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A MARTINGALE APPROACH TO INFINITE SYSTEMS
OF INTERACTING PROCESSES!

By R. A. HoLLEY AND D. W. STROOCK
University of Colorado

Martingale problems associated with the generators of infinite spin flip
systems are considered. The stochastic calculus of spin flip systems is de-
veloped and applied to the existence and uniqueness questions. Existence
of solutions is proved under the assumption that the flip rates are continu-
ous functions of the configurations. Uniqueness theorems are proved under
two different conditions and a counterexample to uniqueness in complete
generality is given. The techniques also yield ergodic theorems, including
rates of convergence, and results concerning mutual absolute continuity of
different processes. ‘

0. Introduction. In this paper we adopt the martingale point of view in a
study of some of the infinite systems of interacting stochastic processes which
have their origin in statistical mechanics.” The approach used here was devel-
oped and used extensively by Stroock and Varadhan in their studies of diffusion
processes [15],[16], [17].

Let S be any countable set and let £ = {—1, 1}. We topologize E by giving
{—1, 1} the discrete topology and E the resulting product topology. We denote
elements of E by Greek letters such as », ¢ and &, and think of such elements
as functions from S into {—1, 1}. The value of » at k is denoted by 7,. We
refer to the elements of E as configurations—thinking of them as representing
the configurations of spins in a piece of iron, each 7, representing an individual
spin.

Now the configuration is allowed to evolve with time. The individual spins
of the configuration interact with each other and flip over at random times, the
flip rate at k being governed by a function, ¢,, of the entire configuration. The
resulting random path of configurations is denoted by ().

In order to identify these stochastic processes more precisely we let & (E) be
the space of continuous complex valued functions on E, and let &7 be the ele-
ments of Z(E) which depend on only finitely many coordinates. Suppose that
each ¢, ¢ °(E) and that each ¢, = 0.. We define a linear operator -2~ from &
into &(E) by the formula

(0.1) Lf(1) = Lkes (D f(1) 5
where A, f() = f(.7) — f(y), and .y is the configuration obtained from » by
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flipping the spin at k. Let
(0.2) Q = D([0, ), E),

the space of right continuous functions with left limits which map [0, o) into
E. We think of Q as a Polish space endowed with the Skorohod metric. Given
weQandt > Olety(z, ) = o(r) (i.e., the configuration at time z.) For 0 < s < ¢
set ;" = Z[n(u, +): s < u < t], the g-algebra generated by »(u, «) for s <
u<t,and set #* = F[y(u, -): u = s]. Note that _# = _#" coincides with
the Borel field Q. We say that a probability measure P, on _# solves the mar-
tingale problem for £ (or ¢) with initial configuration 7 if

(0.3) P(0) =) =1,
and for all fe &
(0.4) J(®) — §6 ZFn(s)) ds

is a {{.#"}, P,) martingale.
To see that this corresponds to our intuitive notion of each spin 7, flipping
at the infinitesimal rate c¢,() we must show that for all s > 0

0.5) P, (p(u) # 7,(s) for some wuel[s, s+ k]| 22 = he,(y(s)) + o(h) .

Let fu(n) = 4m. Then fie 2, and Zfi(y) = —cy(n)n,. Thus fi(p(1)) +
§o cu(n(u))nu(u) du is a P, martingale. Given 5 = 0 let ¢ = inf {t > s5: ,(r) =
7:(5)}. Then

P,(7i(u) # ni(s) for some wuel[s, s+ k]| #)
= [E{filn(z A (s + b)) — fu(n(s)) | 2
(0.6) = [EP{§51 ) ey(n(u))p(u) du | 2.}
= EP{§3nCt0 ey (n(u)) du | 2.}
= hey(7(s)) + EPo{§30 [e(n(u)) — c(n(s))] du | 2}
= ENE™{(s + h) — [ A (s + B)]| 2} .

Since ¢, is continuous and the paths are right continuous the dominated con-
vergence theorem shows that the last two terms on the right side of (0.6) are o (k).

The principle purpose of this paper is to investigate the questions of existence
and uniqueness of solutions to the martingale problem. After developing some
- useful machinery in Section 1 we prove in Section 2 that there is always at least
one solution to the martingale problem provided the flip rates are continuous
functions of the configuration. The proof of existence is surprisingly easy in
view of the difficulties encountered in previous existence proofs (see [1], [6], [8],
[9], [14], [20]). The reason for this is that in previous existence proofs unique-
ness was also proved simultaneously. The uniqueness question is both consider-
ably more difficult and interesting. Among other things, uniqueness implies that
the process is a strong Markov process and is stable under various approximation
procedures. Section 3 contains an example of nonuniqueness. The most useful
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conditions which imply uniqueness are those of Liggett [14]. In Section 4 we
give an analytic proof of uniqueness under Liggett’s conditions, and later, in
Section 5, we give a second proof involving simultaneous random time changes.
This latter approach has also been used by Helms [7]. Section 6 contains an-
other criterion for uniqueness. The method of Section 6 is to view the operator
< as a perturbation of an operator .~° for which all of the flip rates are con-
stants. This method has the pleasant feature that it yields ergodic theorems for
the processes. These ergodic theorems, together with some results on the sto-
chastic Ising model, are contained in Section 7. Finally Section 8 contains an
investigation into when the solutions of the martingale problem for the different
operators are mutually absolutely continuous on _#," for each ¢. This Teads to
existence and uniqueness theorems in some special cases when the flip rates are
only measurable rather than continuous functions of the configuration.

1. Stochastic calculus. Unless the countable set S is given a particular
structure it will always be assumed to be the integers. This is for notational
convenience only. '

Q and _Z} are as in (0.2) and the paragraph which follows it, and the opera-
tors A, are as in (0.1). A function ¢ on [s, co) X Q is said to be s-nonanticipating
(simply nonanticipating if s = 0), if ¢ is &, ., X #° measurable and ¢(r) =
o(t, +) is #; measurable for + > s. If P is a probability measure on {(Q, _Z*)
and « is a complex valued s-nonanticipating function we say that « is a P-mar-
tingale if {a(r), _7Z;%, P), t = s, is a martingale.

Given an s-nonanticipating function c¢: [5, co) X Q — [0, o)’ such that ¢, is
bounded for each k e S, define the random operator

L= Tkes Gy, =5,
on <. Let

= {feZ([0, ©) X E): f(+, ) e €0, o0)) forall 7z
and there is a finite F < § suchthat A, f(r,.)=0
forall +>0 and k¢F}.

The following theorem is proved in much the same way as Theorem (2.1) of
[16]. '

(1.1) THEOREM. Given a probability measure P on {Q, _7*) and a right con-
tinuous s-nonanticipating function «: [s, co) X Q — E having left limits, the follow-
ing are equivalent:

() fla(t v 8)) — §:* 2, f(a(w)) du is a P martingale for all f ¢ 2,
(i) f(t Vs, a(t V 5)) — §5 (3fou + <7, f)(u, a(u)) du is a P martingale for
all fe =, :
(iii) fla(t v ) exp[—(tve .27, fla(u))/f(a(u)) du] is a P martingale for all uni-
formly positive f ¢ 2,
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(iv) exp[X, (Fran(t Vv 5) — (tV* (e~ k™ — )¢ (u) du)] is a P martingale for
all § € RS such that 0, = O for all but finitely many k’s,

(V) exp[Xi ({0, an(t Vv 5) — §tVe (e7¥%kk® — 1)c,(u) du)] is a P martingale for
all @ as in (iv).

Given P on {Q, _#*) and a countably generated s-algebra %" C _#", there
is a function w — P having the following properties:

(i) @ — P“(C) is % measurable for all Ce 2",

(i) P“)(+) is a probability measure on {(Q, _#Z*) for all w € Q,

(ili)y P([w],,) = 1 for all ® € Q, where [w], is the atom of & containing o,

(iv) P(C) = P(C| ) (a.s. P) for all Ce 2"
If ®— P is such a function, we will call it a regular conditional probability

 distribution of P given .7 (r.c.p.d. of P| 7). In particular, if : Q — [s, co0) is

an s-stopping time (i.e. {c < 1y e A forallt = s)and 7 ={4: An{r < 1}e
A, t = s}, then _#,* is countable generated (in fact _#Z;* = &[5t A 7) it = s]).
Hence a r.c.p.d. of P|_Z*, o — P, exists and (iii) becomes:

P (p(t) = 9(t, w), t < t(w)) = 1.
The next theorem is proved in the same way as Theorem (3.1) in [15].
(1.2) THEOREM. Let P be a probability measure on {Q, _#"*) and t an s-stop-

ping time. Let a: [s, co) X Q — E be a right continuous s-nonanticipating function
having left limits. Assume that

fla@ v 5)) = §3* <&, fla() du
is a P martingale for all fe . If @ — P=* isar.c.p.d. of P|_#,, then there is
an N e _#;* such that P(N) = 0 and for o ¢ N

fla(t v z(@)) — §:5 2 fle(w) du
is a P martingale.

We now want to develop the stochastic integral for these processes. Let
a: [0, o) X Q — E be a right continuous nonanticipating function having left
limits and suppose P is given on {Q, _Z"°) so that f(a(f)) — {; <&, f(a(u)) duisa
P martingale for all f € 7. Given a nonanticipating function 6 : [0, c0) X Q2 — RS
such that each 6, is bounded, 6, = 0 for all but finitely many k’s, and there
exists n for which @ satisfies 6(r) = 0([nt]/n), t = 0, we will call § a simple func-
tion. For simple functions §, we define

§e 0(u) da(u) = X4 (33 0u(u—) da(u) + 2 §§ cp(w)ai(u)0,(n) du) ,

where for each o
§i0(u—, o) da,(u, w)

is the ordinary Lebesgue-Stieltjes integral. Itis obvious that this definition is
linear in ¢ and satisfies:

3;5 0(u) da(u) = Sﬁ(l) O(u) da(u) + ¥ O(u) da(u) ,
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ty = t, < t,. Moreover, {.®§(u)da(u) is right continuous, nonanticipating, and
has left limits. Finally, from Theorems (1.1) and (1.2), it is easy to check that:
(1.3)  X,(t) = exp[§;"* 6(u) da(u)

— X S e(u) (e — 1 4 20, (u)a (1)) du)

is a P martingale. Replacing 6 by 46, differentiating once and then a second
time with respect to 4, and setting 2 = 0, we see that

(1.4 §¢ve O(u) da(u)
and ,
(1.5) (1572 O(u) da(u)) — 4 572 |0(w)|c., du

are P martingales, where
08 = 2ok ()0, 0eRS.
Now suppose 0 : [0, co) X Q — RS satisfies
(1.6) EF[§7 |0()[%, du] < oo , TZ0.
Then we can find a sequence {#} of simple functions such that

e(u)

EP[(7 |0(u) — 0™ (u)|%,,du] >0  as n—o00, T =0.
By (1.5) and Doob’s inequality, this means that
Szvs 0(")(11)’6{&'(14)

converges in L*(P), uniformly on compact z-intervals, to a function which we
define to be {¢V° 6(u) da(u). It is easily checked that ¢V 6(u) da(u) is well defined
(i.e., independent of the particular choice of {§™}), right continuous, nonantici-
pating and has left limits. Also (1.4) and (1.5) are still P martingales. Finélly
we want to check that if (1.6) and

(1.7) : 155 cale™sm — DRl < oo, =0,

where {|+||7 = sUP,<r ,eq ||, then the X,°(7) in (1.3) is still a P martingale. To
see this, first suppose that each 6, is bounded and that §, = O for all but a finite
number of k’s. Then we may take approximating simple functions ™ so that
10,17 < ||604]]7- Each Xj)(+) is a P martingale and

EF[(Xga(D)'] = EF[ X3y (1) Y ()]
= [Yowll?
where -
Yim(t) = exp[ 2, §§ cx(u)(e7™ e — 1)2 du] .

Clearly ||Yjm||} is bounded, independent of n, by a number depending only on
the bounds on the §,’s and the number of nonvanishing §,’s. Hence X3 (¢) con-
verges to X,’(7) in L'(P), and so the latter is a P martingale. In the general case,
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define 6™ so that
0™ =0 if |kj=n or |0,)=n,

=40, otherwise.
Then X).,(+) is a P martingale,

EP[§T 10 (1) — 6(n)[2w d] = 0,
and ||, ey(e7™ e — 1|4 < || Dy eu(e™e — 1)l Hence Xja(f) — X,°(7)
in P measure. Moreover, we again have
EF[(X5m())’] = [|Ygem[2
and the latter is dominated by '

exple|| X e (e — 17| -
Thus Xjm () — X,°(¢) in L'(P), and so X,° is a P martingale.
Let a(+) in the preceding discussion be equal to 7(+), and define 7(-) by

(1.8) Fut) = —3 §om(s—) dnul(s) — Saculs) ds
where the integral —1 {¢ 9,(s—) d7,(s) is taken in the ordinary Lebesgue-Stieltjes

sense and is, of course, equal to the number of times 7,(+) changes sign in [0, 7].
An equivalent description of 7(+) is

(1.8 Tut) = —3 §o ) diu(u) -
This latter expression motivates the definition:

(1.9) 0@ dp(u) = —4 s @)ypw) dij(w), t=s,
for @ satisfying (1.6), (here (67), = 0,7,). '

We now summarize the properties of d7(+) integrals inherited from d7(+) in-
tegrals.

(1.10) THEOREM. Let P be a measure on (Q, ")y such that f(n(f)) —
¢, f(n(u)) du is a P martingale for all f € 2. Given a nonanticipating 6 : [0, co0) X
Q — RS satisfying

E*P[§7 |0(u)|3n, du] < oo, T=0,

clu)
define \!v* 0(u) di(u) by (1.9). Then ('V* 0(u) dj(u) is a right continuous, nonantici-
pating function having left limits, 6 — §\"°* 6(u) df(u) is linear, and §3 0(u) dff (u) =
Vi2 O(u) d(u) + \i3 O(u) di(u) for s < t, < t, < t,. Moreover, if 6, = O for all but
finitely many k’s and {(u, w)€[s, sV t] X Q: 0(u) + 6(u—)} has Lesbesgue X P
measure zero, ther

(L1152 0(u) dp(u) = 2u (87 Ou(u—) dru(u) — §27° eu()0u(u) du) ,
where y,(t) is the number of sign changes n,(+) makes in [0, t], and the integrals on
the right hand side are Lebesgue-Stieltjes integrals. Finally

(i) §tve 0(u) di(u) is a P martingale,
(ii) (§tve O(u) di(u))* — §tve |0(u)|%,, du is a P martingale,

clu)
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and if || 33 cp(€® — 1)Y||3 < oo, T = s, then
(iii) M,(¢) is a P martingale, where:
My (1) = exp[§37 O(u) d(u) — 20 15 cu(u) (™ — 1 — O4(u)) du] ,
and
EF[(My(0))'] < exp[(t — $)[| Xk cue’ — 171E] -

(1.12) COROLLARY. Letc,¢: [0, 00) X Q — [0, co)® be nonanticipating func-
tions such that ¢, and ¢, are bounded for each k ¢ S. Define Z, and ., accordingly
on 7 and assume P is a measure on {Q, _#°)y such that f(y(t)) — \¢ 2, f(n(u)) du
is a P martingale for all fe . If ¢, = 0 if and only if ¢, = 0 and

e ((m &)+ G =),
then

Mo = exp| §i1n & @) dr) — 3, 15 e (fm—1-mZw)a]

< oo, rz=0,

is a P martingale, where (In (C/c)), = In (¢,/c,). Moreover, if P is defined by
dP[dP = M(t) on _#, t = 0, then f(3(t)) — §¢ 2, f(n(u)) du is a P martingale for
all fe 2.

ProOOF. We need only check the last assertion. By Theorem (1.1), we must
show that if ¢ € R® and 6, = O for all but a finite number of k’s, then
KXoy = eXp[ L4 00 nu(t) — §§ u(u)(e™>wme — 1) du]
is a P martingale. Equivalently, we must show that
Xp(n)M(1)
is a P martingale. To this end, take 6(¢) so that
04() = —20,7,(6) + In St (u) kes.
, c
Then
Z(t) = exp[§§ 0(u) di(u) — X §§ cu(u)(e’™ — 1 — 6,(u)) du]
is a P martingale. Segregating terms in the exponent, one sees that Z(r) =

Xy(OM(1).

2. Existence. Again in this section we assume for notational convenience
that S is the integers. If f is any complex valued function on E we set

2.1) 1l = sup,e | fn)] -

At the heart of much of our work is the following result about measures on
Q, #2°.

(2.2) THEOREM. Let {A,} be a sequence of positive numbers and let c({4.})
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stand for the set of measurable functions, c¢: E — [0, o), such that
SUPj<a |G| = 4, n=0.

If SP({A4,)) is the set of probability measures.P on {Q, _#°) such that P solves the
martingale problem for some ¢ € € ({A,)}), then F({A,}) is relatively weakly compact.

An outline of the proof of Theorem (2.2) can be found in the appendix of
[18]. The idea is based on criteria for weak compactness of Markov processes
on Q (cf. for example [21]), only here the Markov property is replaced by Theo-
rem (1.2).

The importance of Theorem (2.2) for us is the next theorem.

2.3) THEOREM. Let {c¢'™} be a sequence of continuous functions from E to
[0, 00)S such that for each k, ||c,™ — c,|| — 0. Assume that for each n P™ isa
solution to the martingale problem for c¢'™ starting from 7n'™, where n'™ — y. If
{P™} tends weakly to P, then P solves the martingale problem for c starting from 7.
In particular, if there is exactly one solution, P, to the martingale problem for c
starting from 7, then necessarily {P'™} tends weakly to P,.

Proor. If P™ converges weakly to P, it is clear that P(»(0) = ») = 1. Given
fe =2, we must show that f(y(r)) — {§Lf(n(s)) ds is a P martingale, where
&L=l Let 0 <1 =1, and @ be an 7} measurable continuous func-
tion on Q. Then

EP™M[(fin(ts) — $i2 L f(1(9)) ds)®] = EX™[(f(n(t)) — §§t L f((s)) ds) @]

for all n, where ™ = 3 ¢,™A,. Clearly & ™f— <f uniformly, and
¢ Zf(n(s)) ds is continuous on Q. Also, f(»()) is P almost surely continuous
on Q, since 7(f) = n(r—) a.s. P for each ¢+ = 0. Thus we can let n — oo and get

EP[(fOn(t)) — $or S (0(9)) ds)@] = EF[(f(n(r1)) — §i ZF(0(s)) ds)@] -

This proves the first assertion.

The second assertion is now trivial. Indeed, by Theorem (2.2), {P"™} is neces-
sarily relatively weakly compact. By what has just been said, every weakly
convergent subsequence of {P™} must have P, as its limit. Hence {P™} itself
tends to P,.

We now proceed with the proof of existence. Let ¢ be a positive number and
define p,(¢, 1) = 1 4 e~**. Itis easy to see that p(z, +) is the transition func-
tion for a convolution semi-group over {—1, 1} (we are thinking of {—1, 1} as
a multiplicative group with Haar measure p(—1) = p(1) = 4). Hence there
exist P;, on D([0, o), {—1, 1}) such that P5,(»(0) = +£1) = 1, P5,(p()eT’) =
v pL(t, =7)p(dn), and 7(+) has independent increments. It is trivial to check
that exp[07(r) — c ¢ (e~2"® — 1) ds] is a P;, martingale for all § ¢ R. Next let
{c}ies S [0, c0) and 5 € E be given. If ¢, > 0, define P;t on D([0, co), {—1, 1})
as above. If ¢, = 0, define P;t on D([0, o), {—1, 1}) so that P(y(r) = 7,, t =
0) = 1. Then define P, on Q to be the measure induced from [],.s Pge by the
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natural mapping of (D([0, o0), {—1, 1}))S to Q. Itis again easy to see thatif § ¢ R®
and 6, # O for only finitely many k’s, then exp[};, (0, 7.(f) — §§ cp(e¥7x® —
1) ds)] is a P, martingale. Hence, by Theorem (1.1), we have proved existence
in the case when the ¢,’s are constants.

To get beyond the constant case, we cite the following immediate consequence
of Corollary (1.12).

(2.4) THEOREM. Let ¢,c: E— [0, 0o)S be measurable functions such that
[lekl] < oo for each k, ¢, = 0 if and only if ¢, = 0, and

[mee((m ) + (&= 1))
Ck Ck
If P solves the martingale problem for c starting from n and

M) = exp| 5t (1n <) (2(9) a9

< oo,

— Te Sietr) {2 ) — 1= 1n (E 0oy ) s |,

then M(t) is a P martingale, and the measure P defined by dP|dP = M(t) on _#7",
t = 0 solves the martingale problem for ¢ starting from 7.

Now let ¢: E — [0, co0)S be a continuous function such that ¢, > 0 for |k| < n
and ¢, = O for [k| > n. Combining Theorem (2.4) with the paragraph preceeding
it, we see that for each 7 € E, there is a solution P to the martingale problem
for ¢ starting from 7. Next suppose c: E — [0, 00)$ is continuous and put
¢, = ¢, + 1/nfor |k| < nand ¢, = 0 for [k| > n. Giveny e E, let P™ solve
the martingale problem for ¢ starting from 7. Then, by Theorem (2.2), there
is a weakly convergent subsequence {P™"} of {P™}, and by Theorem (2.3), the
limit P of {P"} solves the martingale problem for ¢ starting from 7. Using this
in cojunction with Theorem (2.4) we have the following existence theorem.

(2.5) THEOREM. Let c¢: E — [0, 00)® be a measurable function. If there exists a
continuous function b: E — [0, c00)® such that b, = 0 if and only if ¢, = 0 and

[z ((n )+ G = 1))

then for each v there is a solution to the martingale problem for ¢ starting from 7.

< oo,

(2.6) REMARK. Let {¢,: k € S} © C(E) be given. We have just seen that for
each 7 € Ethere is a solution to the martingale problem for &~ = 3], ¢, A, starting
from 7. By a careful selection procedure, one can show that it is possible to
choose for each 7 a solution P, such that the family {P, : y ¢ E} is measurable and
enjoys the strong Markov property [13]. However, it is not, in general, possible
to make {P, : 7 € E} be Feller continuous, and certainly the stability results which
follow from uniqueness will fail here. Moreover, if uniqueness for the martingale
problem does not hold, then there are at least two distinct choices of such



204 R. A. HOLLEY AND D. W. STROOCK

Markov families {P, : 7 € E}; and so there is no way of interpreting {P,:nekE}
as being canonically associated with &, Finally, when uniqueness fails, there
are definitely non-Markovian measurable selections of {P,: 5 e E} (e.g. average
two Markovian ones).

3. An example of nonuniqﬁeness. Since the examples of nonuniqueness re-
quire a lot of computation and are negative results, we just outline the con-
struction of one example and leave the bulk of the computation to the reader.

In this example the c,’s are uniformly bounded above and uniformly bounded
away from zero, and each is an element of 2. The ¢,’s are easiest to define if
we give the set S a special structure. Let S be the countable set

(O} U1, iy dyy vy i): 1 Sk < oo and 1 < i, < 26400y,
If x =(1,i, ---, i) e Sset |x| = k (|(1)| = 0), and define
SE) = {1 by -y )2 1 < j < 25 0my,
The ¢,’s are given by the formula
(3.1 cu(n) = 1 if p(x) =1 or 3 cgmn, <220

=10 otherwise.
Let 7 be the configuration such that 7, = —1 and
7-7(1,i1,i2,~-.,ik> =1 if 1<i, = 2o
= —1 if 22w o < 2%ew0
Let
¢, ™) =0 if |x| >n,
=1 if |x]=n and 9(x)=1,
=10 if le =n and 7]()() = —1 N
= ¢,(n) if |x|<n,
and ‘
™ () =0 if |x|>n,
=1 if le =n,

= ¢, (1) if |x|<n.

Finally let P™* and P™~ be the unique (see Section 4) solution, starting from
7, to the martingale problem for ¢™* and ¢™ - respectively. As pointed in Sec-
tion 4 uniqueness implies that the paths of configurations are Markov processes
under P™*,

(3.2) LeMMA. If |x| < n then for all t = 4-1#1-3
(3.3)  PMH(n() = 1) = e™3(1 + 9,) + (1 — exp[—11(r — 4-1-9)])
Proor. If |x| = n we can solve exactly to get
PR = 1) = $4(1 — e7) 4 441 4+ 7,)

and the theorem is true in this case.
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For the rest of the proof we drop the supérscript (n)+ and proceed by reverse
induction. Assume that the lemma is true if |x| = k 4 1 < n and that |x| = k.
Beginning with the equahty .

—P(m(t) =1 = —P(m(t) = 1) + P(r;x(t) = 7_1) + 9P(n,(t) = —1 and

Zyesw) 7,(0) = 22"“‘3"”“)

%

elementary computatlons yield

P(nz(t) — 1) > (1 o e—llt) + e—lltl(l + ﬁz)
A ) ' _ 9e—11t St eusP(ZyeS(x) %(S) < 22k+1 ak+90) ds .

We split the 1ntegral into two .parts, one frpm zero to 4-*~* and one from 4-%-2
to ¢, In the first part we bound the probability in the integrand by one and in
the second part we bound it by SUP,-k-32s P(D] yesi ny(s) < 2¥H1-sk+e0) - The
result is

P(.() = 1) = (1 — exp[—11(t — 475 + e (1 + 7)

(1 —e™) — (1l — exp[—11( — 4"‘“3)])
X SUPe-k-sze P(Xyesim 74(8) < 22'““‘3’“9“)

Thus to complete the proof it suffices to show that

Sup4—k—3§s P(ZyeS(w) 7]1;(5) < 22k+1_3k+90) < % .

To do this note that for fixed s the »,(s), y € S’(x) :a‘r'e’independent and if y € S(x)
then |y| = k + 1. The desired inequality follows from the induction hypothesis
and Chebychev’s inequality. ‘

3.9 LemMa. If |x| £ nand 0 < t < co, then
(3-5) PO (1) = 1) S 3L + Fue¥) + 2790

Proor. If |x| = n we can solve exactly to get

P(”)_(ﬁz(l‘) = 1) = 7(1 —+ ﬁxe—"‘) .
Again we drop the superscript (n) — and proceed by reverse induction. Assume

that the lemma is true if [x| = k -+ 1 and that |x| = k. By a computation similar
to the one in Lemma (3.2) we get

(3.5)  P(.(t) =1) = 3(1 + 7.e7™)
2(1 — e—2t) supos, P(ZyeS(x) %(s) > 22k+1_3k+90) .

The proof is completed by using the inductive hypothesis, the independence of
{n,(5)}, y € S(x), and Chebychev’s inequality to show that the second term on
the right side of (3.5) is bounded by 2%,

Now {P™+} and {P"~} each have subsequences which converge to P* and P~
respectively. By Theorem (2.3), both P* and P~ solve the martingale problem
for the operator & given by the ¢,’s in (3.1), and both have initial configuration
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7. However from inequalities (3 3) and (3.5) we see that

Pr(ra(l) = 1) = #(1 — exp[—11(1 — 4-9)]) > #,
and
P=(no(1) = 1) S 3(1 — €7 + 1¢55 < %
Thus P+ = P~ and the solution of the martingale problem for ¢ given by (3.1)
starting from 7 is not unique.

If we are willing to allow the flip rates to take the value zero for some con-
figurations then it is not difficult to make examples of nonuniqueness in which
S is a lattice (say the integers) and -the ¢,’s are homogeneous (i.e., if S is the
integers and 7(k) = n(k + 1) for all k then ¢;,,(n) = c,(3) for all j). We will
see in the next section that in this case the ¢,’s can no longer be taken to be in
Z; however, they can still be taken in & (E). The reader who is interested in
constructing such an example is referred to [11]. Explosion in finite time of the
branching process with interference, which appears in-[11], is intimately con-
nected with nonuniqueness.

4. Uniqueness, Part I. In this section we again take S to be the integers for
notational convenience.

Suppose ¢: E — [0, 00)S is a continuous function and define % on & as in
(0.1). We extend the definition of & as follows: Let

NL)={feZ(E): Ll f] is uniformly convergent}
and define £f = 37, ¢, A, f for fe 2(<). Define
NZL) = {fe Z([0, ) X E): %};eg([o, ) x E), f(t, ") e (L)
for t 20, and 3, [c,A,f] is uniformly bounded on

compact subsets of [0, co) X E} .

4. 1) LeMMA. If P solves the martingale problem for & and fe ()
(D)), then

fa@) — 55 Zf) ds
(e 200 = 55(2 + ) fis, sy )
is a P martingale. Moreover, if f ¢ Q(g; and T > 0, then
T = (A T) 7 A T) = §97 (2 4 L) AT — 5, 7(5) ds

is a P martingale.
Proor. Let fe (7). Givenn > 1, define a,: E — E by

(@) =mn if k| <n
=1 if |k >n.
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Put ¢, = fo a,. Clearly 9, e Z and ||¢, — f|| = 0. (
over:
<, — ZLf] < Dikism cildrp, — A f| + Ziiesm CelBe@ul + Zeism A f]

and so

100 — ZLHI < Ziism lleall[[Ae0n — B fI| + 2/ Z > m e Bi f]]]
for all m, n = 0. Thus

limsup,_., [|<£%, — L = 2| w>m [ A f1I] 5

and the right hand side goes to zero as m goes to infinity. Now ¢,((¢)) —
{6 L0,(n(s)) ds is a P martingale for all n, and as n goes to infinity it converges
to f(n(t)) — {6 <£f(n(s)) ds uniformly on finite ¢ intervals. Hence the latter is
also a P martingale. The proof when fe D(F) is similar.

Finally, suppose f€ (<) and T > 0. For n > 1, let 8, € €,(R) such that
0p,=21,8,=1on(—c, (1 —1/n)T], and 8, =0 on [T, co0). Set

9ults ¢) = BT — 1, +) .

is as in (2.1).) More-

Then g, e (& ) and so

gt ATyt A TY) — (87 (ﬂ

os
is a P martingale. The proof is completed by letting n go to infinity and using
the a.s. P left continuity of »(.) at T'.

+ $> (s, 1(5)) ds

4.2) THEOREM. Let 57 be a dense subset of & (E). If either of the conditions:

(@) for all fe 57 thereisaue 9(5/) such that u(0, «) = f and oujot = Zu,
t>0,

(b) for all fe 57 there is a Ay = 0 such that if A = 1, then there is a u; € (<)
satisfying (A — £ )u; = f, .

holds, then for each ) € E there is exactly one solution, P,, to the martingale problem

starting from 7. In particular, {P,: n e E} is a homogeneous, strong Markov, Feller
continuous family.

Proor. The details of the last assertion can be found in [15]. To prove the
first assertion, define p(t, 9, I') = P,(5(f) e I'). Condition (a) or (b) guarantees
that p(¢, », I') is a measurable function of (7, ) which is independent of the
particular solution P, of the martingale problem for .~ that is used to define
P(+» +» +). To see this, assume (a) holds and let fe 52 and take u € Z(¥) ac-
cordingly. Then by Lemma (4.1), u(T — (¢ A T), y(t A T)) is a P, martingale,
and so § f(y)p(T, », dy) = EP2[f(n(T))] = u(T, n). Since 5# is dense in & (E),
this shows that p(z, », +) is @ measurable function of (¢, ) and is independent of
the particular choice of P,. The argument in case (b) is similar, only it involves
the use of Laplace transforms and the easily derived fact that e~*u,(5(r)) +
{6 e=*f(n(s)) ds is a P, martingale.
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Once one knows that p(¢, , I') is measurable in (7, 7) and independent of the
particular solution, one proceeds as follows. Let s > 0 and suppose @ — P’
isar.c.p.d. of P,|_#?. Then there is a P, null set N e _Z° such that if w g N
and Q“ = P o6, (4,: Q— Q is defined by 70 6,(f) = n(t + s)), then Q)
solves the martingale problem for & starting from (s, ). Hence if t = s, then

P(n(1)eT'|#20) = P(1(t) e T) = Q(n(r — s) eT) = p(t — 5, 5(s, @), I')
(a.s. P,). From here the usual induction argument applies and shows that

Pr;(”(tl) € Fl’ Tt 77(%) € Fn) = Sr‘l e Sr‘n P(tl’ 7 dm) e P(tn - tn—‘v Dn—1 dﬂn) .
The next lemma is elementary.

4.3) LeEMMA. If ¢, vanishes identically for all but a finite number of k’s, then
FE) = D) and {fe E([0, ) X E): offot e ([0, ) X E)} S AL).
Moreover, in this case &' (= Y7, """ |n!) is a bounded operator from Z(E) to
itself; and if u(t, +) = e'<f, then ue (), u(0, +) = f, and oujot = Zu. In
particular, for each 1) there is exactly one solution P, to the martingale problem for
& starting from v, and EP9[ f(7(¢))] = €“f(n), t = 0 and f e E(E).

For what follows it will be useful to introduce the norm |||.||| given by

WA= Ze ISl s

fe=Acf.

We let €°*(E) stand for the class of fe & (E) for which [||f||| < oo, and
&[0, o0) X E) theclass of fe ([0, c0) X E) for which df/ot € ([0, oo) X E)
and supy ... |||f(%, +)||| < oo for T'= 0. Note that if fe € (E) and », 7' € E
satisfy 7, = 7, for [k| < N, then '

(4.4) /() — fO)| = X [1fll -

The following lemma is obvious.

where

(4.5)  LemMa. Ifsup,|ic,]| < oo, then @NE)C () and ZX([0, ) x E) C
D).

We are now going to show that if

(4.6) C = sup ([leal] + [[lexl]]) < eo,
then the martingale problem for .~ has exactly one solution for each initial
point 7.
Given ¢,’s satisfying (4.6), set
™ =c, if |k|<n

=0 if k| >n,
and
LM = 31 ¢, MA, .

Let fe Z(E) and put u™(t, +) = ¢*“™f. Then u™ e Z(Z™) and, for each
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jes, u?e @(Sf‘”’). Moreover,

(n)
a‘a‘; (1, 7) = LUt ) + Lo UL, 1)

where ;7 is as in the definition of A; (see (0.1)). Hence, if T > 0, then

wip(T — @ A T), 9t AT)) + §6°7 D eli())ui (T — s, 1(s)) ds

isa P, martingale, where P, solves the martingale problem for £ starting
from . Therefore,

(4.7) (@ I = (1Ll + §6 Zisa llew sl 17 (s, #)]] ds -
Given N = 1, we now have:
Ziiitsn SUPwsy [[3(5 ) = (ISl + € §6 Zisisw SUPas [[#37(s, +)I] ds
and so, by Gronwall’s inequality,
Zigisn SUPasn |45 (15 )l = [IIf Ille” -
From this it is immediate that
(4.8) 2u5suPn [[3 (5, )l = (IS l]e”* -
We now want to estimate )3 ; ., SUPy;<r SUP, ||[#%(¢, +)||. From (4.7) we have

2ititzr SUPosesr SUP, [ (2, ¢)||
< Dz 1+ 58 20 Ziiizc e, 1] supa [[e (2, <)l dt .

Hence we will know that

(4.9) lim ., 37 ;122 SUPoge<r SUP, [[4(2, +)|| = O
if we show that
(4.10) lim, o §F T Tisms sl sup, |05 )l de = 0.

But, by (4.8), )
Ziizr ksl sup, [[2(e, )| < || f11le® Zisizz llewsll — 0

as L goes to infinity, and
2 2z e ]| supa |[#3(5 )] £ C Zpsup, [Ju(, ¢
= CllIf]lle" .

Hence (4.10) follows from the Lebesgue dominated convergence theorem.
Finally,

and so, putting this together with (4.9) and (4.4), we conclude that {u™} is
equicontinuous at each point (z, ) € [0, co) X E. Moreover, |[u™(t, «)|| < ||f]l-
Hence there is a subsequence {#’} and a u e C([0, ) X E) such that u*?

ou'™
ot

(5 )|| = 12w ) = Yl Il = Clflle
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converges to z uniformly on compact subsets of [0, co) X E. From (4.8) it fol-

lows that
| < [lIf]lle*

SUPogi<r [|[4(2, +)
Also from (4.9) and
ueo (e, m) = flg) = §§ L (s, &) ds,

it is easy to show that "™ u*" converges to -Zu uniformly on compacts and

u(t, n) — f(n) = ¢ ZLu(s, n) ds.
Hence u € €([0, ) X E), ou/ot = Zu, and u(0, +) = f.
We summarize these results in the following lemma.
(4.11) LeMMA. If the c,’s satisfy (4.6), then for each fe E*(E) there isaue
Z'([0, 00) X E) such that |||u(t, +)||| < |||f]||e”, ou/ot = ZLu, and u(0, «) = f.

(4.12) THEOREM. If the c,’s satisfy (4.6), then for each 7 there is exactly one
solution P, to the martingale problem for £ starting from 7. In particular, {P,:
n € E} is a homogeneous, strong Markov, Feller continuous family.

REMARK. Lemma (4.11) is the analogue in the present set-up of the theorem
in partial differential equations which says that a parabolic second order equ-
ation having smooth coefficients and smooth initial data has a smooth solution.
In our case smooth means €*(E). In Section 5, we give a second proof of
Theorem (4.12) (cf. Remark (5.12)) based on a multiple random time change.

The condition (4.6) coincides with the condition given by Liggett [14] for the
existence of a Feller semigroup associated with .~°. Liggett’s techniques are
not restricted to the spin flip model considered here. We believe that our method
can be modified to include many of his more general results.

5. Random time changes. The contents of this section are of a rather tech-
nical nature and are tangential to the rest of the paper. The idea here is to
investigate whether a solution to the martingale problem for " = 3, ¢, A, can
be represented as a multiple random time change of the solution for &° =
2x A, What we will show is that this is always possible, although it will not
be true in general that the #~process is a measurable functional of the .~°-
process (cf. Corollary (5.8)). The only case in which we have been able to show
that the representation is .#”° measurable is when the c,’s satisfy (4.6) (cf. Theo-
rem (5.11)).

Throughout this section, 7 will denote a nonempty subset of S and |F| the
cardinality of . When we write § ¢ R”, we actually mean that ¢ RSand 6, = 0
for k ¢ F.

(5.1 LEMMA. Let F be a finite subset of S and k ¢ F. Let c: [0, o) X Q —
[0, co0)* ¥ be a bounded nonanticipating function, and assume that c, is uniformly
positive. Define t,(t) by

5.2) (oxP c(u)ydu =¢t, t=0,
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and set B* = FB[n(ti(t)): t = 0]. Let Pon {Q, #°) have the pfoperty that
(5-3)  X(0) = exp[X; (6;(2:(1) — 2:(0)) — Vg ¢;(w) (e — 1) du]
is a P martingale for all € R"*®, If @ — P** is ar.c.p.d. of P|<Z*, then there

is a P-null set N € Z8* such that for o ¢ N: {X,(t (1)), A, 1 P**) is a martingale
for all 6 € R*.

ProoF. First note that {X,(z4(t)), -#,, P) is a martingale for all § € R"**,
Thus, if t;, > 0 and @ — P is a r.c.p.d. of P| A, ., then there is a P-null
set A€ _#, ., such that {X,(t,(t V 1)), A tvey> Pr*’) is a martingale for all
o ¢ Aand § € R"**, Hence by Lemma (3.1) in [18], for w ¢ 4, § € R”, 6, € R'™,
t,>t,t <u<w, and Ce/éjkm:

EP L (e(1) X, (te() o] = EP“C [ Xy(mi(1) Xy, (z(#))c] -
Here I, is the indicator function of C.
Nowlet0 < ¢ < t,, 0 € R", and 0, € R™ be given. Define v — Q“ on &&* by

do@ " .
A = ey (n)| ]

where X, % (z,(,)) = (Xp(ti(t)))) " Xy(7i(t:)). Givent, < u < vand Be FZ,F =
Bn(ti(8)): 0 < s < u], we then have
ECULX, (t(v) 5] = EX[X, (ru(W)]5]
for w¢ A. In other words, for w¢ A4: (X,,k(r,,(t Vv 1)), 93;"”1, Q@ is a mar-
tingale for all 6, ¢ R™. But
Xy (Tt V 1)) = exp[0u(7:(ra(t V 1)) — 74(0)) — §5V"1(e e — 1) du]

and therefore if @ ¢ 4, the distribution of 7,(z,(+ V t,)) — 7,(z4(?,)) under Ptv®
and Q is the same. Moreover, it is clear that P = Q“’ on <Z}. Hence
Pt = Q@ on <Z* for w ¢ A.

Finally, let 6 € R", Be &#* and C € .# ,, be given. Then by the preceeding:

EP L Xy(zy(t))] = BP0 Xo(tu())]
(a.s. P), and so
EP[I EM* 1o Xy(cu(1)] = EF (I EP ' [1; X (z(1))]
= Ef[Io BT Xo(ri(1))]
= EF[I, E*“"[I, X,(v4(1,))] -
Hence for each 0 <4 <1, Ce.#, ., and 6¢€R" there is a P-null set
N(t,, t,, C, ) € Z&* such that
(5-4) EP I Xy(ri())] = EP* g Xo(zy(t))]
for w ¢ N(t,, t,, C, 6). Using the facts that X,(¢) is right continuous and _#;

TR(ty)
is countably generated, it is now easy to find a P-null set N e 5" so that (5.4)

holdsforall wg N, 01, < ¢, Ce /éjkw, and 6 € R”.
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(5.5) THEOREM. Let c: E — [0, 00)® be a measurable function such that each c,
is uniformly positive and bounded. Suppose P and P° are solutions to the martingale
problem for

L= ¢, and L= YA,
respectively, starting from 7. Define £(f) = n(z(f)) = {9(t1()}res> Where 7,(t) is
given by (5.2). Then the distribution of &(+) under P is equal to P°.

Proor. Let F be a finite subset of S. Let X,(7) be as in (5.3). In view of
Theorem (1.1), our theorem will be proved if we can show that whenever P on
{Q, _#°) has the property that P(»(0) = ) = 1 and X,(¢) is a P-martingale for
all € R”, then (X,(z”(t)), <%,*, P) is a martingale for all § € R”, where

Xo(z7(1)) = exp[Ljer (0:(0:(z(1)) — 1,(0)) — §i (e7475i™” — 1) du)]

and ;" = Z[n(t(1)): 0 < u < t and k € F]. We do this by induction on |F|.

This assertion is trivial if |F| = 1. Assume it is true when |[F| = n and let
k¢F. Let w— P** be ar.c.p.d. of P|<Z*, where <#* is as in Lemma (5.1).
Then, by Lemma (5.1), there is a P-null set N ¢ £&* such that for all @ ¢ N and
all 6 € R", {Xy(ti(t)), 4,1y, P> is a martingale. Let Q' denote the distri-
bution of 5(z,(+)) under P, Then for w¢ N, Q' satisfies the inductive hy-
pothesis with c; replaced by c;/c,, je F. Thus if

§850 S (p(ea(u))) du = 1, 120,
k

then

{Xy(y, 0 67(2)), Bni(ri 0 0" (): 0 S u < t,je F], PB0)-
is a martingale for all w¢ N and 6 € R". Since t,(f) = 7, 0 0,(f), j€ F, this
shows that the distribution of {1,(r;(+))};c, under P*, w ¢ N, is equal to the
distribution of {7,(+)};., under P°. In particular we see that &#* and <% =
Z[1;(z;(+)): j € F] are independent under P, and this completes the induction.

(5.6) CoRrROLLARY. Let ¢, P and P° be as in Theorem (5.4). There exist
[0, o) X 4" measurable functions
£§:[0,00) X Q—E
and
a: [0, 0) X Q— [0, c0)S
such that
(i) &(-) is right-continuous, has left limits and its distribution under P is equal

to P°,

(ii) o satisfies 0,(t) = (¢ c,(5(o(w))) du, k € S, where 5(0(-)) = {£1(0:(+N}iess

(iii) 7(+) = &(a(+))-

Proor. Define 7, and £(+) as in Theorem (5.4), and take o,(+) = 7,7%(+).

5.7 REMARK. It should be emphasized that ¢(f) will not, in general, be
§(+)-measurable. Indeed, if it were, then Corollary (5.6) would provide a unique-
ness proof for P, and we know P is not always unique!
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(5.8) REMARK. The assumption that the ¢, are uniformly positive is not
strictly essential. However, if it is dropped,. the &(+) and ¢(-) will live on a
larger sample space and in general will not be 5(+)-measurable.

(5.9 LEMMA. Let ¢, ©(+), and P be as in Theorem (5.5). Given ke S let
B = B(c;(t)): t =0, # k] and @ — P* be a r.c.p.d. of P|<Z*. Then
there is a P-null set N € £%* such that Xy, (2i())s A7 115 Py is a martingale for
all o ¢ N and 6, € R™, where X, is as in (5.3).

Proor. Givent, = 0, let  — P“v» bear.c.p.d. of P|_# . ,. Then there is

a P-null set 4 such that for w ¢ 4 the P¢* distribution of »(+) on [#,, co0) solves
the martingale problem for & starting from »(z,(t,, ®), w). Hence if z%(.) is
defined by '

3

ey cin(0) du = (1 — 1), tzh,
then by Theorem (5.5), for w ¢ A the P*® distribution of »(z'1(+)) on [#,, co)
solves the martingale problem for £° starting from »(z,(t,, »), ®).
~For ¢, < t,and 6, € R'™), define

dQ(w)
dP(tl,w)

= EFU[XGE(ry(t)) | Zn,(z(0): t = 1 and j # k]].

Then, by the argument used in Lemma (5.1), Q“ = P% on ZZ[y;(r,"«(t)):
t = t,and j + k] for o ¢ A. Noting that

() =t =1+, t=7r;= 15 c(nu) du,
and 7,(f) = 7,;(t, o) for t < 7; = 7;(») (a.s. Pv®), we conclude that
EP"OLX, (v4(ty)) | 2] = X, (alty))

(a.s. P for w ¢ A.
The rest of the proof is accomplished in exactly the same way as the corre-
sponding part of the proof of Lemma (5.1).

DEFINITION. Let §: [0, o0) X Q — E be a nonanticipating function and P a
probability measure on (Q, 7. For ke, let @ — P* be a r.c.p.d. of
P|Z[§;(): t = 0and j + k]. We say that ¢ - Q — [0, co0)S is a stopping vector
for (&(+), P if '

(i) ¢ is £(+)-measurable,

(ii) For all ke S and P-almost all w, there is a function ¢, ,: Q — [0, oo)
such that {¢, , < 1} e FZ[£,(u): 0 < u < t], t = 0, and P*(¢, # ¢, ) = 0.

(5.10) LemMA. Let §: [0, co) X Q — E be a right continuous, nonanticipating
function having left limits. Let ¢: E — (0, o)’ be a continuous function satisfying
(4.6). Suppose P is a probability measure on (Q, 7"y under which the distribution
of &(+) is the solution to the martingale problem for #° = Y. A, starting from 7.
Then there is a function ¢ : [0, c0) X Q — [0, c0)S such that:
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(@) () = {se((p®)) du, t = 0 (as. P),
(b) ©() is a stopping vector for (&(+), P) for each t = 0.

ProoF. For N = 0 and measurable function a: [0, co) — E, define F¥(z, a) by
FY(t, @) = (¢ c(a(FY([27u]/27, a))) du , t=0.
Put (., w) = FY(+, §(+, w)) and ¢¥ (+, @) = F,Y(+, @), where
aj(o)zéj(.,w) for ]:,/—‘k
—_—.Ek(o,a)') for ]:k.
Clearly ¢"(t, «) is £(+)-measurable, {¢; ,(5) < t} € Z[&,(1): 0 < u < 1] for all
5,1 =0, and Poi(p¥(2) £ ¢ (+)) = 0.
Note that the components of £(+) are mutually independent under P. Thus
CEult) + 2 §5 6uu) du, (€)1 0 < u < 1], Py
is a martingale for P-almost all @. Hence if ¢ and r are bounded stopping times
relative to {Z[£,(u): 0 < u < t]: ¢t = 0}, then P-almost surely
EP®U[6()6u(0)] = EFE 640 V 2)éi(o A 7)]
=1+ EP*[6,(0 A )(Eo v 7) — £ A 7))
=1 = 2EP"[E4(0 A7) §31E 6u(u) du]
and so
EP®O(E4(r) — £u(0))"] = 4EP* (640 A ) §2X5 €u(u) du]
< 4EP*9|r — 4] .
Hence
ETT[E@™ (1) — Sled (D] = FET(Eu(04" (1) — Eules™(5))]
= JET[EP*[(Edphu(1) — EMgEu(9))]]
< 2B IgL(1) — )]
= 2E"|p"(1) — " (9)1] -
We now use the results in the preceding paragraph to prove that ¢¥(.) con-
verges as N goes to infinity. In fact, if M < N, then
Ef[supysez: [02"(5) — 0"(5)I]
= EF[GG lew(@(@M([27u]/27) — en(€(9™([27u]/2")))| du]
= C {5 sup; E7[|€,(9,"([2"u]/27)) — &5(p;"([2"4]/2"))] du]
= 2C {gsup; E¥[lo;"([2"u]/2%) — ¢,([2"u]/2")]] du

< c*
= Hwu-1

+ 2C §§sup; EP[supyg,, |97 (4) — ¢ (u)| ds,
and so

C2
sup;, E[suPog,z: 04" (5) — ¢,"(5)]] = Py et
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Let ¢,(¢, «) = liminf, . ¢,”(¢, «). Then we see that, except on a P-null set,
¢,¥(+) converges uniformly on finite time intervals to ¢,(+). Hence ¢(+) fulfills
(@). Also, ¢(?) is clearly §(+)-measurable, and it is not hard to check that ¢(¢) is
a stopping vector for (§(+), P). Indeed, simply take ¢, ,(+) = liminf,_, ¢¥ ().

(5.11) THEOREM. Let ¢: E — (0, c0)® be a continuous function satisfying (4.6)
and let & = 3, ¢, A,. Suppose P is any solution to the martingale problem for &
starting from 7, and let P° be the solution for £° = 3 A, starting from y. Define
7, by

(e @ e (p(u)) du =t , t=0,
and set §(t) = 1(t(t)) = {9u(t2(t))}ecs. Then the distribution of &(+) under P is equal
to P°. Moreover, there is a function ¢: [0, co) X Q — [0, c0)S such that (a) and
(b) of Lemma (5.10) hold. Finally, if ¢(+) is any function satisfying (a) and (b),
then ¢,(+) = 7,7'(+) (a.s. P) for all k; and in particular, n(+) = &(¢(+)) (a.s. P).

Proor. The only assertion requiring comment is the last. To prove this we use
Lemma (5.9). By that lemma, we know that {§,(r) + 2 {§ &, () du, A7 ), Py
is a martingale for P-almost all @. Thus, as in the proof of Lemma (5.10), P-
almost surely:

EFR (€ ru(1) — Em 7 (0))] < 2EPC[|4su(0) — w01
since {r, (1) < ) € Ay 420, and {f,,(1) < 4} € F[E4(s): 0= s < u] S
A > ¥ = 0. One can now proceed as in the proof of Lemma (5.10) to show
that

sup, EF[supyg,<; [9x(5) — 7.7 (9)]] = 2C (g sup, EF[sUPog, g, [Pu() — 7,7 (#)|] ds ,
since z7'(t) = (¢ ¢, (§(z7'(s)) ds. But this shows that ¢(+) = z7'(+) (a.s. P).

(5.12) ReMARK. The situation described in Theorems (5.5) and (5.11) should
be compared with the analogous results in diffusion theory. If x(.) is a diffusion
associated with a strictly elliptic operator L, then x(+) can be represented as the
solution of stochastic integral involving an x(.) measurable Brownian motion
B(+). However, unless the coefficients of L satisfy smoothness conditions, one
cannot show that x(+) is 8(+)-measurable.

(5.13) REMARK. Assume that the ¢,’s satisfy (4.6) but do not assume they
are positive. Given 7 ¢ E and the solution P’ to the martingale problem for .~
starting from 7, there is, up to a P’-null set, exactly one stopping vector ¢(r)
for {y(+), P°) such that

o(t) = (& c(n(e(u))) du , t=>0, (as., P%.

Moreover, if £(+) = 7(¢(+)) and P is the distribution of £(+) under P°, then P is
the unique solution to the martingale problem for & = 33, ¢, A, starting from
7. In fact, one does not need to know a priori that the martingale problem for
~is well posed in order to make this last statement. Hence, this technique
gives an independent derivation of Theorem (4.12).
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6. Uniqueness, Part II. In this section we give a condition on the flip rates,
¢, which neither implies nor is implied by (4.6) and which guarantees unique-
ness of the solution of the martingale problem for c.

We begin with some definitions and notation. F, G and H always denote
finite subsets of S. We may think of E as the group which is the direct product
of the groups {—1, 1}, k € S, and we denote the characters of this group by X,;

Xe(m) = Ilicr ;-
Note that
Xp Xy = Xpne>
where F' A G is the symmetric difference of F and G.

Let ¢ be Haar measure on E (i.e., ¢t = [[4e5 (30_; + $0,,)). Since Z(E) C Ly(p),
each e Z(E) may be written as f = Y, f(F)X,, where f(F) = §, f(9)X 1(dp).
Of course we are only sure that the above Fourier expansion of f converges in
Ly(), and we need uniform convergence. Therefore we let L be the Banach
space of functions of the form f = ¥, f(F)X, with norm

flz = Zr [/F)| < oo
Note that if fe L, then fe Z(E) and
(6.1) =171z -

The conditions which we want on the flip rates, ¢,, are as follows. Eachc¢, e L,
and we write

(6.2) €= Cp + Dgey 7(k, G)Xs,

where ¢, = é(¢). To simplify notation we set y(k, ¢) = 0. Since the c,’s are
nonnegative it follows that ¢, > 0. The critical assumption which we make is
that there is some a < 1 such that for all k ¢ S

(6.3) e lr(k, 6)] < ag, .
Inequality (6.3) clearly implies that
(6.4) lledl = (1 + @)é, .

For each finite set F — S let

Cp = Zich-j, (c¢ = 0) s
and define
D ={feL: Lresl f(F)] < o0}
6.5) LEMMA. Let H be any finite subset of S and let fe L. Then if (6.3) holds,
(6-6) |Zhen Ta e, OXeAufli < 20 T ool ()]

ProoF. We first note that A, X, = —21I,(k)X,, where I,, is the indicator func-
tion of F. Thus

(6.7) Af= =2 5 L)/ (F)X, .
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Hence

(6:8)  Tew D10k OXoArf = =2 Tien Do Br 1k Op(k)f(F)Xoar
= =22 en e 2r7(k, G A F)IF(k)f(F)Xa )
and therefore
|Zhen Do 7(ks XA fli = 2 S| Swen Sr (ks G & F)(k)f(F)|
(6.9) = 2 Ze Duen Lo 1k, G & F)I(0)| ()]
= 2a 3, ZkeHEkIF(k)If(F)l
=20 X5 Cponl f(F)] -
(6.10) LEMMA. Let fe 2, and let (6.3) hold. Let {H,} be an increasing se-
quence of finite sets whose union is S. Then
Diken, () f(+) and stH”EkAkf(')

are both Cauchy sequences in the |+|; norm.

Proor. Let m > n and set H(m, n) = H,\H,. Then

leeH” CALf — 2iken,, &l Sl
(6.11) = | Zkermm Eede fz
= =2 2r Zkenmm Ek[F(k)f(F)XFlﬁ
=22 Crommm |f(F)l .

Since fe Z,,), Cropmm = Cp> a0 Cp)pim .y — 0 as m, n — oo, it follows from
(6.11) that 2ivem, €l f is a Cauchy sequence. Now

(6.12) IstH,n A f — Diken,, ol flz
= [ Zkenmm Gl flE + | Dkenmm 2o (ks G)XGA, fl7 .

We have already seen that the first term on the right side of (6.12) goes to zero
as m, n — oo. Accordmg to Lemma (6.5) the second term is bounded by
20 35 Conmm |f(F)[, which again goes to zero as m, n — co.

(6.13) LEMMA. Let fe D, and let (6.3) hold. Then fec (L. (D(Z) is
as in Section 4.)

Proor. We saw in the proof of Lemma (6.5) that

e fle = 201 + @) Ty & ()| f(F)] -
Therefore, by (6.1)
SUP, Dlken 1€ML (D) £ DhenllceAe |
S Dken GBSz
= 2(1 + @) Then Xr LR AF)]
=2(1+a) 3, anHlf(F)l .

The conclusion follows just as in Lemma (6.10).
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Let H, be an increasing sequence of finite sets whose union is S. We define
operators <~ and <°° on F,) as the limits in the |+ |z norm of {3},., ¢, A, f}
and {¥;.p ¢,A,f}. From Lemma (6.10) we see that these limits exist ‘and are
1ndependent of the particular sequence of sets H, used to define them. Since
D C (L), itis easily seen, using (6.1), that we may view & as & extended
to (<) as in Section 4 and then restricted to 2,,,. Hence it fe Z,,,

(6.14) Ffn) = ZLf(y) forall nekE.
Now the eigenvectors of < are just the characters X,. In.fact
(6.15) LK = =2, X,.

Let o(c) be the closure of {—2¢,: F C S, F finite}. Then if 2 is any complex
number which is not in ¢(c), it is easily checked that the operator R,® on L given
by the formula

(6.16) R = X5 (A + 2¢,)"f(F)X,
is the resolvent of .&°. Moreover
(6.17) R = 2, .

Our immediate goal is to determine the resolvent of & by thinking of &
as differing from .#7° by a perturbation. The next lemma is an immediate
consequence of (6.16), (6.17), the definitions of < and < and a calculation
identical to (6.8).

(6.18)  Lemma. If 2¢a(c) and (6.3) holds, then for all fe L

—2I,
+

619)  (Z— LIRS = T Bp T 10 F 4 H) (k)f(F) X, .

We denote (& — LR, by A4,.
(6.20)  LeEmMA. Ler (6.3) hold and let 2 > 0. Then for all fe L

(6:21) i fle = 2 F L7

For the proof of Lemma (6.20) see Lemma (A.1) in the appendix.

(6.22)  CoRrOLLARY. If (6.3) holds and fe L, then for all 2> 0, B,f=
Yoo (A)fe L and

(6.23) 8.1 < 1

For 2 > 0 we define the operator R, by the formula
(6.24) R, = RB,.
(6.25)  LEMMA. Let 2> 0 and fe L, then
(6.26) A=A, f=f.
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Proor. From Corollary (6.22), (6.24) and (6.17) we see that R, fe Z,.
Therefore, by (6.14)

(A= OWRif= @A — DR f = A= (L — L) — LORB, f

=B, f— (&L — LYRB,f=(— A)B,f =f.

(6.27) THEOREM. If the c,’s are given by (6.2) and (6.3) holds for some a < 1

then for each 7 € E the solution to the martingale problem for &£ starting from 7 is
unique.

Proor. Since & C L, and & is dense in Z(E), the theorem follows from
Theorem (4.2b) and Lemma (6.25).

7. An ergodic theorem. In this section we use the same definitions and nota-
tion as in Section 6.

We begin by determing some more of the properties of R;.

Let « be as in (6.3) and let

D,= {4+ 0: arg 4| < 7 — arcsin (2a/(a + 1))} .
If a > 0 let
D, = {4: The real part of 1 is greater than 2a(a — 1)}.

Recall that A, is given by (6.19). Ifallé, > 0 then the right side of (6.19) makes
sense and is an element of  even when 4 = 0. In this case we define 4, f by the
right side of (6.19) with 2 = 0 and define B, as in Corollary (6.22).

The proof of the following lemma is given in the appendix.

(7.1) LEMMA. For all 2 € D, we may define B, as in Corollary (6.22) and R; as
in (6.24). R, so defined has the following properties:

(a) Forall feL and all 2¢ D,
111
IR, /()| < IR, f]; = 2T

=1—-a;|_2_|

11z -
(b) Ifall &, > O, then for all fe L
lim,, AR, f = go?@) .
If we denote 1107’(95) by TIf, then for all fe L

2
flz -

l -«

(c) Ifinf, ¢, = a > O then the operator B, may be defined as in Corollary (6.22)
onall of D, U D, and R, may be defined as in (6.24) on (D, U D)\{0}. In this case
R, f(n) is an analytic function on (D, U D)\{O} for all fe L and all € E, and the
singularity at 0 of Ry(f — ILf)(n) is removable.

(d) If inf, ¢, = a > O then for every compact subset D of (D, U D,)\{0} there is
a constant K(D) such that

TIf]; <

supep [R: flz = K(D)If]2 -
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(7.2) LEMMA. Assume that the flip rates, c,, satisfy (6.2) and (6.3). Let P, be
the unique solution to the martingale problem for & starting from 7, and let f¢ L.
Then for all 1 > 0

(7.3) §5 e MEFa[ f(n(1))] dt = Ry f() -
" Proor. This follows from Lemma (6.25) as in the proof of Theorem (4.2b).
(7.4) THEOREM. Let (6.2) and (6.3) hold and assume that ¢, > O for each k.

Then there exists a unique stationary measure, v, for the family {P,: n € E} (i.e., for
all Borel sets £, c Eand allt > 0

(7.5) $z P,[1(t) € Eo(dy) = v(Ey)) -
Here P, is the unique solution to the martingale problem for & starting from 7.

Proor. From Theorem (4.1) we know that {P,: n e E} is a homogeneous,
strong Markov, Feller continuous family. Thus the integrand in (7.5) is measur-
able and since E is compact there is at least one stationary measure. In order
to show there is at most one, it is enough to show that

(7-6) lim, - §§ B flr(0)] do = T1f

for all fin the dense subset L  Z(E). First note that (7.6) is immediate it f is
constant. Therefore since both sides of (7.6) are linear in f, it suffices to prove
(7.6) for f = 0. In this case (7.6) is a consequence of a Tauberian theorem (see
Theorem 2, page 445 of [3]), (7.3), and Lemma (7.1b).

In order to obtain a rate of convergence to equilibrium we need to invert the
Laplace transform in (7.3). To this end we let I' be the curve consisting of the
segments

fre?:rz= 1y ufre?: r > 1} U {e¥v: —0 < ¢ < 6},

where ¢ is any angle between /2 and = — arcsin (2a/(a + 1)). Integrals over
the curve I' will always be taken from bottom to top.

7.7) LEMMA. Let f be an analytic function on D, such that | f(z)| < constant/|z|.
Define

() = 51; i e7ie) ds
Then for all w > 1
fw) = ¢ e"""g(t) dr .

Proor.

1
7 e g() dt = — {5 =" §x ef(2) dz

L. §r (o et f(z)dtdz = _“_1 i @ 4.
2ri Qi 7 —w

We use the assumption that w > 1 to interchange the order of integration, since
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then one can easily establish absolute integrability. To evaluate the last integral
let S(R, w) be the circle with radius R and center w. For large enough R S(R, w)
intersects I' in exactly two points. If I', is the curve made up of that part of
S(R, w) to the right of I" and the part of I" between its intersection with S(R, w)
and we orient I'; in the clockwise direction, then we have

(7.8) LemMMA. Let (6.2) and (6.3) hold and inf, ¢, = a > 0. If P, isthe unique
solution to the martingale problem for & starting from 7, then for all fe L

(1.9) ELf00O)] = 5 e € Raf(7) 2.

(The formula for the semigroup associated with R, given by (7.9) is a familiar
one. See for example Kato [12] pages 477-478.)

Proor. From (7.3), Lemma (7.7), and Lemma (7.1(a), (c)) the Laplace
transforms of both sides of (7.9) agree, at least for 2 > 1.

(7.10) THEOREM. Let (6.2) and (6.3) hold and inf, ¢, = a > 0. Then for all
7 < 2a(1 — a) there is a constant, K(y), such that for ne E and all fe L
(7.11) ESLfG()] — 1Lf| < R(re™'|f

Proor. Since 4;X, = 0, we have B, X, = X, and hence R; X, = (1/3)X,.
Thus for all ¢ > 0

A
L e

(1.12) Iy = %greNRXHf dz.
Tl
Combining (7.9) and (7.12) we see that
(7.13) BN fin(0)] = TIf = 1 §5 e#Ry(f — T )(7) .

and by Lemma (7.1(c)) the integrand in (7.13) is analytic on D, U D,.

Now let 0 < 7 < 2a(l — a) be fixed, and let z, and z, be the two points on I
whose real part is equal to —y. Let I') be the curve obtained from I' by cutting
off the part of I' whose points have real part larger than — y and replacing it by
the line segment between z,and z,. We call this line segment L. Note that L is
a compact subset of D,\{0}.

Now since R;(f — ILf)(y) is analytic on D, U D, we have

(7.14) So e“Ry(f — TLf)(n) d2 = r, e Ry(f — TIf) () dA .
Hence from (7.13), (7.14), (6.1) and Lemma (7.1)
[EPLf(n(0)] — ILf]

= [§r, &*“Ro(f — TIf)() 44
(7.15) < {r, exp[t Real ]| R,(f — TIf)|; d2
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12 .. —1
s et | o SheRpliCreos 0 )] o dr
3«
K(L — .
+ KWz — 2l | 28111

since rcos < —y for all r > |z,|, the theorem is proved.

(7.16) REMARK. If we relax the assumption that « in (6.3) is less than one
then Theorems (7.4) and (7.10) are no longer true. For example if we let S be
the integers, ¢, = 1 for all k, y(k, {k, k + 1}) = —1 for all k, and all other
7(k, F) = 0, then (6.3) holds with « = 1. However this process has more than
one stationary measure since the measures concentrated on the configurations
which are identically one or identically minus one are all stationary. This is not
to say, however, that @ < 1 is necessary for the conclusions of these theorems.

We conclude this section with an example in order to compare Theorem (7.10)
with previously known results. The example is the stochastic Ising model, which
was originally proposed by Glauber [4] as a model for the evolution of the con-
figuration of spins of the atoms in a piece of iron. We let S be the d-dimensional
integer lattice and let

¢o(n) = [1 + exp(2pn. 20, 7,)]7

where 8 > 0 and the summation on y over the 2d nearest neighbors of x. For
the motivation behind this choice of ¢, see [4] or [10].
If d = 1 (the case considered by Glauber) then we may write

(7.17) (1) =5 + (1 + €)™ — (1 + )7l 7oms + 7] -

Since 3[(1 + e=*)~' — (1 4 e*)7'] < %, the hypotheses of Theorem (7.10) are
satisfied and the system converges to equilibrium exponentially fast for all values
of B. Special cases of this result were proved by Glauber in his original paper
and the full result has been obtained many times since (see, for example, [2] or

[19)).
If d = 2 the situation is not so simple. In this case we take ¢, = 4 and if
|x — y| =1 let

7%, {x, ) = _T?l {[1 4 e8]t — [1 + ef]™" 4 2[1 + e~*]™" — 2[1 + e*]7'}.
Iflx —yl=x—zl=|x—w =landy £z, y+w, z+£w,let
e (o y zowl) = T+ €] = [1 4 @] = 21 4 e

+ 201 + ] .

Setting y(x,F) = 0 for all other F it is easily checked that c,(y) is given by (6.2).
Also

Zrlr@o )l =[1 + 7 —[1 4 ],
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and therefore (6.3) holds for some a« < 1 if and only if 8 < (In 3)/4 = .275.
Hence if 8 < (In 3)/4, the system converges to its unique equilibrium state ex-
ponentially fast. Itis known that for d = 2 there is only one stationary measure
if and only if 8 < arcsinh (1), and in this case the system converges to that
measure as ¢ goes to infinity (see [10]). However, no rates are known if g =
(In 3)/4. The exponential rate of convergence for 8 < (ln 3)/4 can also be ob-
tained by applying the results of [20]. The main advantage of the technique
used here is that the integral of functions in L with respect to the stationary
measure can be obtained from (7.6) and Lemma (7.1b). This allows one to
draw conclusions about the Gibbs states. We will give a demonstration of this
in a future paper.

8. Absolute continuity, existence, and uniqueness. Let ¢, ¢: E — [0, o) be
measurable functions such that ||c,|| + [|¢;|| < co and ¢, = 0 if and only if
¢, = 0 for ke S. Define & and & accordingly.

8.1) THEOREM. Suppose ||33; c,((In (¢,/c,))* + (Chfc,, — 1))]] < oo. If there
is a solution P to the martingale for £ starting from 1), then there is a solution P
for Z starting from v, If there is at most one solution P for <7 starting at v, then
there is at most one solution P for & starting at v. In fact, if P exists and P is
unique, then P and P are equivalent on _# for all t = 0; and dP|dP = M(t) on
A0, where

®2) Mo = exp| §iIn < (1) 47

— T S en(®) (— (7)) — 1 —1n & (@) ) d |

Proor. The first assertion is contained in Theorem (2.4). To prove the
second assertion, let P be solution for .~ starting from 7 and define M(.) by
(8.2). By Theorem (2.4) M(r) is a P-martingale, and the measure P given by
dP|dP = M(f) on _#;, t > 0 solves for & starting from 7. Since M() > 0
(a.s., P) dP/dP = (M(f))~* (a.s. P); and if P is the unique solution for %7, then
P is uniquely determined by this relationship. This argument also proves the
final assertion.

(8.3) COROLLARY. Assume that €, [c, is uniformly positive and bounded for each
ke S and that ||} c,(C,/c, — 1)*|| < oo. If there exists a solution P to the martin-
gale problem for & starting from 1), then there exists a solution P to the martingale
problem for 7 starting from y such that P & P on _#), t > 0; and in fact

(8.4) E* [(% ltoﬂ = exP[ HZ “ <— - 1) H]

Proor. For each n = 0, define

™ =g, if |k|<n
=g, if |k|>n,
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and let M™(¢) be given by (8.2) with ¢ in place of ¢. Define P™ by dP™ [dP =
M®™(f) on _#, t = 0. Then P™ solves the martingale problem for ¢ starting
at » and

Now let {P*"} be a weakly convergent subsequence of '{P““} and put P equal
to its weak limit. From the preceding estimate it is easy to see that P con-
verges strongly to P, P € Poneach _#;, and (8.4) is satisfied. Finally, if f e
and A, f = 0 for |k| > m, then f(y(f)) — {¢ Zf(n(n)) du is a P™-martingale for
n > m. Hence, since P"" — P strongly f(1(f)) — §¢ Zf(y(u)) du is a P-mar-
tingale.

E[(M ()] S exp| ¢ Hz ck(ck' NiE

(8.5) COROLLARY. Suppose P and P are the only solutions to the martingale
problem for ¢ and ¢, respectively, starting at 7. If ¢,/c, is uniformly positive and
bounded for each k € S and ||} ¢,(C,/c;, — 1)*|| < oo, then P L P on each _#,° and
(8.4) holds. If || 33 ci((In (€/cy))* + (Gifcr — 1)P)|| < oo, then P and P are equivalent
on each _# and (dP|dP)| , is given by (8.2).

(8.6) COROLLARY. Suppose {c'}; is a sequence of measurable functions on E
to [0, 00)® such that ||c,'™|| < oo for each ke S and n > 1, and ¢,/ = 0 if and
only if ¢, = 0. Assume that for each n there is exactly one solution P™ to the mar-
tingale problem for c¢™ starting from v, and let P be a solution for c starting at 7.
If ¢,[c, is uniformly positive and bounded for each n =1 and ke S and
|27 erle,™ /e, — 1)%]| — O, then P™ tends to P in variation on each _#,t > 0. In
particular, P is unique.

Proor. We know that P ¢ P on _#,° and that

dP™ 2 ™ ’
(] <ol e (5 - )
[ dapP {0 d 2 €
Hence
n —_— P dP(n) ’
(P — P™)|_sollver = E [ T d

R
- dP .z

<exp|: HZ c,,<ck‘: _ 1)2 ]— 1-0.

8.9) ReEMARK. It is interesting to see these results say when the functions
¢, and ¢, are constant. Let {a,},.s and {,},.s be sequences of positive constants
and let P and Q be, respectively, the solutions to the martingale problem for
> a,A, and 3 b, A, starting from 7. Since P and Q may be regarded as product
measures, it follows that they are either equivalent or mutually singular on each
AL If 3 ay(by/a, — 1) < oo then by Corollary (8.3) P and Q are equivalent
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on each _Z°. We will now show that P | Q on _#,° for all r > 0 if

__‘ﬁ«__>2<_b.£ — 1>2 = .
A <ak’~’ + bt/ \a, *°
Combining this with the above, we will then know that when there isa 2 > 0 for
which 1 < b,/a, < 1/2forallk € S; 3 a,(by/a, — 1)* < oo implies P is equivalent
to Q on each _Z° ¢t = 0, and }; a,(b,/a, — 1)’ = oo implies P | Q on each
ALt = 0.
To prove the assertion about singularity of P and Q, let
B = Bu):0<u <t and k| < 1]
Then it is easy to see that P < Q on ZZ/" and (dQ/dP)|, » = M™(t), where
M®™(1) = exp [Z,k,én <f(t) 2 _a (f’ﬁ —1—1n ﬁ))] .
a ay a
A simple computation shows that:
E M 0] = exp| = D (2 ) (2= 1)
- 2= et bt/ \a, .

Since M™(t) — M(t) (a.s., P), where M(t) is the density of the Lebesgue part of
Q with respect to P on _°, this shows that M(f) = 0 (a.s., P) if and only if

a 2/ b 2
Z(a,ﬁ-:b,})(a_],:_l) -

9. Appendix. We prove here Lemmas (6.20) and (7.1). All of the notation
and definitions are the same as in Sections 6 and 7.

If D is a region of the complex plane let X(D) be the Banach space of functions
g, from D into L such that for each F the function 2 — §,(F) is an analytic
function of 4. The norm on X(D) is given by

llg.lllo = ZrsuPiresp 2(F) -
Notice that if fe L., then the function 2 — f, which we again denote by f, is in
X(D) and [||f]llp = |flz
(A.1)  LeEMMA. Let (6.3) hold and let g, € X(D). Then A,g; € X(D,), and

o 1
(A.2) 14,90l = 2T 1llg. 1o, -

-2

In particular if fe L and 2 > 0, then
1 1 ’
A Sy = X5 1A, = S5 1112 -

A fly £
[4:f12 = I =— 5

Proor. From the definition of A4, and (6.19) we see that

Ag(H) = T Tyt F o ) T2 (7).
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2I,(k)/(A2 + 2¢) and §,(F) are both analytic on D,. Thus to see that A/x\gx(H) is
analytic on D, we need only check that the summation is uniformly convergent.
This as well as (A.2) will follow if we can show that

G:(F
(A.3) 2w 2w 2k 1k, F A HY21,(k) SUp; ¢ p, 291( )

+ 2¢p

1 "
<= ; 2ir SUPsep, [G2(F)| -
But the left hand side of (A.3) is bounded by |
: §.(F

(A4) ZF 2ik ac"ZIF(k) SupieDo %(21;

2¢p

_“r
A+ 2¢p

= 25 @SUPsep, SUpP;ep, |G:(F)| -

Finally (A.3) follows from (A.4) since for any number ¢ = 0, sup;. ,, |2¢/(2 +
20)| < (a + 1)2a.

(A.5)  COROLLARY. If (6.3) holds and fe L, then B,f = Y7, (A4)"f € X(D,),
and

(A-6) IB. f1llo, =

2

1l —a /-

(A7) LemMA. Let (6.3) hold and suppose that inf,.s¢, = a > 0. Let D be
any compact subset of D,. Then for 2 ¢ D and f ¢ L we may define A, f by the right
side of (6.19) and B, f as in Corollary (A.5). Moreover there is a constant K(D) < oo
such that for all fe L we have |||B, f|||, < K(D)|f|;.

The proof is the same as the proof of Corollary (A.5) and Lemma (A.1) except
that in (A.4) we use the bound a sup,. , |2¢,/(2 + 2¢;)| = a(D) < 1. Of course
K(D) is then 1/[1 — a(D)].

ProoF oF LEMMA (7.1). (a) The first inequality follows from (6.1). From
(6.16) we see that

(A.8) Rif = S+ B ()X, .
A4 2¢p
Thus
R fl: = T |- | IB A < sup, || Bifl; -
A+ 2c, A+ 2¢p

By Corollary (A.5), |B;f]; < IIB. flllo, = /(1 — @))|f]z, and it is easily
checked that if 4 ¢ D, then |1/(2 + 2¢)| < (1/|2])((« + 1)/2a) for all ¢ = 0.

(b) A review of the proof of Corollary (A.5) shows that if all ¢, > 0, then
B,fexists forall fe L, |B, f|; < (2/(1 — a))|f|z, andas 2\, 0 |B,f — B, f|; — 0.
From (A.8) we have, for 2 > 0,

AR, f = Zir ’

A4 2¢p

B ()X, -
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Thus

2R, f — By f(9)lz
2 A~ A~ PN
(A.9) = szpﬂz— B f(F)| + B f($) — Bof(9)]
= Xr 50 lef(F) of(F), + Drre s s | of( )|
S B — Boflt + Xireg ma |Bof(F), .
Since |B,f — B,f|; — 0 as 2\, 0 and B,fe L, both terms on the right side of

(A.9) go to zero with 4.
The last inequality in (b) follows from

Y 1; = Bf(9)| < 1Bof1z <

(c) The existence of B, on D, U D, and R; on (D, U D,))\{0} follows from
Lemma (A.7) and the observation that ¢(c) N [(D, U D)\{0}] = ¢

From Corollary (A.5) and Lemma (A.7) we know that if D is a compact subset
of D, U D,and fe L, then B, f ¢ X(D). Sincec, = aif F # ¢ and ¢, = 0, it fol-
lows from (A.8) that R, f € X(D) for every compact subset of (D, U D,)\{0}. Now
it follows immediately from the definition of X(D) that if g, € X(D) and 7 ¢ E,
then g,(y) is analytic on D.

It remains to show that for all fe L and all n¢ E, |R,(f — IIf)(y)| remains
bounded as 1 goes to zero. As remarked in the proof of Theorem (7.10),
R; X, = (1/2)X,. Thus from (A.8) and the definition of IIf we have

(A10)  R(f = TIf)(7)
= Srus 5 5o BTl + - BaJ9) = Bufi6)

Using the uniform positivity of the ¢,’s, F # ¢, and an argument similar to the
one in part (b) we see that the first term on the right of (A.10) remains bounded.

The second term remains bounded since 1?27‘(515) is analytic by Lemma (A.7).
(d) This follows immediately from Lemma (A.7) and (A.8).
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