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THE MULTIPLE RANGE OF TWO-DIMENSIONAL
RECURRENT WALK

By LeoroLD FrLATTO

Yeshiva University

For each positive integer p, let R,? be the number of points visited ex-
actly p times by a random walk during the course of its first n steps. We
call the random variables R,? the multiple range of order p for the given
walk. We prove that for two-dimensional simple walk, R,? obeys the strong
law of large numbers limgco Ro?/(n2n/log? n) = 1 a.s. The method of proof
generalizes to yield a similar result for all genuine two-dimensional walks
with 0 mean and finite 2 + ¢ moments (¢ > 0).

1. Introduction. Let G be an infinite countable group and {X,}, 1 < n < oo,
a sequence of independent identically distributed G valued random ‘variables.
The sequence of partial sums {S,}, S, = X, + ... + X,, is called a random walk
on G. The range of the random walk is defined to be the sequence {R,}, R,
being the number of distinct values among S, =0, S,, ---, S,: i.e., R, is the
number of distinct points visited by a walk starting from the origin during the
course of its first n steps. :

The study of the range of random walks was initiated by Dvoretzky and
Erdos [1]. They have shown that for simple random walk on the d-dimensional

lattice Z%d = z), R, obeys the strong law of large numbers

n

(1.1) lim, ., —* =1 as.,
ER, denoting the expectation of R, (it is known that (1.1) fails to hold for the
simple 1-dimensional walk; see [6]).
Subsequently, Kesten, Spitzer and Whitman ([8], pages 38-40) have employed
the ergodic theorem to show that on any countable group G
(1.2) limn_m&‘ = e a.s.,
n
where e is the escape probability P[S, + 0,1<n< ]. A random walk is
called transient or recurrent according as to e > 0 or e = 0. For example, it is
well known that the simple walk on Z¢ is transient for d > 2 and recurrent
for d = 1, 2 ([3]). Using the dominated convergence theorem, (1.2) implies
m,_., (ER,/n) = e. It follows that (1.2) implies (1.1) in the transient case, but
that (1.1) is a stronger statement than (1.2) for the simple walk on Z?, which
is recurrent.

Received October 17, 1974; revised July 15, 1975.

AMS 1970 subject classifications. Primary 60J15; Secondary 60F15.

Key words and phrases. Random walks, simple walk, multiple range of a walk, weak and strong
laws of large numbers.

229

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to QJ

The Annals of Probability. STOR ®
www.jstor.org



230 LEOPOLD FLATTO

It is natural to try to gemeralize (1.1), (1.2) to the following sequences of
random variables. For each positive integer p, let R,? be the number of points
visited exactly p times by the random walk in the first n steps. We call {R,?}
the multiple range of order p. Elaborating upon the method of Spitzer, Kesten
and Whitman, Pitt [7] has recently shown that

(1.3) 1imMR_;’f — (1 — et as., 1<p<oo

for any random walk on a countable group G.
It follows from the dominated convergence theorem that for transient random
walks, (1.3) implies the strong law of large numbers

(1.4) lim,_, %" — 1 as., 1<p<oo.
ER,? -

The question arises whether there are recurrent walks for which (1.4) remains
true. This problem has been considered by Erdds and Taylor [2] for the case
of simple walk on Z2. They sketch an erroneous proof (the mistake will be
pointed out in Section 2) and we provide in this paper a correct proof. For
technical reasons which will become apparent later (see the remark following
(3.23)), we work with the random variables T,,» = R,' + - .- + R,” instead of
the R,?’s. Thus T,? is the number of points visited at least once and at most
p times in the first n steps of the walk. We show in Section 3 that for 1 <
p < oo, ER,? ~ (7'n/log’n) as n — oo. (This result should be compared with
ER, ~ (mn/log n), proven in [1]). This fact readily implies that (1.4) is equiv-
alent to

(1.5) lim, _.. ET;”? -1 as., 1<p< .

As shown in Section 2, (1.5) can readily be deduced from the following in-
equality (1.6).

THEOREM 1.1. Lete, 6 > 0. Foreachp,1 < p < oo,

(1.6) P(T,/’—TZ;LZ’; ;%):0(@),
(47 . P(lR" B lcfgnn = 1:;’;) =0 <l—og_1";> '

We remark that (1.7) is derived in [1] for 0 < ¢ < 2. (A mistake occurs in
the argument of that paper which is corrected in [5]). As shown in [1], knowl-
edge of (1.7) for some ¢ > 1 suffices to establish the strong law (1.1). . We shall
reproduce the argument of [1] in Section 2. It is assumed in [2] that the same
argument shows that the validity of (1.6) for some d > 1 establishes the strong
law (1.5) for the multiple range of two-dimensional simple random walk. This
is not the case, but we prove in Section 2 that knowledge of (1.6) for some
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0 > 3 suffices to establish (1.5). Weshall see that the need for a stronger estimate
for the multiple range problem stems from the fact that, whereas R, is mono-
tonically increasing with n, R,? and T,” are not. We shdll prove only (1.6), as
we require it to derive (1.5), but it will be clear from the proof that similar
reasoning yields (1.7).

The plan of the paper is as follows. In order that the reader get a better ap-
preciation of the estimates of Theorem 1.1, we first show in Section 2 how they
can be used to derive the strong law (1.5). In Section 3, we establish the estimates
for the expectation and variance of T,» which suffice to give (1.6) for 0 < é < 1.
In passing over to > 1, we establish separately in Sections 4 and 6 the estimates

(1.8) P<Tn” = W) =0 (logl" n>’

The reason for splitting (1.6) into (1.8), (1.9) is that the two parts are proven
in different manners, (1.9) being much more difficult to derive. Section 5 is
devoted to some moment estimates needed for the proof of (1.9).

We restrict our discussion to simple walk in Z?, but it will be clear from our
proof that (1.4) and (1.5) hold for any genuine two-dimensional walk with mean
0 and finite 2 4 ¢ moments, ¢ > 0 (see the remark following the proof of Theorem
3.1 in Section 3). It seems reasonable to conjecture that (1.4) and (1.5) hold for
any aperiodic recurrent walk on a countable Abelian group of rank 2, although
we have not been able to prove this. We remark that the analogous statement
is known to hold for R,. (A proof in the Z*-case is given in [6]. As pointed
out in [4], the same proof works in the rank 2 case.)

2. Derivation of the strong law for 7,7. We first reproduce the derivation
of the strong law lim,_,, R,/(zn/log n) = 1 a.s., found in [1]. It is shown there
that ER, ~ mn/log n, so that lim,_, R,/ER, = 1.

Suppose that (1.7) holds for some 6 > 1. Let n, = [¢*’] where 6 is a number
satisfying 1/6 < ¢ < 1. For n = n,, (1.7) becomes

e M ) =0 (_L_) .
= logn, ko

Since Y 5., 1/k?” < oo, we conclude from (2.1) that

R, — ™
k  logn,

@.1) P(

R
2.2 °°_P<_”£___—1.2> .
( ) Zk_1 nnk/log , =z¢e)<
We conclude from the Borel-Cantelli lemma that
. R,
(2.3) lim sup, o | ———2%— — 11 <e¢ as.
mn,/log n,
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Since ¢ is arbitrary, we have

2.4 lim,_,, _&‘k__ =1 a.s.

For given n, choose k so that n, < n < n,,,. Thus

2.5) : R, <R, <R

P+l "

Since n/log n increases with n, we conclude from (2.5) that

(2.6) R., =< R, =< R .
‘ mn,,/logn,,, — wnflogn — =zn,/log n,

Now n,,,/log n,,, ~ n,/log n,, so that (2.6) yields the strong law

. R
lim, ,——"*— =1 a.s.
mnflog n
The above argument fails to work for T,? as (2.5) does not hold for T,”: i.e.,
T,? is not monotonically increasing with n. The following modification of the
above argument gives the strong law for T,?, provided we know (1.6) to hold
for some d > 3. For 0 > 1and 1/6 < 6 < 1, we prove as above that

P
T,

2.7) lim, ,——" =1 a.s.
n*pn,[log® n,

Let n, < n < n,,. Then
(2.8) |T.? — T2 < My — ny, = O[e*+D” — k'] = O(e* .« k07Y) .
Now
(2.9) e’ =0(m), k= 0(logn)).
Using (2.8) and (2.9), we get

T »
(2.10) = T L o(ognyy.

n*pm,/log*n,  =pn,/log®n,

Choose ¢ so that 1/6 < 6 < %, which is possible when d > 3. Then3 — 1/§ < 0,
and we conclude from (2.7), (2.10) that

T,?
n’pn,/log n,

Since n,/log?n;, ~ nflog?n, (2.11) yields the strong law lim, ., T',?/(z*pn/logn) = 1
a.s.

(2.11) lim, ., =1 a.s.

3. The estimates for the expectation and variance of 7,». We obtain esti-
mates for ET,?, ¢’T,?, which are respectively the expectation and variance of
T,?. These estimates enable us to prove a weak law for 7,» (Theorem 3.4). For
p =1 (p = 0 for Theorem 3.1) the results of the present section can be found
in [2]. We show here that these results hold for all p.
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We first estimate r,?, 0 < p, n < oo, wherer,? (1 < n < oo) is the probability
that the walk return to the origin 0 exactly p times in the first n steps. For
n = 0, it is convenient to define r = 1 and r,» = 0 (p = 1). We denote r,’ as
r

ne

THEOREM 3.1. For given p, 0 < p < oo,

1
3.1 r= T 0(_) s oo,
S T logn+ log® n @

Proor. For p = 0, (3.1) is derived in [2], formula (2.5). We prove the result
for all p by induction. Suppose (2.1) holds for p. Let f; = probability that
walk returns first to 0 upon the jth step (1 < j < o) (f, is defined to be 0).

We have

(3.2) r?t = Yo firho; = L it + Dietemenfit-i -
(3.1) readily yields

1
(3.3) MmaXo<;<insal |Fn—5 — 10% =0 (@)
Hence
T
G DR = TR+ B (e o)

- <1;;,, + 0 () 1 = e

Using (3.1) once more, r;,,,; = O(1/log n) so that (3.4) becomes
1

3.5 R =" 410 <___> .
(3-3) Jirk-s logn+ log? n
(3.1) also implies r(,,,,; — r, = O(1/log? n) so that

1
(3-6) ZictwmenfiTh-; £ Dictamarfi = Tam — T = 0 (@) :
We conclude from (3.5), (3.6) that (3.1) holds for p + 1.

REMARK. It can be shown that for two-dimensional walk with 0-mean and
finite (2 + ¢) moments (¢ > 0), we have the estimate r,» = A/logn + O(1/log?n),
A being a positive constant depending on the walk. The results and proofs of

the present paper go through verbatim for this class of random walks, the number
= being replaced by 4. '

We require the following:

LemMA 3.1. The probability that the point S, is visited at time n for the pth time
O=n< oo, £p< oo)equalsr,p .
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Proor. We have

P[S, is visited for the pth time]
= P[S; =S, for p— 1 of the indices 0 < j < n — 1]
= P[p— 1 ofthesums X,, X, + X,_,,---, X, + --- + X, equal 0]
= P[p—1 of thesums X, X, + X,, ---, X; + --. + X, equal 0]
=r,t.

THEOREM 3.2. For each p, 1 < p < oo,

(3.7) ET,? ~ 1”2{" as n—oo.
og?n

ProoF. Let0 < n < o0, 0 < i < n. We define

Zz, =1, if the point S, is visited for the pth time at time

(3.8) i and not visited again in the next n — i steps
=0, otherwise.

Thus

(3.9) R?=Z0 + .. + Z2,

Now EZ2, = P (S, is visited for the pth time at time i) - r,_,. We conclude from
Lemma 3. 1 that

(3.10) EZ?, = rp=' . r,_,,
and
(3.11) ER," = Y{EZ} = 33 g1 ey -

Let A = [n/log®n] (n = 2) and ¢ > 0. We conclude from (3.1) that 3N, such
that for n > N,,

A<i<n—A.

3.12 1—e) " <rpt, s < (1 T,
(1) (-9 rei S (49

Since 0 < 7Y, r,_, < 1, (3.11) and (3.12) yield

'n1,=

(313) (1= (n_2A)<ER1»<(1+€)2 KU NP

log?n

n>N,.

Dividing (3.13) by n?n/log® n and letting n — oo, we obtain
ER,? . ER,?
3.14 1 —e2< i £ —rr— < limsup,,., —2 < (1 2,
( ) ( °) i inf, m’nflog*n — {m sup m’nflog’n — (14
As ¢ > 0 is arbitrary, we conclude
2

3.15 ERy? ~ ™" | 1< .
(3.15) Tog' =p<oo

Since ET,? = ER,! + --- + ER,?, (3.7) is an immediate consequence of (3.15).
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REMARK. The above derivation is based on the asymptotic formula r,? ~
z/log n, which is weaker than (3.1). (3.1) may be used to prove the stronger
result ET,? = n*pn/log®n + O(n/log®n). We do not prove this here as it is not
required in the sequel. The complete information contained in (3.1) will be
required for the variance estimate given in Theorem 3.3.

THEOREM 3.3. For each p, 1 < p < o0,

(3.16) ST, = 0 (ﬁll‘(’)gg:___"’lg_”> .

PrOOF. Let 0 < n < o0, 0 < i < n. We define

we, =1, if S, has been visited at most p — 1 times

(3.17) before time i and not visited again in the
remaining n — i steps
=0, otherwise.

Thus
(3.18) Wio=Zu+ - + 23,
and
(3.19) TP =W+ ... + W2,
(3.10), (3.18) yield
(3.20) EW?, = p7'r,_;
where

(3.21) >t =r+ .- 4 r,p7t = probability of returning at most p — 1
times to the origin in the first n steps.
It follows from (3.19), (3.20) that
(3.22)  o'T,» = E(T\*)") — EXT,") < 2 Zosisisn (Pis — 08 Tues0 7 Tasg) »
where
pi; = E(W2, Wr;) = P[S; has been, visited at most p — 1 times before
time i and is not visited again in remaining n — i steps,
and S; has been visited at most p — 1 times before time j
and is not visited again in remaining n — j steps].
Call the latter event 4,;. We have
(3.23) A;; € By;
where B;; denotes the event: S, has been visited at most p — 1 times before time

i and is not visited again in the [(j — )/2] steps succeeding the ith one, and the
point S; has been visited at most p — 1 times in the [(j — 7)/2] steps preceding
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the jth one and is not visited again in the n — j steps succeeding the jth one.
(The inclusion 4,;  B,; becomes false if we replace the phrase “at most p — 1
times” by “exactly p — 1 times.” This is the reason which prompts us to work
with the T,?’s instead of the R,”’s.)

We conclude from (3.23) and Lemma 3.1 that

(3.24) Pii = P(Bij) = 07 i—om PG iomTazi -
Hence
(3:25) T, = 2 Fosizizsn 07 Taeillti—om0lGtom — Ta-i0” 7} -

We estimate the sum 3 of (3.25). Letx,;=0,""r,_;|ri;_i)2100G5 02— i 05775
we have x;; < 1 for all i, j. Let 4 = [n/(logn)’], n = 2. Then

(3'26) |Z! § Zogiéy‘sn xij § Zogigmigjgnl + Z'n—ASan'Osisjl

_____
+ Dosizmisiziea | + Dlasisa-asivasisn—a Xij -

The first three sums on the right side of (3.26) are O(n?/(log n)°). The fourth
sum, call it }7,, is estimated as follows. We conclude from (3.1) that

=0<1_0_g1;;>.

fp_ % _, _ T 7;< logn/k>
t logn t log k logn - logk/ "

T

(3.27) maX, cp<n |Fe — @

Ty

Write

We have n/k < 4nj4 = O(log’ n) for k = A/4. It follows from (3.27) that

().

_ T
log n

(3.28) max, <<,

ry

A similar estimate may be derived for p,”~'.
ThusforA<i<n— A, i+ A<j<n— A,

log 1
(3-29) max | ;—imOfGiom — Fails? 7| = O (L(:Q> .
log®n

=1=n0=7=

log log n
MAXicnajitasisn—a Xij = O (ﬁ .

log® n
Hence };, 31, = O(n*log log n/log’ n) and Theorem 3.3 then follows from (3.25).
Using Chebychev’s inequality, we obtain the weak law of large numbers for
T,
THEOREM 3.4. Let 1 < p < oco. 3C > 0 depending only on p such that
Cloglogn

(3.30) P(|T,» — ET,?| = ¢ET,») <
e?log n

holds fore > 0 and 3 < n < oo.
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4. Derivation of inequality (1.8). We introduce the following

DEerINITION 4.1. (i) Let p be a fixed positive integer. The real number 6 > 0
is said to have the property A(9) iff Ve, > 0 3 C(¢,, d) > 0 such that

2 C(ey, 0)
4.1 P(Ty> = (1 ”1’”>g 0 for e >¢, and n>2.
1) < szt log*n/ = e*log’n F=5 -

(ii) 6 is said to have the property B(d) iff Ve > 0, 3 D(e, ) > 0 such that

J D(e, 3)
) T2 > (1 ”1’”>s f >2.
*-2) P< R logn/ = log’n orn=

We observe that A(3) — B(J) as we may then choose D(e, 8) = C(c, 6)/e%. The

following remark will be useful later on.

REMARK. 0 has the property A(0) iff Ve, > 03 C'(e,, d), n(e,, 6) > 0 such that

(4.3) P<an > (1 4 ) 2" ) <CCod  for ¢ > and 1= n(e, ).
log®n e?log’ n

Clearly (4.1)= (4.3). Suppose that (4.3) holds. For 2 < n < n(e, 0), let

C, = SUPyc.ccw e?login . P(T,?» = (1 + e)a’pnflogin). C, is finite as P(T,? =

(1 + ¢)n*pn/log®n) = 0 for ¢ sufficiently large. We conclude that (4.1) holds

with C(e,, 0) = max (C,, - - -, Cy, C'(¢,, 0)) where N = [n(e,, 9)]. "

We first prove
- THEOREM 4.1. A(0) holds for 0 < 6 < 1.

Proor. We have ET,” ~ n'pn/log’n as n— oo (Theorem 3.2) and (1 +
€/2)/(1 + ¢) < (1 + &/2)/(1 + &) for ¢ = ¢,. It follows that 3 n(e,) such that

n’pn

o2 for e=¢,, n = n(s) .
g’ n

(4.4) (1+5)Ere = +9)

We conclude from (4.4) and Theorem 3.4 that 3C > 0 such that

4.5) P(T,,r > (1 4 ¢) 72" ) < P<T,,r > <1 + i) ET,,”) < ¢loglogn

log? n - 2 —  élogn
whenever ¢ > ¢, n > n(s)). The result follows from the remark following
Definition 4.1. ‘

THEOREM 4.2. A(3) = A(40). It follows from Theorem 4.1 that A(d) holds for
all § > 0.

REMARK. Inequality (1.8) states that B(d) holds for all § > 0. Since A4(J) —
B(3), Theorem 4.2 implies (1.8). The reason for proving the stronger assertion
A(0) is that we have the implication A4(d) = A(40). The following proof applied
to B(6) would have yielded B(d) = B(d") for 6 < ¢’ < 46 + 2 (see the remark
following (4.12)) which, in conjunction with Theorem 4.1, would only have
yielded B(0) for 0 < § < 2.
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ProOF oF THEOREM 4.2. It is shown in [1] that V¢ > 0, we have

(4.6) P<Rng(l+e) ””):0( 1 )

log n log® n

whenever 0 < d < 2: i.e., B(d) holds for 0 < § < 2 (T,? being replaced by R,).
The following proof is just a careful analysis of the argument presented in [1],
showing that it may be applied to prove the implication 4(6) = A(%9).

Let N = [log?®n] (n = 3) and n, = [ni/N], 1 < i < N. We divide the points
{Sps - -, S,} into the Nblocks {Sy, -+, S,}, + -+, {Suy_ 4o - > S,} and let T%, =
number of points in ith block visited at most p times in that block, i < i < N.
Thus T%; has the same distribution as T3, where m, = n, — n,_, — I,1<i<N
(n, is defined to be —1).

We clearly have

(4.7) T =Tih+ - +Thy.
Let
Ca=[raz (14 5) TN gz (14 ) TR,
2/ log*n 2/ log'n
. 1<i<N.
Then
2
@8 1020+ LIS Unsicsar Ay U Ui B

To prove (4.8), we observe that it is equivalent to saying that the occurrence
of at most one 4, and no B, implies T,» < (1 + ¢)n’pn/log® n. The latter follows
from (4.7), as we then have

N-—-1 e\ =ipn 1 e\ n*pn
4.9 Ty < )1 _>_l_ <_ <) p
(49) _< N (+2 log2n+ N+2>log2n
2
1 mpn
< +€)log2n

We estimate P(4;) and P(B;). We have ((n/N)/(log? n))/(m,/log* m;) — 1 uni-
formly in i as n— oo, and (1 + ¢/4)/(1 + ¢/2) = (1 + ¢/4)/(1 + ¢/2) < 1 for
¢ = ¢,. Hence 3n,e, d) such that

4.10 1+ &) ™ g<1 i)”_/N_, l<i<N
( ) ( +4>log2mi_ +2 log?n =1 ’

holds for ¢ = ¢, and n = n,(e,, 0).
Choose 7,(0) so that log’ m, > } log’ n holds for i < i < N and n = n,(9). It
follows from (4.1), (4.10) that '

@.11)  P(4) < P(Tgi > <1 + i) mpm; ) < 320640 <<,
- - 4/ log*m,/ — ¢log’n -

whenever ¢ = ¢, n = ny(e,, ) = max (n,(e,, 0), 15(0)).
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Replacing ¢ by eN, we conclude that

32C(¢,/4, 0)
e2N*log’ n ’

1A

1<i<N,

: ?, if_\’> mpm )
@12 PE)=P(Taz(1+5 o
whenever e = ¢, n = ny(e,, 0).

At this point of the argument, it becomes necessary to work with the A(d)
property instead of the B(d) property. Suppose we tried to derive B(3). We can
still employ Theorem 4.1 to estimate P(B;), but we would find that the term
log® n occurring in the right side of (4.12) must be replaced by log’ n, where g,
is any number in (0, 1). This would only yield the implication B(d) — B(d’)
for any ¢’ € [0, 40 + %).

Since the 4,’s are independent events, we conclude from (4.11), (4.12) that

(4’13) P[Uléi<i§N A‘LAj U UlSiéN B‘L]
< [32C(eo/4, ) :r N? 32C(e,/4, 0)
- ¢?log® n ¢Nlog’ n

€o
for e = ¢y, 1 = ny(ey, 0).
Choose n,(6) so that N = L log®®n for n = n,(3), and let ny(e, 6) = max (ny(e, 0),
ny(9)). We conclude from (4.8), (4.13) that

2 Aa)
4.14 P(ry=( ”P”>s Clew §
(4.14) ( s+ log?n/ = e*logt n

for e = ¢, n = nye,, 6), where
(4.15) Cley, 40) = [?&%/4’_5)}2 © 64C (_Zi , 5) _
€

Using the remark following Definition 4.1, we conclude from (4.14) that
A(0) = A(49).

5. Some moment estimates. In order to prove inequality (1.9), we require
the- moment estimates provided by Theorems 5.1 and 5.2. The proofs of these
theorems are rather long and complicated. The reader is advised to accept them
on faith upon a first reading and to go on to Section 6, where inequality (1.9)
is established.

We first prove several lemmas. In the sequel the symbol p,>, 0 < n < oo, is
used to designate 1.

LEMMA 5.1. Let x,yeZ 0<p, q< oo, n=1i+j+ k where i,j >0 and
k > 0. Let P*(x,y;1i,J;p, q) = probability that the simple random walk on Z?,
starting from x, reaches y after n steps, the walk returning to x at most ' p times in
the first i steps and visiting y at most q times in the j steps preceding the nth one.
Then

>~

(5.1 PY(x, y3 4, J5 Py 9) < — 704"
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where p.? is the quantity defined in (3.21) and C is a positive constant independent
of x,y, i, j, k, p, q. Furthermore
(-2) Liyerr PP Y21 3 Py q) = 0707
forall x, i, j, k, p, q.
REeMARK. In the applications of (5.1), (5.2), we only require the case ¢ = 0.
We then write P*(x, y; i, j; p) instead of P*(x, y; i, j; p, 0).
ProoF. Let
P*(x, y) = P[walk starting at x, reaches y after n steps]
P,*(x,y) = P[walk starting at x, reaches y after n steps, the walk
returning to x at most p times in those n steps]
Q,"(x, y) = P[walk starting at x, reaches y after n steps, there
being at most p visits to y prior to time n].

We have
(5.3) PMx, y; 6, 5 Py @) = Dlawenr Ppi(x, 2)P¥(z, w)Q, (W, ) .
Imitating the proof of Lemma 3.1, one readily shows that
(5.4) Q//(w,y) = Pi(w,)) .
In view of (5.4), (5.3) becomes
(5.5) PYx, 3 4 J5 Ps 4) = Xioywe 22 PpY(%; 2)P*(2, W)Pi(w, y)
Now
k C
(5,6) PHz, w) S

where C > 0 is independent of k, z, w ([8], page 72).
We conclude from (5.5), (5.6) that

n o« 7 e C i j
PYx, p5 0, 3Py @) = — Xieowezz P(x, 2)PA(w, y)

>a =a =a =

(5'7) ZzeZ2 Ppi(x’ Z) : Zw622 qu(w’ y)

Il

DeennP(0,2 — %) - Zyen B0,y — W)
2

ze 22 Ppi(o’ Z) : Zw622 qu(o’ W) = %pip‘ojq ’
thus proving (5.1).
Using (5.5), we get
Zyez2 Pn(x, )’; 17]; P, q) = Z:z,wez2 Ppi(x’ Z)Pk(Z, W) Zyez2 P‘Ij(w’ -y)
(58) = Zzez2 Ppi(x’ Z) . Zwez2 Pk(z’ W) : qu

= Dl,ez Ppi(x’ z) - p;* = p;p,7,
thus proving (5.2).
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In the following two lemmas log 0, log 1 are interpreted to be 1, log n retain-
ing its usual meaning for n > 1.
LEMMA 5.2. Lety,, +++,7; 2 0(j = 2). Then

1 i-1
(5.9) ittty 0( - )

1420 ; =
= logri - - logrii; log’ n

where v =y, 4+ <+« + 7.

Proor. Let Y denote the sum of.(5.9). Let 4 = [n!]. The sum obtained
from }; by retaining only those terms for which i, < 4 is denoted by X, <.
A similar meaning is attached to 3}, ... ;.24 We have

(5.10) L= Z‘ilsA + o+ Zing + Zil,---,ing .

The terms occurring in 3 are uniformly bounded for 0 < n < oco. It is readily
seen that the number of terms in Y, is O(n’~!), while the number of terms in
each 3, _, is O(n’~f). Hence
GA) By =00, 1SKZji Dipesen =0 ()

(5.10) and (5.11) yield (5.9).

LEMMA 5.3. Letay, ++ -, By oo+, 8; = 0,0 < 7y, -y 7520 = 1, wherej = 2.
Then

(5.12) Disgvpewysn L/(lOge v, - - log%i v logh (n — v,) - -
loghi (n — v)(n — vy + vyt - oo (n— vy + v5)757Y)
_0 ni-t >
N <log“+f’ n
where a = Yi_, a;, B = i B v = Xid 1
Proor. We designate the sum of (5.12) by J; = X} (n; ay, -+, @3 Byy -+, By
7 +++» 7;-) and the sum 37 _,_, 1/log® v logf (n — v) by X (n; @; B). Consider

first thecase j = 2. Letk =n — v, +y,sothat 1l <k <2n — 1.
Let 33 = >licn + Dk>ae We have

1 1
(5'13) Zkgn = ZZ:]F 52=1

log®1 (n— k +v,) log®2 v, logP1 (k —v,) logPz (n—v,)
1
= ZZ:lE; < 20 (ks a5 B) .
Lemma 5.2 yields

k
(5.14) % (ki ) = 0 (1)
so that
K- 1
5.15 P ”=10 - }=0 (nrn. | ——
(515 Zise= T2 0 ([oip) = 007 Do iy

- 0( Ly >
log*+# n
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Using Lemma 5.2 again, we have

(5:16)  Tew = X (m i B) - X (5 a By

- L0 gt o) ()
n’ loge1téip logea+b2 n log**+# n

We have thus proved the lemma for j = 2. Suppose that the result holds for
J — 1; weshow that it holds for j. Decompose ¥ = 3’ (magy ooy, By -y Bss
T v+ T5-1) @8 21 = 21, + Xlas 2, extending over those indices for which v, <
n/2, 31, over those indices for which v, > n/2. If v, < n/2, thenn — v, + v, > n/2.
Hence

2r
(5.17) L n_r: (5 @y, @ Boy By 1)

X 2 (nag, -, @53 Bay ooy BisTe s Ti-1) -
We conclude from (5.17) that

(5.18) 3, = O(L) . 0< n2-n ) . O( Ri=3—(rgteetriop )
n's (log n)a1+a2+ﬂ1+ﬂ2 (lOg n)“3+"'+"‘j+ﬂ3+'“+ﬂj

—0 (L) ,
log**# n
If v, > n/2, then n — v, + v, > n/2. Hence
2n
(5’19) 22 § ;;1_ Z (n; al; 181) ‘ Z (n; Agy + v vy aj; ﬁza R} ﬁ]; Tas * rj—l) .

We conclude as before that ), = O(ni~7/log**# n).

Let L be an integer = 2. The set of points {S_,,;, --+, S;;_1}, 1 <i < oo,
is referred to as the ith block of the random walk and S;_,),,,_,, 1 <j < L, as
the jth point of the ith block. We prove

THEOREM 5.1. Let p be a given positive integer. For distinct positive integers i, j,
let T;; be the number of points in the ith block visited at most p times in that block
which also appear in the jth block. Then for any 2m distinct positive integers

Lislys » 205 Lams

(5.20) KT CL™

i1ty Ti3’34 T izm—ﬁ'zm) = log*™ L ’

C being a positive constant depending only on m and p (i.e. C is independent of L
and the choice of 2m-tuples i, iy, - - -, iy,).

REMARK. For m =1, (5.20) becomes E(T, ,) < CL/log® L. If i, i, <
i Iy, < + v < lypy_yy Iy, then the random variables Ty o5 Ty iy, are inde-
pendent and (5.20) would be a trivial consequence of the special case m = 1.
In general, though, the random variables Ty --+» Ty, ., arenotindependent.

Nevertheless, we obtain the same estimate as in the independent case.
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ProoF oF THEOREM 5.1. We have
(5.21) Ti; = 2isppwsiiae 22 Z(i, J5 ps 5 X)
where Z(i, j; ¢, ¢'; x) is the indicator function of the event
A(i, ji s #'; x) = [pth point of ith block is visited for first time in that block
and revisited at most p — 1 times in that block; p'th

point of jth block is visited for first time in that
block; pth point of ith block = y'th point of jth

block = x].
It follows that
E(Tiliz t TiZm—liZm)
(5.22) = Disug oo gy SLingeerage 22 P(A(IL T s g5 X1) 0 o

n A(iZm—l’ izm; Ham—1 ﬂzm; xm)) ¢
We express the event on the right side of (5.22) as intersections of independent
events. Arrange iy, - - -, I, in increasing order asj, < «++ < jam. ThUsj, = I,
1 < k £ 2m, where o(k) is some permutation of 1, ..., 2m. Let v, = fy),

Y = Xiotnr+1,21

e, =p—1 if o(k) isodd

= 4 o0 if o(k) iseven, 1k 2m.
Then
A(iy, 55 s a3 X)) N oeee N A(lm—ss fams Pam—1s Hams Xum)
(5.23) S B(vi; y1) N B(L; v, vy, ya) 0 -
n B(2m — 15 Yom—15 Yams Yam—1 Yam) N B'(Ygm3 Yam)
where

B(v, y) = [vth point of jith block is visited for first time in that block
and equals y]
B(k; v, Vv';y,y") = [vth point of j,th block = y and is revisited at most ¢,
times in the next [(L —v)/2] steps; v'th point of j,,,th
block = y’ and is not visited on prior [(»' — 1)/2]
steps] ‘
B'(v, y) = [vth point of j,,th block = y and is revisited at most e,,
times in that block] .
We refer to the above events as the B-events. Since they are independent,
we conclude from (5.23) that
P(AG, b5y 3 %) O+ o o 0 Ay baws Pamets Fam Xm))
(5.24) = P(B(oy, y1)) - P(B(L5 v, 23 Y15 1)) -+ -
P(B(2m — 15 vyp1s Yam} Yam—1> Yam)) * P(B'(Vam> Yom)) -
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Using the notation of Lemma 5.1 (see the remark following the lemma), we
have

— ’—
(5.25)  P(B(K; v,v’;y»y’)=P’(y’y';[L2 y]’ [u 2 1]; e’°>

where

§$ = (Jorn —JL +V —v.

We estimate the probabilities of the B events. We use the letter C in the
sequel to denote various positive constants which do not depent on any of the
appearing indices. Letd = s — [(L — v)/2] — [(+' — 1)/2]. It follows from (3.1)
and (5.1) that

C 1
5.26 P(B(k; v, 3 9, ) < & . 1<k<2m—1,
(G20 B0 = gy e = 9) =r=
where
‘Bk:]., if Ek:p—l
=0, if g, = Joo.
We have ‘
L —v v — 1 L4y —vy
5.27 d=L 4+ —v— >_< >2 ,
(>-27) =5y ( 2 2 /=7 2

We conclude from (5.26), (5.27) that

C
5.28 P(Bk; v,V 9, 9)) < s
( ) ( ( Y, Y y y)) —_ log v[ . logﬁk(L — ’J) . (L _|_ V, _ v)

l<k<2m—1.

We also obtain from (3.1),

1
5.29 P(B'(», :0<___>.
(5.29) (B'(», ) iogim (L —»)

We use the estimates (5.28), (5.29) to derive (5.20). Choose from each of the
m pairs (67(1), 67%(2)), - - -, (67%(2m — 1), 07*(2m)) the smaller number, and write
these in increasing order as 1 = k, < ... < k,,. Similarly, let, < --- < [, =
2m be the bigger number of these pairs. y, ---y, are a rearrangement of
Xy, -+, X,, and so vary independently over Z2. We use (5.22), (5.23), applying
(5.28) to the terms P(B(l, — Livy vy 51,1, 1)), 1 =r < m, and (5.29) to

P(B'(Yym» Y2m))- We obtain
E(Tiliz e Tizm—lizm)

=C- 2hisuyen, VamS LiWgyrt 1V, € 22

1 1
(5.30) XTI

[og vy, 1ogP—1 (L—v;_)(L—v;,_,+v,,) loghn(L—,,)

X P(B(vy y2)) TIfa Pt (y %

L—y, _ Vi —
5] ] )

where s, = (jiy1 — Jo)L + Vi — Vi
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To estimate the sum in the right side of (5.30), we sum first over y, , -, y,,
in that respective order. Using formula (5.2), we see that summation over Yk
has the effect of replacing the term

L—vy, _ v, _
Pery—1 (ykm—v Yk [—“zkm—l-] s |: k; ! ] s ekm—1>

k=1
P[(L—v,,m_p/z] P[(ukm_lvzl

by

which, by Theorem 3.1, is < C/log v, 10gPkm=1 (L — v, _,). Repeating this pro-
cedure for y, _, -+ -,y (5.30) yields

E(Tilfz e Tizm—lizm)
1
=C Yy Il
=€ Lisy, S 1= log v, logft,=1 (L — vy, ) (L — v,y + v;)
(5.31) X L L & 1

logfem (L — v,,) ' log v, e log v, logPe,~1 (L — v, _,)
=C 1Sy e vgm S 1/(logv, - - - logy,, - logh (L —v) - --
logfem (L — vy, )(L — i+ v) oo (L—vy o+ vi,)) -

We apply Lemma 5.3 to the latter sum. We have a = 2m, 8 = m (as m of
the 8,’s = 1 and m of the 8,’s = 0), y = m. It follows that for given/, ...,/

Lm
(5.32) BTy T yig) = fog" L °

mo

(5.32) is equivalent to (5.20) as there are only a finite number of ways of choosing
Ly -, 1, froml, ..., 2m,

THEOREM 5.2. Let p be a given positive integer. Let iy < i, < --- <1, or

Iy < o o0 <0y < Iy, the i;’s being nonnegative integers. Then
Lm

(5.32) E(Ty -+ T ) = CWL_ ,
C being a positive constant depending only on m and p.

PrROOF. Suppose thati, < -.. < i, < i, A standard reversal argument shows
that .

E(Tilio te Timio) = E(T1+i0——i1,1 te T1+i0—im.1) .

It suffices therefore to consider the case i, < i, < -+ < i,. Furthermore, we
assume without loss of generality that iy = 1.

We have

E(T‘ilio e Timio)

(5’33) = lepl.-~~,pmsL;lsvl,---.uméL:zl,-u,zmeZ2 P(A(il’ io; Ho Vi xl) N

N Al igs Moy Vins X)) -

Let 4, < 4, < ... < 4, be the v,’s written in increasing order and let 1, = 0.
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We have

(5.34) A(iy, oy gy w13 X1) N oo s 0 ALy, B3 s Vi Xi)
[ B(]l’ . ..,lm; Pis * vy s X1» ...,xm)
where
B(,Zl, ...,,Im; Pis * s Mms X1 ...,xm)
= [4;th point in first block has not been visited in prior 1; — 2;_,
steps, 1 <j<m. p;th point of the i;th block is visited
for the first time in that block and revisited < p — 1 times
in that block, 1 <j < m; pth point of ith block, - .-,
tnth point of 7, th block form some permutation of 4;th, . ..,
A,th points of first block, and #;th point of i;th block = x;,
1<j<m].
Mimicking the proof of Theorem 5.1, we obtain

P(B(]l, ""’Im;lul’ cey s Xy "'9xm))

(5'35) =Cx, POA(O, Xo(l))P:ﬁ?,(_lzl(xa(l)’ Xo) * Piz"(;ﬁm_l(xa(m-l)’ Xom)
1 1
X . =
log p1y + -+ log ptn  10g (L — p) - -+ log (L — 1)
1

X )
(L_'zm+/"1)(L_/“‘m—1+‘um)

the above summation extending over all permutations of 1, ..., m.
Sum up both sides of (5.35), first over x,, - .., x,,, then over 4, -+, 4,_,,
fixing 2, ty, +++, 4y It follows from Theorem 3.1 and Lemma 5.2 that

Zo§11§...gzm_lsam;xl,...,xmeZ2 P(B(/Iv Tty lm; flla M) ,um; xls D) xm))
(5.36) <c ™ ! : I
log™ 4,,10g 1, « - - log pr,  log (L — pz;) - - - log (L — pt,,)
X L
(L= 2+ )L — 4+ ) o+ (L — ey + )
Sum both sides of (5.36) over the remaining indices Ams tas =+ *s Um- WecoOn-
clude from (5.33), (5.34), and Lemma 5.3, that
Lm+l—m _ C Lm .
log*™ L log®™ L

(5.37) E(T

o) o

Tip) < L™

6. Derivation of inequality (1.9). Let N = [loglogn](n = 3) and L = [n/N].
We divide the points of the random walk into blocks of size L as {S, - -+, S;_;},
{8z, + -, Ssz_q}s etc.

Fix L and p and let T, = number of points in ith block visited at most p times
in that block, T,; = number of points in ith block visited at most p times in
that block which also appear in jth block, i # j. A direct counting argument
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gives
(61) Tnp i Ziey‘ Tz' - Ziey‘,léjSN+l;i$j Tz';i

where .77 is any subset of the indices 1, ..., N.
Let 0 < ¢, 7 and let

4= [1, 5 FoL= DN,
log? n

IIA
A

N,

_ n . . ,
Bi'_[T”;_lo_gm]’ 1<i,jEN+1 and i#j.

Let m be any positive integer. We define the events &, &,, &, as follows:

&,. A, occurs for m i’s which are < N - 1;

&, some B;; n ... N B, ; occurs, with the indices i, j,, - - -, iy, j, all dis-
tinct and < N 4 1;

&, some By, n ... N B, ; occurs, where either i, <i < ... <i, or

L < oo <y < 0y, all indices < N 4 1.

We show that

(6.2) [T,,P < mp(l — E)“] CE UL, U ZE,
log® n

for n sufficiently large. N

(6.2) is equivalent to &' n &, n & < [T,? > n’p(1 — ¢)n/log?n] (&’ denotes
the complement of &). Letwe &/ n &/’ n &'. Choose (B, ;, ---, B; ; } with
biggest possible 7, so that i, j;, - - -, i,, j, are distinct indices < N + 1 for which
weB,; N ... NB; ;. Sincewe &), wehaver < m. Let I, be the set of indices
iy Jis ++*s iy ], 5O that its cardinality |I] < 2m. Let I, be the set of indices i <
N 41 such that w € B;; for some jel,. Since we &,’, the number of i’s for
which w € B,;, with fixed j, is < 2m. Hence || < 4m*. Let I; be the set of
indices i < N + 1 for which we 4,. Since we &/, |[Ij <m. LetI =1L UL Ul,
andI’ = {1, ..., N} — I. Thus|I'| = N— M where M = 4m* 4 3m. Letiec !l
Since i ¢ I, o ¢ A;, so that T, > n°p(1 — ¢/2)(n/N)/log? n. Furthermore ¢ B,;
for j #iand j < N + 1, so that T;; < n/log**7n. For suppose w € B;; for some
JEN-+1,j=i If jel, then iel, contradicting that ieI’. If jg¢ I, then
i,jel,., ThusweB; N B,; N ... NB, ; wherei,j,iy,j, -+, 1, j, are all dis-
tinct, contradicting the maximality of ». We conclude from (6.1), with .7 set
equal to I’, that for given e > 0

(6.3) Tr> (N — M) o°p(1 —¢/2)n (N + 1)’n > p(1 — €)n
N log® n log*+7n log%n

holds for n > n(¢), thus proving (6.2).
We now estimate P(£,), 1 < i < 3. It follows from Theorem 3.4 that

(6.4) P(4)=0 <log1% n) , uniformly for 1 i< N+ 1.
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Since the 4,’s are independent, (6.4) implies

(6.5) P(¥) = 0 <10§/T’j2n> .

Using Theorem 5.1 and setting » = 1, we have

. L~ logi n\™ _ 1
(6'6) P(Biliz e n Bizm—1i2m) =0 <10g3m L)( n ) =0 (logm/2 n> ’

uniformly in all 2m-tuples i, - -, i, .

Hence

N2m
6.7 P(&) =0 <_> :
(6.7) (&) = 0 (joger,
Using Theorem 5.2 and setting » = £, we have

1
(6.8) P(B, N -+ N B_)=0 <1ogT2n>
uniformly in all (m + 1)-tuples iy, iy, -, i, -

Hence

Nm+1
6.9 P(E) =0 <_> .
(6.9) () = 0oy

We conclude from (6.2), (6.5), (6.7), (6.9) that
(6.10) P(Tn < M> _ o(N_m> —0 <L> .

log® n log™* n log™* n

Since m can be chosen arbitrarily large, (6.10) is identical with the desired
inequality (1.9). ‘
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