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SOME FINITELY ADDITIVE PROBABILITY

By ROGER A. PURVES AND WILLIAM D. SUDDERTH!
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of Minnesota, Minneapolis

Lester E. Dubins and Leonard J. Savage have shown how to define a
large family of finitely additive probability measures on the lattice of open
sets of spaces of the form X x X x -.., where X, otherwise arbitrary, is
assigned the discrete topology. This lattice does not include many of the
sets which occur in the usual treatment of such probabilistic limit laws as the
martingale convergence theorem, and in some unpublished notes Dubins
and Savage conjectured that there might be a natural way to extend their
measures to such sets. We confirm their conjecture here by showing that
every set in the Borel sigma-field can be squeezed between an open and a
closed set in the usual manner. It is then possible to generalize to this
finitely additive setting many of the classical countably additive limit the-
orems. If assumptions of countable additivity are imposed, the extension
studied here, when restricted to the usual product sigma-field, agrees with
the conventional extension.

1. Introduction. Let y be a countably additive probability defined on all
subsets of a denumerably infinite set X. (In the main body of the paper, X will
be an arbitrary set.) Let N be the set of positive integers. It is well known that
there exists a unique countably additive probability which assigns to each set
of the form

AXAX - XAXXXXX -, jeN, ACX,

the probability JTi., r(4%), and whose domain is the sigma-algebra generated by
these sets. Is there a counterpart to this product measure theorem in case y is
not countably additive? In much greater generality this problem has already
been considered by Lester Dubins and the late Leonard Savage in their book
How to Gamble If You Must (1965). In order to surmount the apparent arbi-
trariness involved in extension, Dubins and Savage require that a certain natural
condition be satisfied, which, for the special case being considered here, rests
on the following equality:

M 7(D) = {x n(Dx) dr(x) -

Here 7 is the extension-to-be, D & X¥, Dx = {ze XV|(x, z,, z,, - --) € D}. For
reasons given in Dubins and Savage (1965, pages 12-20), but too lengthy to
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present here, it is natural to require that (1) hold for all sets D which are clopen
(simultaneously closed and open) in the product topology on X* determined by
assigning X the discrete topology. Then, their method shows that there is exactly
one finitely additive probability = defined on the clopen subsets of X* which
meets this requirement.

The collection of clopen sets in X* includes properly the collection of sets
which depend on finitely many coordinates, but is a much smaller class than the
domain of the conventional product measure. In fact, the latter coincides with
the sigma-field generated by the clopen sets. Is it possible to extend z in a natural
way to a larger collection of sets? Dubins and Savage posed this question, again

in greater generality, in some unpublished notes written in the fall of 1962. (For

a relevant quotation from these notes, see Dubins (1974).) In the same notes
they began to answer it by assigning to each open set the supremum of the
measures of the clopen sets contained within it, and then showing that the result-
ing extension, which in this particular instance might be called r,, satisfied
r,(0 U P) + 7, (0 n P) = 7, (0) + =, (P) for all open sets O, P.

This is the point of departure of our efforts. We were privileged to see these
notes and were immediately tempted by the possibility, suggested in the notes
by Dubins and Savage, of further extension. A time honored first step in such
a situation is to form the collection %7 of all sets which can be approximated
from without by an open set and within by a closed set in such a way that the
measure of their set-theoretic difference, which is open, can be made arbitrarily
small. Then as described in Section 2 below, .9 is an algebra of sets which
includes the open sets, and there is a unique finitely additive probability on .o
which extends 7,,. The next question is: how large is this algebra? For example,
does it contain the sigma-field generated by the open sets? We found this question
difficult, even in such a special case, and the results to follow come from our
attempt to answer it.

The answer, given in greater generality in Theorem 5.1 below, is yes. This
theorem makes it possible to state in the usual fashion finitely additive generali-
zations of such classical limit theorems as the strong law of large numbers and
the martingale convergence theorem. (Incidentally, a recent paper of Lester
Dubins (1974) contains some pointed remarks concerning the merits of the various
ways of formulating a limit law). Many of these finitely additive limit theorems
(see Theorems 7.2 and 7.3, for example) can then be proved by applying well-
known arguments in conjunction with the stop rule methods devised to establish
Theorem 5.1. Finally, if 7 is countably additive, the extension of 7 considered
here coincides with the familiar countably additive product measure (see Section 6
for a more comprehensive result). '

2. Basic framework. Throughout, probability measures are finitely additive
unless explicitly stated otherwise. Let N be the positive integers and X an
arbitrary nonempty set. Let H= X" = X X X X --- and give H the product
topology determined by assigning X the discrete topology.
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Let p be a finitely additive probability on the clopen subsets of H. Following
Dubins (1974), ¢ may be extended from the clopen sets to the open: sets by
assigning to each open set the supremum of the measures of the clopen sets
contained within. Call this extension ». It is shown in Dubins (1974) that
7(0 U P) + n(0O n P) = »(0) + »(P) for all open sets O, P. Further, as asserted.
in the same reference, » possesses one.and only one finitely additive extension
to the algebra generated by the open sets, and this extension can, in turn, be
completed by squeezing in the usual manner to obtain a finitely additive prob-
ability 2 on an algebra .o7(y) of subsets of H. Finally, associated with 4 are an
outer measure 4* and an inner measure 4,, where

*(A) = inf {A(E) | ASE, E € 7 (p)} and
2,;(A)‘_-: sup {A(E) | EC A, Ec ()}, A an arbitrary subset of H.

A slightly different description of %7(y), 1*, 2, is given in the following
proposition.

PrOPOSITION 1. (i) The algebra S7(p) is the collection of all E = H such that,
for every ¢ > 0, there are O open, C closed with C C E C 0 and »(0O — C) < e.

(ii) Forall AC H, 2*(A)=inf {1(0)| AS 0, O open} and 4,(A) = sup{A(C)|C =
A, C closed}.

Proor. In (i) the only step which is not immediate is the fact that each set
in the algebra generated by the open sets can be appropriately squeezed between
an open and a closed set. This algebra is the collection of all finite unions of
sets of the form P — Q, where P, Q are open and P 2 Q.  Thus, invoking sub-
additivity of », it is only necessary to check that sucha P — Q can be so squeezed.
To do this, set 0 = P — L, C = K — Q, where K, L are clopen sets chosen to
satisfy K € P, L € Q and (P — K), »(Q — L) small. It is easy to verify that
CZ P— Q< Oand O — C) issmall. This completes the proof of (i). Clause
(ii) follows directly. []

At this point it is reasonable to inquire whether the algebra .7(¢) contains
the Borel sets (sigma-field generated by the open sets). ‘This is not so for all z;
an example is given in the next section. The next paragraph introduces a class
of y, the “probabilities determined by strategies,” for which it is so. This class,
first considered by Dubins and Savage, ‘is essential to our proof, which typically
involves working with many of its members simultaneously.

Let X* be the set of all finite sequences of members of X, including the empty
one. A strategy o isa function which assigns to each p € X* a probability measure
o(p), defined on all subsets of X. The probability measure assigned by ¢ to the
empty sequence will be denoted ¢,. Each strategy determines, in the manner
described by Dubins and Savage (1965, pages 7-21), a positive linear functional
on the class of all bounded real-valued functions on H which are continuous
when the real line is endowed with the discrete topology. If g is such a function,
and ¢ is a strategy, the value of this linear functional will be denoted in what
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follows by either { gdo, § g(h)do(h), or ag. The probability determined by a
strategy o is the set function y,: K — { 1. do, K clopen. (Here, and elsewhere,
1 is the function which is 1 on K and 0 off K.) As g, is a probability, it may
be extended, as described above, to the probability 2 on the algebra 7{(s,). To
keep the notation simple, let .%7(¢) be an abbreviation for %{y,) and, with
some harmless ambiguity, let ¢ be the extension 1. Also, let ¢*, o, be 1*, 1,
respectively.

The following notation will appear throughout. Let p, ge X* and he H.
Then pq is the member of X* whose terms consist, of the terms of p followed by
the terms of ¢, and p# is the member of H whose terms consist of the terms of
p followed by the terms of A. If A< H, Ap = {he H|phe A} and pA =
{he H|h = ph’ for some ' ¢ A}. If g is a function defined on H, gp is defined
by gp: h— g(ph), he H. If p consists of a single term x ¢ X, the entities Ap,
pA, gp will be written Ax, xA, gx, respectively. For arbitrary p e X*, |p| is the
number of terms of p; if p is empty, |p| = 0.

3. An example. Suppose for this paragraph that X is an infinite set. Then,
as shown in Corollary 2 of this section, there is a finitely additive probability
¢ defined on the clopen subsets of H such that x takes only the values 0 and 1,
and if D is any closed nowhere dense set in H, there is a clopen K with K 2 D
and p#(K) = 0. Such a g is of interest for two reasons. The first is that the
extension 4, of Section 2, does not include all G,’s in its domain; the second is
that ¢ cannot be approximated (in a sense to be specified later) by any probability
which is determined by a strategy. L. Dubins (1975) has already given an ex-
ample of this latter phenomenon. The reasoning will be given following the
proof of existence of p.

(Nothing in this section is required in the remainder of this paper, and it may
be skipped at first reading.)

LEmMMA 1. Let pe X* and Q C H.

(i) If A< Qp, then pA Z Q.

(ii) If Q is dense in H, Qp is dense in H.
(iii) If Q is open in H, Qp is open in H.
(iv) If Q is clopen in H, pQ is clopen in H.

LEMMA 2. Let Z be a topological space. Suppose (Z,, i € I) is a family of pairwise
disjoint clopen subsets of Z whose union is a clopen subset of Z. Then if (C,,i¢cl)
is a family of closed subsets of Z and C, C Z,;, all i ¢ I, the set C = J,,C; is a
closed subset of Z.

The next two definitions and lemma establish the existence of a function which
inserts a clopen set in each open dense set in such a way that finite intersections
of the inserted sets are never empty. For general X, the next definition relies on
the axiom of choice, but, for well-ordered X, its use can be avoided.
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DEFINITION. Let O be a nonempty open set in H. Let g be any member of
X* such that gH < O and if pH C O, p € X*, then |p| = |q|. Set §(0) = qH and
d(0) = |q-

There is more freedom in the choice of the function § than is apparent from
the above definition. Many other 8’s will work just as well in what follows.

DEerINITION. The equations below define inductively, for each positive integer
n, a function 8,, which has as its domain the collection of all open dense subsets
of H and which takes as values subsets of H. The inductive step requires
Lemma 1 (ii).
181 = 18
Buss(0) = B(O) U (Uspisi PBA(OP))

where O is open dense, k = d(0), pe X*.

LEMMA 3. Let n be a positive integer.

Then if O, O', - - ., O" are any open dense sets in H,
(a) B.(0) is a clopen set in H,

(b) 8.(0) <0,

(€) B.(0OYn --- N B,(0") is nonempty.

Proor. This is done by induction on n. If n = 1, the lemma is immediate
from the definition of 8. Now suppose it holds for a positive integer n. To
verify (a) for 8,,,, let O be open dense and set

Q; = Up-; PB.(Op)

for each j = 0, ---, d(0). Now B,(Op) is clopen by Lemma 1 (ii) and the in-
ductive hypothesis. Next p3,(Op) is clopen by Lemma 1 (iv) and since pj3,(Op) =
pH for all pe X*, Lemma 2 applies with I = {pe X*||p| = j}and Z, = pH all
p €1, to show that Q; is closed. It is also open, so Q; is clopen, j = 0, - - -, d(O).
Since $,.,(0) is the union of 8(0) together with the Q,’s, 8,,,(0) is clopen.

To verify (b), note that the inductive hypothesis and Lemma 1 (ii) together
imply that §8,(Op) < Op, so that, by Lemma 1 (i), p8,(Op) < 0. This is so for
any p € X*, s0 §,,,(0) < 0. .

To verify (c), let O, - .., O™ be open dense in H. Assume that d(0") < d(0%)
fori=2,...,n+ 1, and set B(0') = qH, where qge X*. Since |g| = d(0") <
d(0?), the set §8,,,(0?) includes ¢8,(0%) as a subset, i =2, ---,n 4 1. By the
induction hypothesis, 8,(0%), ---, 8,(O"*'q) have a nonempty intersection.
Therefore the sets ¢8,(0%), - - -, ¢8,(0"'q) have a nonempty intersection, which
is also a subset of gH. As the intersection of g8,,,(0%, - - -, §8,,,(0™") includes
this subset, and B(0") = ¢qH, the proof of the inductive step is complete. [].

COROLLARY 1. If X is an infinite set, there is a function 3 which assigns to each
open dense set O in H a clopen set f(0) in H such that f(O) C O; and if n is any
positive integer and O, ..., O" are any open dense sets, the sets f(O"), - - -, f(O™)
have a nonempty intersection.
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ProoF. Let wy, w,, - -- be an infinite sequence of the distinct members of X *

with |w,| = 1 allie N. If O is open dense, set

B(O) = Uien wiB(OW,)
where f3; is defined in Lemma 3. The set Ow, is in the domain of 3, by Lemma
1 (ii).

It is now easy to check that 3 has the desired properties. For example, if
O, ..., O™ are open dense, the set 3(0%) n ... n S(O") is nonempty essentially
because 8,(0'w,) n -.. n B,(0"w,) is. For if & is a member of the latter, w,k
is a member of w,3,(0'w,) N --. n w,B,(0",), which in turn is a subset of
B(0") n ... n B(O"). Thedistinctness of the w,’s has not been used. It is required
to guarantee that (O) be closed (as well as open). In Lemma 2 let 7 = N and
Z, = w;H, ie N. Then the Zs are pairwise disjoint by virtue of the distinctness
of the w,’s. []

COROLLARY 2. Let X be an infinite set. There is a finitely additive probability
 defined on the clopen subsets of H such that p only takes on the values 0 and 1,
and if C is any closed nowhere dense set in H, there is a clopen set K 2 C for which

ProOF. Let & be the collection of all clopen sets L such that L = $(0) for
some open dense set O. Then, since every finite intersection of members of &~
is nonempty, there is an ultrafilter of subsets of H which includes . as a sub-
collection. This ultrafilter determines a finitely additive probability # on the
clopen subsets of H in the usual manner: assign probability one to all clopen
sets which belong to the ultrafilter and probability zero to all other clopen sets.
Then, from the definition of 4, every open dense set contains a clopen set L
with p#(L) = 1. As a set is closed nowhere dense if and only if its complement
is open dense, the proof is completed by taking complements. []

For the particular z of Corollary 2, let 2and _%(x) be as described in Section 2.
Fix a member x of X' and let S = {he H|h; = x, for all j e N sufficiently large}.
Then S cannot belong to .%{y). First, S is dense in H so that O © S and O
open imply O dense and 2(0) = 1. Second S has an empty interior so that C £ S
and C closed imply C nowhere dense and 4(C) = 0. Thus S ¢ .%{(y), and con-
sequently the complement H — S does not belong to .%(x). The set S is a
countable union of closed sets, so H — S is a countable intersection of open sets
which does not belong to ().

The probability ¢ cannot be approximated by a strategy: for ¢ = 1, say, there
is no strategy ¢ such that |¢(K) — ¢(K)| < ¢ for all clopen K. For, as will be
shown in the next paragraph, given any strategy o, there is a closed nowhere
dense set D such that K 2 D and K clopen implies ¢(K) = 3. But there is a
clopen set K such that K 2 D and p(K) = 0. For that K, |¢(K) — o(K)| = 3.

Let o be a strategy, 0 < 0 < 1, and ¢, ¢, ¢;, - - - be positive numbers such
that 3} e, < 6. Assume X is an infinite set. For each p € X*, let X(p) be a proper
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subset of X such that ¢(p)(X(p)) = 1 — ¢,, where i is the number of terms of p.
Finally, set K, = H, K, = {ke H|h, € X(p,_,(h))}, n = 2, ne N. Then using
Lemma 1 of Section 7 and the elementary inequality J[:2, (1 — &) = 1 — X251 €5
it can be shown that the set D = () K, has o-measure at least | — . From the
definition of the sets K,, D must be closed nowhere dense.

4. The basic integration formula. If ¢ is a strategy and 4 a clopen set, then
according to the definition given in Dubins and Savage (1965), o(4) can be
calculated by first conditioning on the first coordinate of H and then integrating
with respect to ¢,. This section gives a straightforward extension of the resulting
formula to other sets.

If p € X*, o[ p], the conditional strategy, is defined by o[ p](9) = a(pq), all g € X*.
If p = (x), x e X, o[ p] will be written o[x]. The notation o(4|p) will often be
used for the quantity o[ p](4p), which it is natural to regard as the conditional
o-probability of A4 given the past p. A similar notation will be used for o[ p]*(Ap)

and o[ pl,.(4p).

THEOREM 1. For every AC H, o*(A) = {o*(4|x)do(x) and o,(A) =
§ 0.4(A] x) do(x) -

ProoF. By Theorem 2.8.1 of Dubins and Savage (1965), the formulae hold
if A is clopen. They are next established for open sets.

If K< O, then Kx Z Ox for all x and, hence, ¢(0) =supo(K) =
sup § o(K|x) doy(x) < | 0(0O|x)do,(x) where the supremum is taken over all
clopen sets K contained in the open set O.

For the opposite inequality, let ¢ > 0. If O is open, then, for each x € X, Ox
is open and there is a clopen set K* = Ox satisfying o[x](K*) = ¢(O|x) — e. Set
K = U,z xK®. Check that K is clopen and Kx = K* for every x. Then K < 0
and ¢(0) = o(K) = { o(K|x) doy(x) = § 0(0O | x) doy(x) — e.

This establishes the formulae for open sets 4. The argument can be easily
adapted to give the first formula for all 4.

The second follows from the first since o,(A4) = 1 — o*(A4°). [

A stop rule is a function s: H — N such that if 4, #’ belong to H and 4, = h/,
i=1,...,s(h), thens(h) = s(#'). Forhe H,ne N, setp,(h) = (h,, ---, h,) and,
if s is a stop rule, set p,(h) = p,(k) where n = s(h).

COROLLARY 1. Letsbeastoprule. Then, forevery ACH, 6*(A) = § 6*(A4|p,)do
and o, (A) = { 0,(4]|p,) do.

This corollary extends Theorem 1 and is proved from it by induction on the
structure of p,. A similar result is formula 3.7.1 in Dubins and Savage (1965).

Let Ae.2/(s). Then, by Theorem 1, § ¢*(A4|x)doy(x) = § 0,(A4]|x) day(x).
However, it can happen, as the following example shows, that ¢*(4|x) > 0,(4|x)
for all x so that for no x is Ax in .%7(o[x]).

ExaMPLE. Let X = N and 7 be a probability on N which gives measure zero
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to all finite sets. Let 8 be the probability which assigns measure § to each of
the points 1, 2. Set g, = y and o(p) = § if p is a nonempty element of X*. The
next step will not be executed precisely here, but it can be justified by the contents
of Section 6. Namely, o[x] is just the coin tossing measure for every x. For
that reason, there is a set B® such that ¢*(B*|x) = 1/x and ¢,(B*|x) = 0. Let

A = U,ex xB” so that Ax = B® for all x.

5. .%(o) contains the Borel sets. A critical ingredient in the theorems of
this section is a very weak Heine-Borel property of H, presented in Lemma 1
below. To state it, the following notation will be required. Let 4!, 4% ... be
subsets of H. If sis a stop rule, 4° = {he H|he A"®}. It is easy to check that
if the A* are all open (closed), then 4* is open (closed).

LemMMA 1. Let O, O ... beopensetsinH. If O' C O* C ... and H = |J, 0!
then there is a stop rule s such that H = O-.

Proor. Foreach ke H, thereisa least n = 1 such that the basic neighborhood
{WeH|h/ =h,i=1,...,n}isasubset of at least one of the O% and for that
nthereis a least k such that O* D (W' e H|h/ = h,i=1, ..., n}. If k < n, set
s(h) = n; if kK > n, set s(h) = k. Then s is a stop rule and H = O*. (This argu-
ment, which was suggested to us by David Blackwell, is more perspicuous than
our original proof.) []

CorOLLARY 1. Let O', 0%, - .. beopensetsin H. IfO* C O* C - .., Cisclosed,
and C C |J, O, there is a stop rule s such that C < O°.

Proor. Set Q° = O* U (H — C), i e N, and apply the preceding lemma to the
sets le QZ’ trte E]

COROLLARY 2. Let C%, C% ... be closed sets in H. If C'2C*2 ..., 0 is
open, and O 2 N, C?, there is a stop rule s such that O 2 C°.

Proor. Take complements in the préceding corollary. ]

COROLLARY 3. Let ¢ be a finitely additive probability on the algebra of clopen
sets and A be the extension of p described in Section 2.

() IfC'2C* 2 .. are closed, and C = (; C*, then A(C) = inf, 2(C*).
i) IfO*C O*C ... are open, and O = |, O' then A(0) = sup, (0.
P P

(The infimum and supremum are taken over all stop rules s.)
Proor. Use Corollaries 1 and 2.

The next lemma gives a crude sufficient condition for a countable union of
open sets to have small probability under a strategy . The notation R*U ... U R®,
where s is a stop rule, refers to the set {4 e H| ke R, for some i < s(h)}.

LEMMA 2. Let R', R?, - .. be a sequence of subsets of H. If d = 0 and
g*(R*|q) < 027" forall neN and geX* with |g|=n,
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then
o*(R"U --- UR)<d,  forallstoprules s.
If, in addition, R, R?, - - - are open, then ¢(R* U R* U ...) < 4.
Proof. The second assertion follows from the first by using Corollary 3.

The first assertion is a consequence of showing the following statement holds
for every ordinal §8:

Let s be of structure 8. If ¢ is any strategy and R', R?, --. is any sequence
of subsets of H, and ¢ any nonnegative quantity such that

0.*(qu| ‘ q) < 5/2Iq|

for all nonempty g € X*, then ¢*(R* U ... U R°) < 0.
This assertion holds if 3 = 0. For then there is a positive integer m such that
s(h) = m, all he H. Hence,

6*(R*U --- UR) =0*R'U ... UR™
< Sn,o*(RY
= nm, § o*(R*| p(h)) do(h) (by Corollary 4.1)
< T2,

For the inductive step, assume the assertion holds for all 8 < a, where a > 0
is an ordinal. Let s have structure exactly a. Let R', R?, ..., 0, and ¢ satisfy
the hypothesis of the assertion. Set M* = R“*', i =1,2, -... Then

R'U...URCRUMU... UM).
Now ¢(R") < d/2, so it suffices to show e*(M* U ... U M®) < 6/2. First,
(1) o*(M*U - U M) = §o[x]*(M' U --- U M*)xdoy(x) .
Fix an x € X temporarily. Set
L' = Mx i=1,2,...,
r(h) = s(xh), heH,
o = o[x].
Then r is a stop rule with structure less than a. Further, the sets L', L?, ...,
the strategy p, and the quantity d/2 ‘all satisfy the hypothesis of the assertion.

Therefore, the inductive hypothesis implies that p*(L* U --- U L") < 6/2. But,
as is easily checked, :

L'U...UL =(MU-. - UM)x.
It now follows that the integrand in (1) cannot exceed 4/2. []

As will be shown shortly, .97{(¢) need not be a sigma-field. The following
subcollection of sets is a sigma-field however, this being the content of Theorem 1.

DEFINITION. & (0) = {4 & H| Ap e (o[ p]) for all p e X*}.
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THEOREM 1. F (o) is a sigma-field which contains the Borel sigma-field and is
contained in (o).

Proor. First, & (o) contains the open sets, as 4 open implies Ap open, and
([ p]) contains all the open sets. Next, 5 (o) is closed under complementa-
tion, as 4°p = (Ap)°and (o[ p]) is closed under complementation. The remain-
der of the proof is devoted to showing that & (¢) is closed under countable
intersection.

Step 1. Let 4', 4%, ... be members of & (¢)and 4 = N, 4*. Fixp e X* and
set :

B:Ap,
B = Aip, i=1,2, -,
v =oa[p].

The aim is to show B e .%7(r). In other words, given ¢ > 0, to show there exists
D closed, P open such that D Z B < P and 7(P — D) < e. Let 0 be a small
positive quantity, to be chosen later.

Step 2. For each ¢ = 0 in X*, there is a closed set C? and an open set O?
such that
C1 C (qul)q C o1,
and
e[q](07 — C) < 3j210.

To see this, set i = |g| and observe that since A°e & (0), A'pqe (o[pq])-
But A’'pg = B'q and o[ pq] = [q].
Step 3. Choose (axiom of choice) for each ¢ = 0 in X* a C?, O¢ satisfying
the conditions of Step 2. Set, for each ne N,
C" = Ujg=09€C7 0" = Ujg=1 90° -
Then C* is closed (see Lemma 3.2 for example), O™ is open, C* < B" < O", and
C*q = C?, O*q = O for all g € X* with |q| = n.
Step 4. Set, for ne N,
pPr=0'n...nO",
Dr=C'n...nC".
Then, for all stop rules s, D* Z P* and
t(PP— D)< 0.
The inclusion follows from the fact (Step 3) that C* < O, all ie N, and the
inequality is established as follows. Let Rt = O — C% ie N. First, ,
| P—DCRU...UR, '
which follows from
P* — D" ={P"—CHU ... U(P"—C™),
c@O*-CHu ... U (O™ —=C™),
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where m e N, and the ith term of the second union is O° — C*. Now, if ¢ # 0
in X*,

[g]R"g < 827,
using Steps 2 and 3. By Lemma 2, this suffices to show 7(R* U ... U R*) < 0.

Step 5. Let D = (; D’. Then
D N:B < P
for each stop rule s.

Step 6. There is a stop rule r such that
e(P" — D) < 2.

To see this, note that P* — D < (P* — D*) U (D* — D) for every stop rule s.
By Corollary 3, there is a stop rule r such that T(D’ — D) < 4. Then, using
Step 4, t(P" — D) < 24.

To complete the proof of the theorem, set 6 = e/2, P = P7, and observe that
B=),B". [

It is pleasing that .%7(g) is the completion, in the usual sense, of ¢ restricted
to the Borel sets. That is, .97(0) is exactly equal to the collection of all sets 4
for which there exist Borel E, F with EC A C Fand ¢(F — E) = 0. For suppose
Ae (o). For each ne N, there is a closed set C,, an open set O, such that
c,c A< 0O,ando(0,—C,) < 1/n, set E=,C,, F=[,0,. Then E, F
are Borel and F — E < O, — C, for every ne N. It follows that ¢(F — E) = 0.
The other direction is a consequence of Theorem 1.

Perhaps suprisingly, .%7(s) need not be a sigma-field. Take X and ¢ as in the
example of Section 4. Then there is a set B of infinite sequences of 1’s and 2’s
such that ¢[x]*B = 1, o[x],B = 0. Set A" = nB, ne N. Then 4" ¢ (o), all
ne N, but |, A" is not in .%(s). The set 4" is in .%(0) because

o*(A™) = § o[x]*A"x doy(x) = 0
as A"x = @ unless x = n. However, since (| 4")x = B, o¢*(J, 4") = 1 and
7.(Un 4") = 0.
THEOREM 2. Let A', A%, ... be sets in F (o).
(i) If s is a stop rule, A* e F (o). ,
(iiy f A2 A2 -+, and A = (), A', then 0(A) = inf, o(A4°).
(iiiy If A S A< -, and A = |, A", then a(A) = sup, o(A).
(The infimum and supremum are taken over all stop rules s.)
PROOF. (i) A4°e (o), since & (o) is a sigma-field and
=U;4n{he H|s(h) = i}.
(ii) Lete > 0 and 6 = ¢/2. Take p to be the empty sequence in Steps 1-6

of the proof of Theorem 1. Then there is a closed set D and open sets P*, P?, ...
satisfying D & 4, A n ... n A" Z P*, ne N. Further, there is a stop rule r
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such that ¢(P" — D) < 20. Since A'D A*D ..., A*=A'Nn..- N A", neN.
Thus D £ A < A* C P*for all stop rules s. Use the stop rule r to conclude that

o(A") —a(A) £ 20 =¢.
(iii) This follows from (ii) by taking complements. []

In the light of Theorems 1 and 2, the final assertion of Lemma 2 holds also
for sets R, Rz, ... in & (o).

THEOREM 3. ¥ (o) is closed under the Souslin operation.

Proor. According to the criterion of Szpilrajn-Marczewski (Kuratowski,
1966, page 95) it suffices to show that .5 (o) is a sigma-field and that it satisfies
the following property: For any 4 < H there is a Ge & (¢) with G 2 A4 such
that if G ¢ & (o) with G 2 4, every subset of G — G belongs to # (s). As F (o)
is a sigma-field it remains to check this property. Let 4 £ H. Choose, for each
p € X* aset G? such that G* 2 Ap, o[p]G? = (o[ p])*Ap, and G? is a G,. Set, for
each nonnegative integer n,

G" = Upi=n pG*
and G = Ny-,G". Then the set G is a G, which fulfills the requirements of
the property. In particular, the set B = G — G satisfies (¢[p])*Bp = 0, for all
peX*. [J

6. Relation to countably additive theory. Ifastrategy ¢ satisfies conventional
measurability and countable additivity assumptions, then the present finitely
additive extension is consistent with the conventional one and assigns measure
to as many sets.

Let &% be a sigma-field of subsets of X, " = <& X ... X & (nfactors), and
B> = B X B X --- bethe product sigma-field of subsets of H. It is assumed
in this section that ¢ is measurable with respect to £%. That is, ¢ is assumed to
satisfy

(i) for every p e X*, o(p) is countably additive when restricted to <7,
(ii) for every n and every Be <%, the map p — o(p)(B) is measurable from
X", &™) to the real line equipped with its Borel sets.
quipp

Then, by the theorem of Ionescu Tulcea. (Proposition V.1.1. in Neveu (1965)),
there is a unique countably additive probability ¢’ on &= such that ¢’(4) = a(A)
for every set A4 of the form B, X B, X --- where each B, e <% and B, = X for
all but finitely many i.

THEOREM 1. [If ¢ is measurable with respect to <% then .S(c) contains <8 and
o' agrees with ¢ on <8>. In particular, ¢ is countably additive on 5.

Since .%7(¢) contains the Borel sigma-field (Theorem 5.1), it certamly contains
the smaller sigma-field <&>.
The last assertion of the theorem can be proved without relying on the usual
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countably additive theory for the existence of ¢’. However, we follow a shorter
route here.

The proof that ¢ = ¢’ on Z&*~ begins with two rather technical lemmas. The
heart of the argument is Lemma 2.

LeMMA 1. Let K be a clopen set and let K € Z8=. Then o(K) = o'(K).

Proor. The proof is by induction on the structure of K and is presented in
detail in Section 2 of Sudderth (1971). [

An incomplete stop rule is a function ¢t: H— N U {oo} such that if #(h) < oo
and A, = h/, i =1, .., t(h), then #(k) = t(#'). If ¢ is an incomplete stop rule,
the set [t < oo](= {h e H|#(h) < oo}) is open. Conversely, if O is open there is
an incomplete stop rule ¢ such that O = [t < oo].

LeEMMA 2. Let t be a SZ>-measurable incomplete stop rule. Then o[t < co] =
o'[t < oo].

Proor. Notice that

o[t < co] = sup{o[t < s]: s astop rule} (by Corollary 5.3)

= sup {o[t < n]: n a positive integer}
= sup {¢'[t < n]: n a positive integer} (by'the previous lemma)
= 0"[I < oo].
The final equation above uses the countable additivity of ¢’ on ZZ=.
To complete the proof it suffices to show that, for every stop rule s,
1) o[t < 5] = sup, o[t < n].

The proof of (1) is by induction on the structure of s. If s is constant, (1) is
clear. It remains to check the inductive step.
Recall that

s[x](h) = s(xh) — 1,
and set

[ x](k) = t(xh) — 1.
Notice that, for each x, s[x] is either a stop rule or identically equal to zero.
Also, s[x] has smaller structure than that of s if the structure of s is larger than
zero. Similarly, #[x] is either a ZZ~-measurable incomplete stop rule or identi-
cally zero. Finally, the conditional $trategy o[x] is measurable, for each x,
because ¢ is. Now compute

ot < 5] = § ofx]([¢ £ s]x) doy(x)
) = § o[x][f[x] < S[x]] doy(x)
< { sup, ofx][x] < n] doy(x) .

The inequality follows from the inductive assumption.
Let e > 0. For x e X, define

N(x) = min {k: (o[x][1[x] < k]) = (sup, o[x][1[x] < n]) — <},
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and let M(k) = N(h,) + 1 for ke H, where A, is the first coordinate of 4. Then,
by (2),
(3) ot < 5] < { o[x[1[x] < N(x)] doy(x) + .
As [f[x] £ N(x)] = [t £ M]x the right-hand side of (3) is equal to
§o[x]([t £ M]x)doy(x) + e =o[t < M] + ¢
=d[t<M]+e.

The last step, which follows from Lemma 1, requires that M be <Z~-meas-
urable. This will follow easily from the <Z-measurability of the functions

x > o[x][{{x] = n], xeX.

For each n, this has the form x — o[x]Ax, where A4 is ZZ~-measurable and de-
pends on only finitely many coordinates. By Lemma 1, o[x]4x = (o[x])’4x. The
ZF=-measurability of x — (d[x])’Ax then follows by the standard arguments. []

Proor oF THEOREM 1. Let &2 be the collection of all 4 £ H such that, for
every ¢ > 0, there are .<Z~-measurable incomplete stop rules ¢,, #, such that
[t = 0] S AC[t, < o]and ¢'[t; < 0] — ¢'[t, = 0] < ¢. Then Z'is a sigma-
field, which can be verified by checking in order that & is closed under the
taking of complements, finite unions, and countable increasing unions.

Now let 4 be a cylinder set in £&~. Then there isan ne Nand aset B £ X~
suchthat 4 = {ke H|(hy, ---, h,) € B}. Definet;(h) = norocoashec Aor h¢A;
and #,(h) = nor coas h¢ Aor he A. Then ¢, t, are ZZ~-measurable incomplete
stop rules and [1, = co] = 4 = [t; < o0]. Thus Ae Z and @ 2 FZ~.

For the final step of the proof, write O for sets of the form [¢, < co] and C
for sets of the form [#, = oo] where 1, ¢, are any <Z~-measurable incomplete
stoprules. Let Ae.<Z=. Since 4 € &, there exist sets O, and C, for ne N such
that the O,’s are decreasing, the C,’s are increasing, C, £ 4 < O,, and ¢'(0,, —
C,) — 0. Then ¢'(U C,) = ¢/(N 0,) = d¢’(4). Also, ¢’(U C,) = limd'(C,) =
lim ¢(C,) < 0(A), where Lemma 2 is used for the second equality. Similarly,
a(A) < ¢'(N O0,). It follows that ¢(A) = ¢'(4). [

A few brief remarks conclude this section. Let & be the usual completion
of &&= under ¢’. Let 7 be as in the proof of Theorem 1. It can be shown that
Z = € < (o). Suppose X is finite or countable and <Z'is the set of all subsets
of X. Then every incomplete stop rule is <&~-measurable and .%{s) coincides
with <. In particular, the usual examples of nonmeasurable sets give examples
of sets not in .7(0).

The field .(0) is sometimes strictly larger than &, since .%{0s) always con-
tains all clopen sets and it can easily happen that some clopen sets are not <z'=-
measurable.

The sigma-field & (o) certainly contains <& since it contains the collection
of cylinder sets. However, one can construct examples to see that % (¢) need
not contain &.
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7. Remarks on some classical convergence theorems. Many of the almost
sure convergence theorems for countably additive probabilities also hold for
probabilities determined by strategies. Often the usual proofs hold up when
suitably buttressed by the measure theory of Section 5. The purpose of this
section is to give a few instances of how this is accomplished. There is no attempt
at maximum generality, the idea being to show the finitely additive arguments
in the simplest setting possible. Details and further results can be found in
Purves and Sudderth (1973) and in Chen (1974).

Before the statement of the first result, a definition and some notation are
needed. Let r be a stop rule. A set K C H is said to be determined by time r
provided that e K, #’ e Hand h, = h/ for i = 1, ..., r(k) imply &' e K. It is
shown in Dubins and Savage (1965) that the clopen sets are exactly those sets
which are determined by time r for some stop rule r. Let {K,} be a sequence of
clopen sets and let {r,} be. a sequence of stop rules which is pointwise strictly
increasing and such that K, is determined by time r, for every n. Define g,(h) =

P, (k) for every ne Nand he H. Assume 0 < a, < 1 for all ne N and let o be
a strategy.

LemMma 1. Ifo(K,) =(=<) e, and if, forallne Nand he N K;, 6(K, 11| 9.(h)) =
(2) Ao then o(N)7 Ky) =(<) TIT .

Proor. The set N K, is closed. Let K be clopen and K 2 Ny K,. It suffices
for the first inequality to show ¢(K) = [[{° «;.

The argument is by induction on the structure of K. We can and do assume
a; > 0 for all i.

Suppose K has structure O. Then either K = Hor K = @. If K = H, then
o(K) =1 =z [ a;. We show K cannot be empty by constructing a history
he N7 K;. Since o(K,) = a, > 0, there exists #' € K,. Since o(K, | ¢,(F")) = a, > 0,
there exists 4’ € K, such that 4* agrees with ' up to time r,(4'). Continue in this
fashion to define 4" € K, such that 4" agrees with "~ up to time r,_(4"~'). Then
let 2 be that history which agrees with 4™ up to time r,(A") for all n. Since K,
is determined by time 7, and 4" ¢ K,,, we have % ¢ K,, for all n.

For the inductive step, assume the desired result for sets of structure less
than the ordinal @ and suppose K has structure « > 0. Then, for all 4, Kq,(h) 2
(N7 K)q.(h) = N (K, q9.(k)) and Kq,(h) has structure less than a.

Fix heK,. Set g = ¢,(h) and define o’ = o[q], K,’ = K,,,q, and r,/(¥') =
Tni1(gh') — ry(h) for b’ € H. Then ¢'(K)) = o(K, | qy(h)) = a,. Also, if #’ ¢ O K/,
then g’ e N+ K; and /(K7 1[4,/ (7)) = 0(Kois| Guia(qh)) Z s

By the inductive assumption, if # € K,, then ¢(K | ¢,(k)) = [ @,. Hence, by
Corollary 4.1,

o(K) = § (K| g,(h)) do(h)
= $x, 9(K| g:(h)) do(h)
= o(K) I3 a,
z [l . .
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The first inequality is now proved. The other is simpler since o( K;) <
o(Nt K;) = [I? a, for every n as can be proved by ordinary induction on n. [

Let {r,} be a sequence of probabilities defined on all subsets of X. Define the
strategy ¢ =y, X 7, X --- by ¢; = r, and, for all partial histories p of length n,
0(p) = Vs~ Such a strategy is said to be independent. Notice that o[p] =
Tatr X Tuyz X -+ for every p of length n.

LEMMA 2. Let ¢ =y, X 7, X --- be an independent strategy and let A, Z X
for ne N. Then

o(A; X Ay X ) = 1r(A)ra(A) - - .

Proor. Apply Lemma 1 with K, = {# |k, € 4,}, r, = n identically, and @, =
7.(4,) for each n. (]

THEOREM 1 (Borel-Cantelli). Leto =7y, X 7, X - -- be an independent strategy.
Let A, X, B, ={h|h, e A} and a,= o(B,) = 1,(A4,) for each neN. If
2. a, <(=) + oo, then o[B, i.0.] = Q0 (= 1). (Here “i.0.” is short for “infinitely
often.”)

Proor. Let O, = s, B;. Then [B,i.0.] = N,0,. By Lemma2,(0,) =
1 —0(0,) =1 = Lz (1 — a).

If 3 a, < oo, then ¢[B, i.0.] < ¢(0,) < 4o a4, — 0 as n — oo.

Suppose that )} a, = co. By Theorem 5.2 ¢(0,) | o[B, i.0.] as r — co through
the stop rules. So it suffices to show ¢(0,) = 1 for every stop rule r. The proof
is by induction on the structure of r. If r has structure O, the argument is the
familiar one. For the inductive step, use the equality ¢(0,) = §{ ¢(0, | x) do(x)
and then use the inductive hypothesis to establish that the integrand has the
value 1 for all xe X. []

There is an alternative proof of Theorem 1 which uses the results of Section 6
to reduce it to the countably additive case. To illustrate the technique assume
that 4, = A4 for all n. Let &# = {4, A°, ¢, X}. Then the strategy ¢ of Theorem 1
is easily seen to be measurable with respect to &£, By Theorem 6.1, ¢(k|k, € A
i.o.} = ¢'{k|h,c Ai.0.}. Since the conclusion of Theorem 1 is true for the
countably additive probability ¢, it is also true for . This technique of reducing
to the countably additive case often works, but sometimes does not and we prefer
the direct finitely additive proofs.

In the countably additive case, independence is only required in one direction
of the Borel-Cantelli lemma. The same is not true for probabilities determined
by strategies, as the following familiar example shows.

Let y be a probability on N which assigns zero to every finite subset of N.
Then, if L, = {ie N|i < n}, y(L,) = 0; but the set [L, i.0.] is N. To restate
this example in the formal framework, let X = N, ¢ be any strategy with ¢, = 7,
and put 4, = {he H|h e L,}.

Here is a slightly different example, based on the same y. Imagine a particle
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moving at random amongst the points of N in the following manner: at I, it
moves to an integer chosen according to y; at any k > 1 it moves directly to
k — 1. Then, regardless of initial position, the particle will return to 1 infinitely
often with probability one (use Lemma 1, for example). However, for each
sufficiently large n, the chance the particle will be at 1 at time n is zero.

Despite the double reliance on independence in Theorem 1, it can still be
used in conventional ways (as David Freedman pointed out to us) to prove con-
vergence theorems. In particular, the proof of Theorem 5.1.2 in Chung (1968)
can be modified with the use of Theorem 1 so as to give a “strong law of large
numbers for independent, uniformly bounded variables.”

THEOREM 2. Let g be an independent strategy on H and let {Y"} be a uniformly
bounded sequence of real-valued functions on H such that, for each n € N, Y™ depends
only on the nth coordinate and ¢Y™ = 0. Then o{h|1/n 37 Yi(h) — 0} = L.

Proor. Omitted.

Robert Chen (1974) has shown that the assumption in Theorem 2 that the
Y™'s are uniformly bounded can be replaced, as in the conventional theory, by
the weaker condition that )} n=* { (Y")*do < co.

ForneNand h= (h, ---, h,, ---) € H, let Z"(h) = h,. The sequence {Z"}
is the coordinate process on H. Notice that the functions Z* are nonnegative if
X is a subset of the set of nonnegative real numbers. Let o be a strategy and
suppose that, for ne N and ke H, ¢(Z"+|p,(h)) < Z"(h). Then {Z"} is a super-
martingale under ¢. (The notation ¢(g|p) is short for o[p](gp) and p,(h) =

(s o5 b))

THEOREM 3. If X is contained in the set of nonnegative real numbers and the
coordinate process {Z"} is a supermartingale under o, then the sequence {Z"(h)} con-
verges for h in a set of a-probability one.

Proor. Let I be a finite interval of real numbers and let 3(k) be the number
of upcrossings of I by the sequence {Z"(h)}. Then ¢[f = +co] < o[ = n] for
each ne N and o[ = n]— 0 as n— oo by Theorem 13.1 of Dubins (1962).
(Alternatively the argument in Doob (1953) can be adapted to show g[8 =c0]=0.)

Let {I,} be an enumeration of all intervals with rational endpoints and, for
each n, let 8, be the number of upcrossings of I, by {Z"}. Set A” = [8, = + o]
and 4 = | 4".

Claim. ¢(A) = 0.

To verify this, let pe X* and ne N. If p has length n, then the coordinate
process {Z'(h), Z*(h), - - -} is a supermartingale under ¢[p] and A"p is the event
that {Z"} upcrosses I, infinitely often. By the first paragraph of the proof,
a(A"| p) = a[p](Ap) = 0. The claim now follows from the remark at the end
of Theorem 5.2.

Since 4° C [{Z"} converges], the proof of Theorem 3 is complete. []
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It can also be shown that lim Z" is finite g-almost surely and even that
o[lim Z* > a] — 0 as a — co. Other martingale convergence results and also
some finitely additive 0 — 1 laws are in Purves and Sudderth (1973).

Finally, Theorems 2 and 3 imply their classical counterparts. Suppose X,
X;, - -+ is a uniformly bounded sequence of independent random variables on a
countably additive probability space. For present purposes we can assume the -
X,’s to be coordinate maps on an infinite product space and the probability
measure to be a product measure. Such a product measure can be extended
(using some transfinite principle such as the axiom of choice) to be an inde-
pendent strategy. The strong law for the X,’s would then follow from Theorem
2 and Theorem 6.1. For similar reasons, the almost sure convergence of con-
ventional nonnegative supermartingales follows from Theorem 3.
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