forallm > 0, # > 0 and all real x, so that P[f,(S,/m?, njmy = e
for some n = tm] = 1 for all m > 0. Instead of assuming ¢ to be supernormal
on (0, co), however, it is clear from our proof in (ii) of Theorem 4 that we can
replace the supernormality of ¢ by the following more general condition:

There exists m, >0 and a function g¢: (0, co) — (0, c0) such
(17)  that mlog ¢(y/mt) = g(y) forall y >0 and m >m,, and
(o exp(xy — t9(y))dF(y) < co forallreal x and > h.

Suppose X is a random variable with EX =0, EX*=1 and ¢(y) =
Eexp(yX) < oo for ye (0, @) where 0 < @ < oo. Let F be any nontrivial
measure on (0, co) such that either F is a finite measure with bounded support,
or if the support of F is unbounded, then a = o, (17) holds and there exist
h = 0and b real for which f(b, h) < co. Then for any ¢ > 0, ¢ > k and all large
m, we can define 4,™(t, ¢) as the unique solution x = A,™(¢, ¢) of f,,(x, 1) = e.
The function 4,'™(z, ¢) is concave, strictly increasing and continuous on (&, o0)
for all large m, say m = m,. It can be proved that if ¢ > h, then Ap™(t, ¢€)
converges to Ag(f, ¢) as m — oo uniformly on every compact subset of (%, co).
When ¢ is supernormal on (0, c0), A4, ™(t, e) = Ag(t,¢), t > h, m = m,. The
following theorem, which is an extension of Theorem 2 in [14], then provides
us with another way of looking at Theorem 4. ‘

THEOREM 5. Let X, X,, --- be i.i.d. random variables such that EX, = 0,
EX? = 1. Let h = 0 and let {g,,},, be a family of continuous functions on (h, o0)
such that g,,(f) converges to g(t) as m — oo, the convergence being uniform on every
compact subset of (h, o).

(i) Foranyk >t > h, _
lim,, ., P[S, = mig,(n/m) for some km = n = tm]
= P[W(#) = g(t) for some k =t = 7].

(ii) Assume:

There exist t,>h and a continuous function ¢: [r,, oo) —
(18) [0, c0) suchthat g,(t) = (1) forall t=7,, m=m,, and
P(1)/tt is nondecreasing and {z t-¢(r) exp(— ¢ (t)/2t) dt < oo .
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Then for any © > h,

lim,, ., P[S, = mtg,(n/m) for some n = tm]

= P[W(f) = g(t) for some t = 7].

m—»ao

(iii) Let h = 0. Suppose

(19)

There exist t,>0 and a continuous function ¢§: (0, 17,)—
[0, 00) such that g,(1) = §(t) forall te(0,7;), m=m,, and
J(1)/tt s nonincreasing and  \52 1-3f(t) exp(—¥(1)[2t)dt < oo .

Then for any = > O,

lim,,_, P[S, = mtg,(n/m) for some 1 < n < tm]

= P[W(t) = g(t) for some 0 <t =<r].

m-»oo

(iv) Let h = 0. Suppose (18) and (19) are both satisfied. Then

lim,, ., P[S, = mtg,(n/m) for some n = 1] = P[W(t) = g(t) for some t> 0].

The

(1
2]

3]
4]
[5]
(6]
(7
[8]
9]
[10]
[11]
[12]
[13]
[14]

[13]

same relations remain valid if S,, W(t) are replaced by |S,| and |W(1)|.
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