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ASYMPTOTIC EXPANSIONS FOR SAMPLE QUANTILES

By R.-D. REIss
Universitit Koln

This paper deals with an Edgeworth-type expansion for the distribu-
tion of a sample quantile. As the sample size n increases, these expansions
establish a higher order approximation which holds uniformly for all Borel
sets. If the underlying distribution function has s + 2 left and right de-
rivatives at the true quantile, the error of the approximation is of order
O(n—(s+1). From this result asymptotic expansions for the distribution
functions of sample quantiles and for percentage points are derived.

1. Introduction and preliminaries. Concerning the weak convergence of the
distributions of sample quantiles, Smirnov (1949) found necessary and sufficient
conditions. If the given distribution function has a second derivative, it is proved
in Reiss (1974a) that the accuracy of the normal approximation is of order n~%.
This paper also includes “left and right differentiable” distribution functions
(e.g. the double exponential distribution function). Under these weaker as-
sumptions the limit distribution (or the leading term in the expansion) need not
be a normal distribution.

Let R and N denote the sets of all real numbers and positive integers, re-
spectively. Let x,,, < ... < x,,, denote the components of x ¢ R" arranged in
increasing order. The ith order statistic X,,,: R” — R for the sample size n is
defined by X;..(X) = X;.c Xjpag41: 1S called the sample a-quantile (where [na]
denotes the integral part of na).

The distribution function F of a distribution P is defined by F(f) = P(— oo, f)
for te R. For ae (0, 1), let &, be a solution of F(§,) = «a; that is, &, is an a-
quantile of P. Denote by P the independent product of n identical components
P. &7 is the Borel algebra on R. P x ¢ denotes the distribution induced by P*
and the measurable function ¢ : R” — R (i.e. P" x ¢(B) = P*(¢'(B)) for B ¢ 7).
Let N, denote the normal distribution with mean zero and variance a=2. @ is
the distribution function and ¢ is the density function of the standard normal
distribution N,. For a (0, 1) let o, = (a(1 — a))t.

Section 2 contains the main results. Some auxiliary results and the proofs of
Theorem 2.1 and Theorem 2.7 can be found in Section 3.

2. The results. The versions (A) and (A’) of the following theorem corre-
spond to the different assumptions that the given distribution function F is left
and right differentiable, respectively, at some a-quantile £,. The assumptions of
(A) (of (A")) imply that &, is the smallest (largest) a-quantile. These assumptions
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together imply that the a-quantile is uniquely determined. Note that the as-
sumptions of (A’) imply that F is continuous at &,.

THEOREM 2.1. Assume that lim, . n=#(r, — na) = 0.
(A) Assume that

(2.2)  forsome >0 the restriction of F to (€,— ¢, £,] has
a derivative on  (§, — ¢, §,] which is left continuous at &,
and

(2.3) the left derivative of F at &,, say p,”, is positive.

Then

. tp =
(2.4) lim, ¢ SUPge g 0 (a0 [P * <£;Ea— (Xrn:n — 'Sa)) (B) — N1(B)l =0.

(A") Assume that
(2.2")y  forsome ¢ >0 therestrictionof F to [, &,+¢) has
a derivative on [§,, &, + €) which is right continuous at &, ,
and
(2.3 the right derivative of F at §&,, say p,*, is positive.
Then

3
Q4)  1im,ey SUPge o opo.e | P * (%” (X0 — sa)> (B) — NI(B)I 0.

a

If the assumptions of (A) and (A’) are fulfilled simultaneously then it is obvious
that the sequence P*  (n}/0,)(X, .,—&,), n € N, converges uniformly for all Borel
sets to the distribution M, _ , . definedby M, _ , .(B) = N, —(B n (— o0, 0]) +
N, +(B n [0, o)) for Be <Z.

The following example shows that the conditions which are sufficient for the
weak convergence of the distributions of sample quantiles do not imply the strong
convergence.

ExAMPLE 2.5. Let the distribution P be defined by its density function p =
Ly + Deen (2 4 DI+ D)y Because S, (27 + D/ + 1)) x
(1/2i = 1)Q2i + 1)) =% X2, (V)i — 1)(i 4+ 1)) = nj2(n 4+ 1) we easily derive
that § p(x)dx = 1 and F(1/2n + 1)) = } + 1/2(n + 1) for ne N. Therefore,
F(x) — 3 =1/2(n 4 1) for xe[1/2(n + 1), 1/2n + 1)) and F(x) — L = 1/2(n +
1) 4+ ((2n + 1)/(n 4 1))(x — 1/@2n + 1)) for x e [1/(2n + 1), 1/2n) whence x —
x* < F(x) — 4 < x for xe[—4,4]. Hence F is differentiable at zero with
F®(0) =1, and F(0) = 4. From a result of Smirnov (1949) (see Smirnov
(1962), page 116), it follows that lim,.y P" x (2n}X, ,.,)(— o0, f) = ®@(#) for
all teR. The convergence does not hold uniformly for all Borel sets since
P* 5 (2nt X, 0.,)(B,) = 0, ne N, and limsup, .y N,(B,) > 0 for the sets B, =
Uien 2n2/2(i + 1), 2n}/(2i + 1)), ne N. To prove this we use the explicit form
of the density of P* x (2ntX, .,) (see e.g. David (1970), page 9).
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To obtain expansions with terms of order n=%2, i = 1, - .., s, we shall always
assume hereafter that the following holds true:
ASSUMPTION 2.6. 0, = na — r, + 1 = O(1).

It is evident that the sequence r, = [na] + 1, ne N, which determines the
sample a-quantiles for the sample size n, fulfills this assumption. Let, further-
more, p,, = F9(&,”) and p}, = F9(,*) forie N.

THEOREM 2.7.. (A) Assume that F has a bounded (s + 2)th derivative ( for some
s€{0,1, ...} on (&, — &, &,] for some ¢ > 0 and (2.3) is fulfilled. Then there exist
polynomials Q;wi, i=1,...,s (see Remark 2.9) such that

P (PP X £0) (B)

— (s e@)(1 + Xion72Q5, i(x)) dx| = O(n=“*07) .

(A") Assume that F has a bounded (s + 2)th derivative (s€ {0, 1, --.}) on [§,,
&, + ¢€) for some ¢ > 0 and (2.3') is fulfilled. Then there exist polynomials Qf .,
i=1, ...,s, such that

(2'8) SupBeggn(—oo,O)

(28,) . SupBegn[O,w) Pn*<npa ( Ty m T sanz)) (B)

— Sz () 4+ X5 007 (x))dx| = O(n~+b/2y

REMARK 2.9. Q; ;and Qf ; are polynomials of degree < 3i for each /e N.
The coefficients of Q; ; and Qf ; only depend on p; ; and pf ;, respectively, for
jef{l, ---,i 4 1} and on « and J, (see also (2.11)).

REMARK 2.10. Let F have a bounded (s -+ 2)th derivative on a neighborhood
U of [Fc,), F7Y(¢;)], 0 < ¢; < ¢; < 1, and let F® be bounded away from zero
on U. Then (2.8) and (2.8’) hold true uniformly for all sequences d,, ne N,
with §, < C (C > 0 fixed) and « € [¢,, ¢,].

Let

a, = (1 — 2a)/30,, a, = —(a® + (1 — a)%)/40,?,
b, 1= (a — d,)[o, and bs 2= ((1 = 9,)0% + 0,(1 — a)’)/20,”.
For — and +, respectively, define
dy = 0,paslpa’  and  dy = 0.pe/p.’ -
Then for — and +, respectively,
Q;,1(x) = (&, — 3d)x* + (b,,1 + d))x,
Q,,.a(%) = $(a, — 3d,)’x°
(2.11) + (a6, 1 + §ad, + a, — }b, ,d, — §d? — }d))x*
+ (305,1 + ;.0 + b, 5 + 3d)X°
— (%FPa’ + 3a;b; , + 3a, + 305 1+ b; ) -
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Hereafter we shall always assume that the assumptions of Theorem 2.7, (A)
and (A’), are fulfilled simultaneously for some s¢ {0, 1, .. .}. ‘

From Theorem 2.7 together with (2.11) we easily derive the following three
corollaries.

COROLLARY 2.12. Let s = 0. If p,~ = p,* then

SUPge »

P (T2 (X =€) (B) = N(B)| = O()

Concerning sample medians we obtain:
CoROLLARY 2.13. Let « = % and s = 1. If p;, = pf, = O then for n odd

SUPse o [P % 204 (Xpamirin — §5)(B) — N, (B N (— o0, 0]) — N, +(B N [0, c0))|
= 0(n?).

Notice that the additional assumption of Corollary 2.12 is fulfilled if e.g. P is
a symmetrical distribution and F has a second derivative at the median. If P is
only symmetrical (e.g., the double exponential distribution is symmetrical but
its distribution function is not twice differentiable at the median) then the ap-
proximation need not be of order n'.

Denote by & the set of all symmetrical Borel sets, that is & = {Be <Z: xc B
implies —x € B}.

COROLLARY 2.14. Let s = 1. If the second derivative of F at &, exists then

SUDge o

b
P (TP (X, 0 — 8) () — NI(S)l = o(n).
oa H
Hereafter we shall additionally assume that the (s 4+ 1)th derivative of F at
§, exists. 7
COROLLARY 2.15. There exist polynomials R, ; with coefficients only depending

on Q, ;fori=1,...,ssuchthat

; .
SuptSR pr {XGR": % (xr,n:n - Ea) < t}’

— (@) + o(f) T, n"'/zR,,wi(t))i = O+
In particular ‘
R; (%) = —(a, — 3d)x* — (bl,w1 + 2a,),
(2.16) stz(x) = —%(a, — 3d)’x* — (3a}? + a, + alb‘,w1 — %b‘,wla'1 — $dy)x?
— (Pa’ + 3a1ban,1 + 3a, + %‘b?sn,l + bsn,z)x .

For i = 1, 2 we can use the explicit form of Q,, .and Q, , given in (2.11) to
find R, , and R, , directly (which fulfill the equation R (X) — xR, (x) =
Q,,.4(x) fori =1, 2).

We introduce the (3s + I)-dimensional inner product space 7 of all
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polynomials with degree < 3s equipped with the inner product
<hy gy = § B(X)g(x)p(x) dx for h,ge 7.
The Tschebyscheff-Hermite polynomials H,, i = 0, - - ., 3s defined by
e@P(x) = (= 1) Hy(x)p(x) , ‘ i=0,...,3s

(see Kendall and Stuart (1958), (6.21), page 155), establish an orthogonal base

of 27, Furthermore,
(H;, H = i!

(see Kendall and Stuart (1958), (6.28), page 159).
Proor. By Remark 2.9
. 1 .
(2.17) a7 0s 0 = Do (Diea 17 0s, 0 HYH,

Because (pH,;_,)® = —¢H, for i = 1 and H, = 1 we obtain by (2.17)

Lwo()(1 + 2ioin™2Q, (1)) dy
= Q)1 + Ti n~2§ Q, «(n)e(n) dn)

= o) (2 50 (i Q0 )

By Theorem 2.7 we know that Y33, n="*§ Q, (7)¢(7)dy = O(n~“+"’*). There-
fore, by collecting all terms of order n="? for i = 1, ..., s the assertion follows.

Using a result stated in Pfanzagl (1973, see Lemma 7), we easily derive from
Corollary 2.15:

COROLLARY 2.18. There exist polynomials R & i=1, ..., s, such that uni-
formly for all |t| < log n

pr {x cR": n"‘Pa (xrnm _ Ea) <t Y n“'/zR;"wi(t)} — V(I)(t) + O(n-<s+1)/2) .
g, )

In particular,
(2.19) R} \(t) = —R, (1),
t
R;;,z(t) = Rsn,1(t)foln),1(t) - —‘2‘ Rﬁwl(l‘) - Rsn,z(t) .

By Corollary 2.18 we can justify a result of David and Johnson (1954), page
230, concerning a formal expansion for percentage points of the distribution
function of medians. For a = § and s = 2 we obtain the following: Denote
by 2, the 10079, point of N,. Then for n odd

2
P {xe R™: Xpnm1410 = & + ! <ZT — APya

2nip, 4ntp,*
1 2
2.20 — (i 3(1 _ Pia o Pus >>>}
(2.20) 4n< Pt A 2p,t + 6p,°

=74+ O(nY).
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Finally, we remark that asymptotic expansions for the moments of the distri-
bution of a sample quantile can be derived from Lemma 3.9. With the help of
these expansions we can find an asymptotic expansion for the distribution of a
sample quantile which is based on the Tschebyscheff-Hermite polynomials H,
instead of the polynomials Q,,.:- In other words, we obtain an asymptotic ex-
pansion of a Gram-Charlier form (see Kendall and Stuart (1958), (6.32), page
157). These results can be found in Reiss (1974b). Notice that for the consid-
erations made above the existence of moments is needed whereas the expansions
given in Theorem 2.7 exist without any assumptions on the moments.

3. Auxiliary results and proofs. We shall only prove the version (A) of
Theorem 2.1 and Theorem 2.7. It will always be apparent in which way the
lemmas of this section have to be reformulated and proved to get the corre-
sponding versions (A’).

In essentially the same way as in Reiss (1974a), (2.8), we may prove

LemMA 3.1. Under the assumptions of Theorem 2.1 (A) there exists some con-
stant ¢ > 0 for each k ¢ N such that

o :
3.2) P* {xe Re: P (x, . — &) < —c(log n)b} —O(n "y .
O, "
In Lemma 3.3 we get an asymptotic expansion for the Lebesgue-density g, of
E" x ((n*[o,)(X,, .. — «)) where E denotes the uniform distribution on (0, 1).

LemMA 3.3. Under Assumption 2.6 there exist polynomials QAﬁwi, i=1,...,k
for ke {0, 1, ...}, such that uniformly for all |y| < logn

G4 5.0) — e + Tt n70,, (3) = O(exp(—y*[3)n= 4417 .

The polynomials QA{,“ are identical with those given in Theorem 2.7 for
Pari=piy=1land p;; = pt, = 0if j > 1. Furthermore, (3.4) holds true uni-
formly for all sequences d,, ne N, with , < C and a ¢ [a,, )] (0, 1) (where
C > 0 and g, < a, are fixed constants).

ProOF. Let
1 . a)y)Tn—d( ay >n~rn
by = (14 1=y |- Y
L) ( + o, nt g.nt
for

ye<—3n*, l—a n*)
g

g

and #,(y) = 0 otherwise. Let
C 1 Gaarn—l(l . a)n—rn
" B(ran—r,+ Dt

From the well-known formula for the density of E" + X, ., (see e.g. David (1970),
page 9) we easily derive that

9.(») = h())/Co -
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First we shall prove that uniformly for all y € (—log n, log n)
(3.5 h0) = oxp(—L) (1 + Db mH, () = O(exp(—y 3=+

where the polynomials H, ;only depend on « and J,.
Let

1

a, = - — ((_l)i-l(l _ a)(i+2)/2a,—i/2 _ a(i+2)/2(1 _ a)—i/Z)

e (e (5 o (a0

Then for i = 1, 2 we have in particular

(3-6) H;, a(y) = alys + b«s 1)
a 2(0) = 34" + (4,0 el T a,)x* + (lb2 a1+ ban,z)xz .
Expanding the log function around one and the exp function around —y?*/2

and collecting all terms of order n=** for i = 1, ..., k, we obtain uniformly for
all |y| < logn

and

h,(y) = exp [(rn -1 log<l + (10:—3)}}) +(n—r,) 1§g<1 _ay

aani>:|
- exp[(r - 1)<2k+2 1) (___(1 - “)y>>

o nt

— (n— r”)< ks L , ( ay )) + O(n—(k+1)/2[ylk+3)]

o, nt

to

= oxp| 2 Tty (@) + by I+ O Ay ) |

N

to

= eXP<_y7>< + 25 1—<Zf=1 (@, y** + b%viyi)n_i/2>j>

+ 0 <exp (_y;) n—(k+1)/2>
= P (_~}§> (I + Xk H"wi(y)”i/z) + 0 <exp <—y?2> n-<k+1)/2> .

Because C,(1 — 151064 G(y) dy = {82, h,(y) dy we obtain with the help of
Lemma 3.1 and (3.5)

(3.7) Cu22)™ — (1 + Ehody, in™") = O(n=-+07)
where
dé,,,i = ﬂo()’)Han,i()’) dy .
Especially,
da 1= 0

n
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and ‘ R
d«s”,a = Pa’ + 3‘11 o1 3a, + 353 o1 ban,a .

‘Using a Taylor expansion of the function 1/x the assertion follows from:(3.5)
and (3.7). '

It is easy to see that the distribution function G, of-

P (M 0 20)

G.(y) = Zier, OFLONA = FLON)™
where 1,(y) = &, + 0,y/(n*p,”). Assumption (2.2) implies that G, has a deriva-
tive g,, on (—4log n, 0) for n sufficiently large. This implies that G, is absolutely
continuous on (—% logn, 0) (see Hewitt-Stromberg (1965), Theorem 18.14 (i)
and Exercise 18.41 (d)).

(3.8) Proor oF THEOREM 2.1.. Denote by p the derivative of F on (§, — ¢,
¢,]. Leta, =r,/n. Let w,(y) = (ntfo, )(F(l.(y)) — a,). We obtain

\

is given by

g.) = 2LBOD) g o () for ye(—4 logn, 0)

Q, a

and sufficiently large n where g, is defined as in Lemma 3.3 with «, in place of
a. Since lim, n¥(a — a,) = 0, and p is left continuous at &,, a Taylor expan-
sion of w, at &, yields that lim,.y w,(y) =y for y < 0 and |w,(y)| < logn for
all y e (—4 logn, 0). Since Lemma 3.3 is applicable uniformly for all @, n e N,
we obtain for k = 0 that lim, . §,(w.(y)) = ¢(y) for all y < 0. Hence from the
continuity condition on p it follows that g,(y) tends to ¢(y) for y € (—4 log n, 0).
Since P x X, ., (—00,§&,) = E" x X, ..(— o0, a) we know that lim,. P" *
((n*py [0 )(X,, i — €a))(— 00, 0) = @(0). Hence the assertion follows from (3.2)
by an argument similar to that which leads to Scheffé’s lemma (see Billingsley
(1968), page 224).

LemMMA 3.9.. Under the assumptions of Theorem 2.7 (A) for s {0, 1, ...}
(3.10) g, (») — e + i n77Q5, (1)) = O(exp(—y*[3)n=1")

uniformly for all y e (—% logn, 0) where the polynomzals Q5. are descrzbed in
Remark 2.9 and (2.11).

Proor. Let §, be defined as in Lemma 3.3. Let w,,( y) = (ntla )(F(l,(y)) — @).
Then

0,0) = PEOD G 6o, ()  for ye(—4logn,0).
P v
The following relations hold true uniformly for all y € (—% log n, 0):
W) = (7 + S,09) = O(lylr+n e
PULYNPa — (1 + S,2(p)) = O(|y[+n=C*07)

and
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where

_ §s 1 Pajit1 o iqit1,—i/2
Sn(y) - Zi=1 m ]]ai‘H O'ay n .

Since |w,(y)| < logn for all y € (—} log n, 0) Lemma 3.3 implies

9.0) — ;117@ o (L + i 10, (w.()))
= O(exp(—w,(y)3)n=++17) .

W12 = (712 + ¥5.0) + S.0)/2) = O(L(ym++7)

where L, is some polynomial.
Therefore, expanding the exp function,

We have

XP(—7.0)12) = exp(—12) (14 Koy (25:0) = S.0772)

= O(exp(—y[)n==17) .
Hence
9.0) — )1 + Tiea (= DH(Tizdy (1 + S,9())

X (14 oy (05.0) = S.0712))

X (14 Zi,n0, (v + S.»)
= O(exp(_y2/4)n_(s+l)/2) .

Writing the factor of ¢(y) as a polynomial and collecting all terms of order
n~“2fori=1, ..., s, the assertion follows.

(3.11) Proor or THEOREM 2.7. Integrating g, on measurable subsets of
—4 log n, 0) the assertion follows from Lemma 3.9 and Lemma 3.1.
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