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ON A CLASS OF SET-VALUED MARKOV PROCESSES!

By T. E. HARRIS
The University of Southern California

Let Z be a finite or countable set, = the set of subsets of Z, {¢:} a Markov
process with state space E. A process {£:*} with the same state space is
called associate to {&;}if Pe{é: n p # @} = Py*{&* n &€ #+ @} whenever £and
y are subsets of Z, at least one of which is finite. Criteria are found for the
existence of a process associate to a given one. Examples and applications
are given.

1. Introduction. We treat Markov processes {£,} whose states are subsets of
a finite or countable set Z. A much-studied example is the symmetric simple
exclusion process, shown by Spitzer (1970) to have a property that can be ex-
pressed thus (see the remark at the end of this section):

(1.1) Pl nn+ @y=Pl, n &+ O}, &ncZz,

provided & or 7 is finite. If £ is infinite and 7 finite, then P, is much easier to
study than P,, and hence (1.1) is of great use in treating the process.

For convenience we will let £ 7 denote & n 7 = @; thus the left side of (1.1)
is P,{¢, 4 7).

Very few processes have the property (1.1), so we ask whether there is a
different process {£,*}, which we will call associate to {£,}, satisfying, if £ or »
is finite,

(1.2) P #n) = PXE* 46}, &,9C Z,t=0.

If {£,*} has the same distribution as {§,} we are back to (1.1), in which case we
say {£,} is self-associate. Quite a number of processes have associates, although

the property of having one is quite special. One important property of any

process having an associate is that “creation from nothing” cannot occur; that
is, Pof&, = @} = 1.

In case Z is finite, we will find necessary and sufficient conditions for an as-
sociate process to exist and show how to construct one if it exists. In case Z
is countable we give sufficient conditions applying to many processes; in some
cases these conditions are necessary. |

As an example consider the case where Z = Z,, the d-dimensional integers.
Let N be a finite nonempty subset of Z; not containing the origin O, let n = |N|,
the cardinality of N, and let g, 2, 4,, - - -, 2, be nonnegative numbers with 4, = 0.
Let {¢,} have transitions described informally as follows, letting &,(x), the x-
coordinate of &,, be 1 if xe &, and 0 if not. If at time ¢+ we have |§, N N| = k
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176 T. E. HARRIS

and if £,(0) = O there is an intensity 2, for a change of £,(0) from 0 to 1. If
£,(0) = 1, there is an intensity x# not depending on &,\O for a change to 0. The
situation is similar for each coordinate &,(x) except that the translated set N 4 x
replaces N. In such a process two coordinates do not change simultaneously.
We will see that an associate process exists if and only if the following in-
equalities hold:

(1.3) oy (=1 (Y 2 0, l<k<n.

IA
A

In particular, if n = 2 the condition is 4, < 2, < 24,. If n > 2, we will see
that the associate process £,*, if it exists, has simultaneous changes of several
coordinates.

The existence of an associate {¢,*} can be useful in studying {£,}. First, we
observe that if S is any random subset of Z and if we put f(§) = Prob {S # £},
then the incidence function f is clearly a monotone function of £ and moreover
satisfies a further series of inequalities of which the most useful is submodularity
(strong subadditivity):

€ Un) + f§ Ny = fE) + fn) -

In fact

J€ nm) = Prob(S% (€ n p)
= Prob[(S#¢&) n (Sgn)] = f(€) + /() — & V).

Referring to (1.2) we see that the right side, and hence the left side, is mono-
tone and submodular in §. The usefulness of monotonicity is shown in Section
9, while submodularity was used in [4]. (Some processes not having associates
have the submodularity property.)

If {¢,} has an associate, if the transition functions are respectively P and P*,
if p is an invariant probability measure for &, and if #,(§) = pfn: n 4 £} then
we have the relation '

(1.4) k(&) = § PX(t, &, dn)h,(7) -

This form of the relation of association was used by Holley and Liggett (1975).
The harmonicity of A for P* proved very useful in their study of the extremal
invariant distributions for the voter model. We will use (1.4) and similar re-
lations in Section 9.

When the present paper was partly completed the author received a preprint
of [7] by Holley and Liggett, which uses the notion of association for certain
processes, and a copy of the preprint (1973) by Vasil’ev, Mityushin, Pyatetskii-
Shapiro, and Toom (1973). The notion of association, for special processes,
appears in (2.4) of that paper. A similar notion was used in a special form in
the proof of Theorem 1 of Vasil’ev (1969), and related ideas have been useful
for percolation processes (Broadbent and Hammersley (1957), page 635). The
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present paper has benefited from the work cited above. However, the results
here are mainly different; overlaps will be pointed out where they occur.?

REMARK. It was shown in[11]that if {¢,} is a symmetric simple exclusion pro-
cess then P {§, C 7} = P,{€, D &} if |§] < oo. Atfirst sight this appears different
from (1.1) but the two statements are equivalent because of the fact (which can
be seen from Section 7a) that the complementary process £,° has the same law
as §,.

2. Preliminary relations.

Notation. Let Z be a finite set, B the set of subsets of Z, C the set of functions
E — R, C, the set of functions fe C such that /() = 0. Let M be the set of
signed measures on the family .Z(8) of all subsets of E; M, denotes the set of
re Msuchthat p(8) = 0. Ifé C Z, 7 C Z, then £ £ means £ N 5 # @, i.e.,
§ touches 7. Note the distinction between p({(z}), in general not 0, () = 0.
Subsets of E are denoted by &, 7, {, and sometimes other letters. If x ¢ Z, we
will sometimes write £ U x instead of € U {x}, etc.

We introduce a linear mapping ¢ : M — C defined as follows:

(2.1) PIE) = Tiygae ({0, E€B.

If 12 is the distribution of a random subset S of Z, then ¢ = ¢ is the “in-
cidence function” of S, q(§) being the probability of S#¢. The function & —
1 — g(§) = Prob {S° > &} is the correlation function of the random set S°.

We see from (2.1) that ¢ maps M (2% dimensions) into C, (2! — 1 dimensions)
and is hence not invertible. However, assuming x(E) known, it follows from a
modification of the Moebius inversion formula [10] that if f(¢) denotes the left
side of (2.1) where p2e M, then p is obtained from f by

(2.2) m{n}) = w(E) - d5({n}) + flnh) »
where d,({7}) = 1 if » = £ and 0 otherwise, and ¢: C — M is given by
(2.3) Wn}) = Zac, (=17 v 4), 1€k, feC.

Note that ¢1({7}) = 0 if y = @, $1({@}) = —1. \
The set I of incidence functions, which is the image under ¢ of the set M, of
probability measures in M, is a subset-of C,. Since M, is (24 — 1)-dimensional
and can be recovered from 7 by (2.2) with (&) = 1, we see that I is (27| — 1)-
dimensional. From (2.2), ¢ maps I onto M, — d,, a (2'#" — 1)-dimensional
subset of M;; since ¢d, = 0, it follows from (2.1) that ¢ maps M; — 4, onto 1.

Hence, from linearity:

(2.4) LeMMA. ¢ maps M,1: 1 onto C,, ¢ maps C,1: 1 onto M,, odf = [ for
feCo dop = p for pre M,

2 In the abstract [5], the author used the word ““reciprocal”’ rather-than ‘‘associate,”” but the
former word has been used for other kinds of processes.
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(2.5) DEerINITIONS. Let 0.(y) = 1 if £ 7 and O otherwise. Then 6, ¢ C,.
From the definition of ¢ and the inverse relationship of ¢ and ¢ we have

(2.6) ¢(0; — ;) = 0, , P, =0, — 9.

Since the measures {0, — d,, § = @} are a basis for M|, the functions {6.,¢+ @}
are a basis for C,, and M, and C, are duals.

2.7) DerFINITIONS.  Let (f, ¢) = 25, fié)n({€}), feC, pe M. This is also
written as (g, f), since it will be clear which element is from C and which from

M. 1t is easy to verify that (6., ¢0,) = (¢0,, 0,), &, 7 € B, whence

(2.8) (fs¢9) = (4f. 9), [ 9eC,.
Similarly, since (¢(d; — 8,), 8, — 8,) = (3; — 35, ¢(3, — 0,)),
(2.9) (pu, v) = (1, @v), p,veM,.

If fe Cy, we have [ = 37,., ¢f({n})0,; this can be checked from (2.6). It fol-
lows that

(2.10) I=RAD) + Lo $f11)0,, feC.

3. Associate processes. With the notation of Section 2, still assuming Z finite,
let {T'} denote a Markov semigroup on C. Our Markov semigroups will always
be continuous in ¢ and satisfy 7,1 = 1, even in later sections when Z is infinite;
P, &, T), P, and & will denote the corresponding transition function, prob-
ability measures and generator; {§,} will be a corresponding standard process.
A Markov semigroup {7,*} on C is called associate to {T} if

(3'1) Ttaf(’?) = Tt*av(s) H S, VRS B 5

corresponding to (1.2). If {T,*} exists it is uniquely determined by (3.1) and the
relation 7,*1 = 1. The corresponding transition function, etc. will be denoted
by P*(t, &, I), etc. '

It follows from (3.1) that {T} is associate to {T,*}. Putting » = @ in (3.1),
we have T,*0,(§) = 0 = T,0,(), which shows that T,C, c C,. Hence &, = @
implies §, = @ for all # > 0, a.s. (P,). Note that also T,*C, c C,.

If {T,*} exists, let {U,*} be its conjugate semigroup, acting on M:

(3.2) U A) = § p(d§)P(1, €, A) peM, ACE,

(3.3) Ui f) = (i TH) feC.peM.

Putting /= 1, we see that U,* maps M, into itself. Moreover from (3.2) and

the relation P*(t, @, {(»}) = 1 we have

3.9 U*o, =0,, t=0.
From (3.3), (3.1), (2.6) and (2.8), putting 8, = 3, — 4, we get
(0., U*d))) = (T,*0,, 6,)) = (T.0,, 8, = (T, 99,’, $0,)

= (0, ¢T.00) &, nek.
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Hence

(3.5) Up = ¢T,op, reM,.
Combining (3.4) and (3.5), we get

(3.6)  Urp=9¢T.0(r — mE)dy) + w(E)dy = 9T, op + p(E),, peM.
4. Existence condition (finite case). ’

(4.1) DErINITIONS. Let & be the class of continuous semigroups on C (not
necessarily Markov) satisfying (a) 7,1 = 1, t = Oand (b) T,C, © C,. If {T,} .,
call {T,*} associate to {T} if {T,*} ¢ & and (3.1) is satisfied. If .o is the gener-
ator of {T,} € &, we say that . ¢ .S

4.2) LemMa. If{T\} € & there is a unique associate {T,*}, whose conjugate
semigroup {U,*} is defined by (3.6). Furthermore:

(@) U*dy = dy; UM, C My; U*p(B) = p(B) for pre M.
(b) T*Cyc Cp, Ti*1 = 1. ’
(€) (T*)* =T, t=0.

PRroor. The definition of {U,*} shows that it is a continuous semigroup sat-
isfying (a). Define {T,*} by (3.3). Since (T,*f, d,) = (f, U,*d,) = (@), we
have T,*C, c C,. Since (T,*1, ¢t) = (1, U*p) = 0 if pe M,, T,*1 is constant
as a function of &, if ¢ is fixed. Since T,*1(®) = (1, U*d,) = (1, 0,) = 1, we
have T,*1 =1, proving (b). Moreover, T *0.(p) = (T,*0,, 9, — 0g) = (0.,
U0, — 05)) = (e ¢T. (3, — 84)) = (¢0,, T.0,) = (8, — d,, T,0,) = T,0,(¢)-
Hence {T'*} is associate to {T,}, and we have uniqueness because {T,*} is deter-
mined by (3.1) and T,*1 = 1. It is easily seen that (T,*)* = T,. []

The following lemma is little more than a rephrasing of (4.2) in terms of
generators.

(4.3) LemMA. If {T\} € & the generator 7 * of {T,*} and <8* of {U,*} have
the following properties.

(a) 7*0,(8) = S70,(7), &, pe&;

(b) ¥*1 =0, F*, =0, F*o, = p.70,, £ E;

(c) *C, c C,, F*M, C M,;

(d) B = pFpp = $o7p(i — (H(B)d,), & M; ‘

(e) * is determined uniquely by 57*1 = 0 and (a).
4.4) THEOREM. Let {T,} be a Markov -semigroup on C. Then{T,} has a Markov
associate if and only if (a) 7C, C C, and (b) ¢.o70,({n}) = O for each &, p € E,
§ #+ 9. Moreover, $.o70.({n}) is the intensity for the transition & — 7, & = 7 in the
associate process.

ProOF. Suppose (a) and (b) hold. From Lemma 4.2, there is an associate
semigroup {7,*} whose conjugate generator <#* satisfies <#*1 =0, and
F*0({n}) = ¢-70({n}) from (4.3) (b). Consider the Markov semigroup {7}
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whose conjugate generator <7’ satisfies <270.({n}) = ¢-%0.({n}), & # », this
being the intensity for the transition from & to 5 in {T'}; since also £Z'1 = 0,
we have #* = &%’, whence <#* and {T,*} are Markovian. Conversely if a
Markovian reciprocal {T,*} exists, then T,*C, C C,, as pointed out in Section
3. Since ZZ*0.({n}) = ¢.70.({y}) is the intensity for the transition & — » if

& =+ 9, (b) is true. []

4.5) DEFINITION. Let &, be the class of generators in . that are Markov
and have associates. :

(4.6) ReEMARK. It follows from Theorem (4.4) the &7, is closed under
formation of positive linear combinations, and that (¢, %] + ¢, %)% =
¢, ¥ * + ¢, 9,*. Later we will see that there are cases of probabilistic interest
where &7 and %7, are Markovian and .7, or .97, is not in &/, but %] + .,
is in &,. .

4.1. Discrete time. Still supposing Z finite, let P be a transition matrix (i.e.,
Markov) with elements p(¢,7) and let PA(§) = 31, p(§, 9)f(y). A transition
matrix P* is called associate to P if P*0.(n) = Pf,(§). As in the continuous
case existence of an associate implies PC, C C,. By arguments like those above,
if an associate transition matrix exists its elements are

(4.7) PHE ) = Sollnd) + $PO)) -

It can be shown that if P is any transition matrix such that PC, c C, and if
¢PO({n}) = 0 for each &, y = @, then (4.7) defines an associate transition ma-
trix. (If » = @, the right side of (4.7) is 1 — P#,(Z), which is = 0 for every
transition matrix P.)

If U* is conjugate to P*, (4.7) implies

U*(0, — 0,) = ¢PO, = $Pp(d; — 05) ,

implying U*p = ¢Pop, pe M, It can be shown from this that if Q is another
transition matrix with an associate transition rmatrix Q*, then PQ has the as-
sociate transition matrix (PQ)* = Q*P*. By induction, (P*)* = (P*)*, so that
existence of an associate transition matrix implies existence of an associate
process.

5. The case of countable Z. Let Z be a countably infinite set, E the set of
all subsets & of Z. If A C Z, then &, means § N A4, E, is the set of all subsets
of 4, £(4) = |§ n A|; if xe Z, §(x) means &({x}) and is a coordinate of §. E is a
compact matrizable space with convergence &, — & meaning §,(x) — &(x) for
each x, and the measurable subsets of & are the Borel sets B(E). C is the space
of continuous functions & — R,, supremum norm. If 4 C Z, 4 = @, then C,
is the set of f in C depending only on coordinates §(x), xe 4. Let C° =
Ui<14<e C4 be the class of cylinder functions. The functions é,, § € &, are defined
as in (2.5), allowing & and » to be infinite.

A Feller semigroup (FSG) will mean a continuous Markov semigroup {7} on

-
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C; according to our convention this implies 7,1 = 1. An operator % with
domain in C will be called a generator if it is the generator of a FSG. A FSG
{T,*} is called associate to {T,} if

(5.1) T.0(n) = T.*0,(5) , 120, [¢f or [p] < oo
The corresponding generators % and .%* are also called associates.

NoTE. In Section 5, the words ‘“‘generator,” “semigroup,” and “associate” will
8 group,’
refer only to the Markov case, unless the contrary is stated.

If (5.1) holds for finite § and 7, it also holds if only one is finite. For example
if |§| < oo, take 9,, T 9, |7.] < co, and use the Feller property (continuity in 7)
on the left side of (5.1) and monotone convergence on the right side.

{T,*} is uniquely determined by (5.1), since if fe C,, |V| < oo, f is a finite
linear combination of 1 and the incidence functions 4, § < V.

As in the case of finite Z, we see that if {£,} has an associate, then P,{§, =
D} = 1, =0.

(5.2) DEerINITIONS. If V' Z, 1 < |V| < oo, let &” be the set of gener-
ators . satisfying (a) fe C' n Cy,, 1mp11es f=0; (b) &C, c C,. Let
= Uisivi<e .

Intuitively if .%e &, coordinates &,(x), x¢ V, do not change with time,
while the distribution of V' n &, does not depend on (Z\V) n &,. We have the
following elementary facts about &, .

(5.3) LEmMMA. Let e &, corresponding to the FSG {T,}. Then (a) fe C,,
implies T, f = f; fe C, implies T,f e C,. (b) % is bounded and if [ = f, f, where
fieCyandf,e Co\v then f = [, and T.f= LT fi= fo Do (z"[nt) o2

Proor. Since %C, c C, and C, is finite-dimensional, 7, f = exp(+.%)f C C,
if feC,. Let 4, = A¥R,, 2> 0, where R; is the resolvent of &7, If fe
C'n Cors then T.f= lim, exp(tAX)f, and A f = ZRI./Q/f: 0, so th:f.
This extends to f € C,,, by continuity. It follows that P,{&,(x) = &(x),x¢ V} = 1,
t=0,§cE. Hence T,f = f,T,f, if fis as in (b), and the other assertions in (b)
follow. [J

Note that if %e &, C°is in the domain of &7, since any fe C° is a finite
sum of products f, f;, fie Cy, 1€ Cpyp.

(5.4) LemMA. (a) If V. .C V', then &, C &,.. (b) If e &, and * is
associate to .7, then * ¢ &,. (c) Let C,, be the set of functions B, — R,.
Let 87, %7, € &y, with projections 57, 57} defined in a natural manner on C,;,.
Then &7, and 97, are associates iff 7! and %7, are associates.

Proor. (a) follows from the definition of Z and Lemma (5.3)(b), noting
that each fe Cy, is a finite sum of products f, f,, where f, ¢ C, and f; e Cyny. To
prove (b), suppose W < Z\V, 0 < |W| < co. Ify C Wthen T*0,(§) =T,0.(n) =
P&, %€} = 0,(§), whence 4, = 0, implying 5/*f = 0 for fe C° n Cyhy. If
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ncV, T*0,(8) = T.0.(n) = T.0,.,(n) because §,(Z\V) = 0 a.s. (P,). Hence
(5.5) Tt*eﬂ(é) '—0’7(‘5) — TtoenV(Y]) - 0$nV(7]) , nC V.
t t

The limit of the right side of (5.5) as 7 | 0 is %79, ,,(y) uniformly iny c ¥ and
§ c Z. For fixed n C V, the function § — 9, ,(y) € C, whence *f, ¢ C, if
n C V, from (5.5). Hence &7*C, C C,. The proof of (c) comes readily from
the definition of association and is omitted. [] i
(5.6) LEMMA. Let e &, and let S7* be associate to . Then || .&*|| <
d,||-S7|| where d,, < oo depends only on the cardinality k of V.

Proor. It can be verified that ||.%7|| is equal to the norm of the projection
of &7 on C,,, so we may suppose Z = V. From (4.3) (d), Z*p = ¢ Ypp,
peM. It is easily verified that ||py|| < ||¢|| (variation norm for p) whence
[|-ou|| < ||| - ||#l]|. The norm of ¢ evidently depends only on |7]|; call it
dyif|V| = k. Then||<#* ]| < dyl|-5 | - ||| whence ||| < &[5 | if [V] = k.
Finally, as for any finite-state chain, we have

(|7 *|| = sup, =, sUP; [ *f(§)] = supypy1 sup; |(fs Z*0,)| < ||Z*]|. [

5.7 THEOREM. Let &7, 57, --- be generators satisfying the following
conditions.

(a) %egyi, [V iEN<oo,and | 7| £ K< o0,i=1,2,..4;

(b) for each x in Z, there are at most R values of i such that x e V,;, where
R < oo does not depend on x;

(c) each 57 has an associate S7;*.

Let {T,*} and {T,**} be the semigroups corresponding to 3.7, .87, and ) r_, S7;*.
Then {T,"} and {T,"*} converge to associate Feller semigroups {T,} and {T*}; i.e.,
if fe C, lim,_,, ||T,"f — T.f|| = O uniformly on finite t-intervals and similarly for
{T,»*}. The corresponding generators have the form S7f = > 7, f and 7*f =
> S*f for fe CO.

Proor. The convergence for T,” follows from the existence theorem of
Holley (1972) with minor modifications of the proof. From Lemmas 5.6 and
5.4(b), we see that the .o7;* satisfy the same conditions as the %7 with the
same V, but possibly a different K. Hence {T,**} converges to a FSG {T,*}.
Clearly (5.1) holds if £ and 5 are finite, and hence if one is infinite. []

Remark. If {T,"} — {T,} and there are associate semigroups {T,"*}, then ob-
viously lim 7,"*6() = lim T,8,(§) exists for each finite 5, uniformly in ¢, since
6,¢e C°. However, under the conditions of Theorem 5.7, we have now shown
convergence uniformly in » for each finite &.

A stronger version of Theorem 5.7 might be constructed using results of [9],
where an existence theorem is given with fewer restrictions on the generators.

6. Examples: some elementary processes. We consider, for finite sets Z,
some elementary generators which all map C, into itself. Even those not having
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Markov associates may have probabilistic interest; see Section 7, where we
obtain various processes by combining these elementary generators. See Section
5 for the definition of &§(x) and &(A4).

a. Puredeath. Let Z =2z Uy, y + z; given p,, ¢, = 0, define .7 by

(6.1) SfE) = E@mEWD) + 1l — EWNIfE\2) — f(€)) -

Thus the intensity for 1 — 0 at z is g, if £(y) = 1 and g, if £(y) = 0. We cal-
culate 70,(z) = —pp, O,z U y) = —py, 0,,,(2) = — o, and 0, () = 0
otherwise. From Theorem 4.4, the matrix ££*0,({y}) has the form

7
@ z ¥y zUy
@ 0 0 0 0
§: oz o = pe— o — (o — )
y 0 0 0 0
zuy 0 0 o )

This is Markov if and only if p, = p,, in which case % is self-associate.

b. Jump. Again let Z =z U y. Let % correspond to intensity 1 for the
transition z—y, with no other transitions. That is Vf(§) = &(z)(1 —
EYNY) — f2)- Then B*o({y}) = 1, Z*o({y U 2}) = —1, F*3,({y}) =
—1,Z*6,({y U z}) = 1, and &#*d,() = 0 otherwise. Hence .o~ does not have
a Markov associate.

C. Permutation. Suppose 2 < |Z| < co. Let 7 be a permutation of Z and let
Zf(§) = f(m€) — f(§), corresponding to an application of = at random times
with intensity 1. We take %/f(®) = 0. Then % has a Markov associate,
corresponding to the permutation =~*.

d. Birth processes. Let Z =z U N, z¢N,1 < |N| < co. Let A(§) = 0 be de-
fined for £ c N, with (@) = 0. Let

(6.2) M) = AEf(E v 2) — f§), z¢€,
f(E) =0, zek.
The only transition is 0 — 1 at z, with intensity 2(§). A special case of this
process is a component of the contact processes of [4], and the process is related
to the proximity processes of [7].
After some calculation, the inequalities of Theorem 4.4 (b) become

(6.3) 0 = Z*5.({n})

= Sacpe (CDAA0F U 4),  zefcn, E# 0,

since Z*0,({n}) = O for all other pairs £ = ». Hence an associate process {£,*}
exists iff the inequalities in (6.3) hold.



184 T. E. HARRIS

If 2 depends only on |£|, say A(§) = 4, the inequalities in (6.3) become
(6.4) (= 1yE-r+tA-k-m2 >0, 0sr<k<n,

where n = |N|, A2, = 4, — A,_;, and A=*02, = A~P2,, — A-?2,_,p= 1.
It can be verified by induction on r that (6.4) holds iff

(6.5) (—1DF+A*2, =0, I1<k<n.
These inequalities are the same as (1.3).

REMARK. The simplest cases where 2, = 0 and (6.5) holds are (a) 4, = kA,
k=0,1,...,n;and (b) 2, =0, 3, = Afor 1 < k < n.
To determine the nature of {£,*} when it exists, note from (6.3) that

(6.6) FB*3,5e0,((1 U € U YY) = 0.0 U €)
+ Z*0,,({ln V€ VD)

forzen,z+79ENnn=@,y¢& Uy We then obtain
(6'7) .@*5”6({77 U 5}) = Zrce .@*52({77 U T}) s zZen, 2 F7, &n n=0,

using (6.6) and induction on the size of ¢.
From (6.3), the process {€,*} has the intensity

Taene (= DAPAy U A) = Z0,({n})

for the transition z — 7 if z€ 7. We see from (6.7) that if {,*} is in the state
¢ at any time, with ze¢’, and if z e 5/ # z, the intensity is &&*0,({r'}) for the
“event” that simultaneously all coordinates of »’ that are not already 1 become
1. This “event” is not observable if 7* — &’. Such processes were called “branch-
ing processes with interference” in [7].

In the special case where N =y, i.e., [N =1, and A(y) = 4, we have
#*6,(z U y}) = 4 from (6.3). That is, if {§,} has the intensity 4 - §,(y) for the
transition 0 — 1 at z, then {£,*} has the intensity 2-£,*(z) for the transition
0 — 1 at y. From the additive nature of the relation of association, it follows
that if 1 < |N| < oo and A(€) = 2 - €|, then &Z*5,({z U y}) = 4 for each ye N,
and <Z* is then determined by (6.7).

In the special case A(@) = 0, 2(§) = Afor§ # ¢, we have F*o,(Jz U N}) = 2
and £Z*d,({y}) = O for every other 7 = z.

7. Processes in Z,. Let Z be the set Z, of d-dimensional integers, with O
denoting the origin. _

If %7, ¢ &, (see Definition 5.2) and has a Markov associate .%/,*, then Theo-
rem 5.7 implies that the generator % = .., -, has the Markov associate
S = 3 .7,*, where we define

(7.1) SfE) = Aofl6 — %) [ =8+ ),
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and 7 * = (V,)* = (¥,*),. That is, .7, is & shifted to x. We now

combine some of the elementary generators of Section 6, taking Z = Z, through-
out this section.

a. Stirring and symmetric simple exclusion. Let Ny, - - -, N, be finite subsets of Z,
let 4,, ---, 4, be > 0, and let 7; be a permutation of N;. Let %7, = > 1,.9;),
where .%7;, is constructed from z; as in Section 6c. (The case k = 1 corre-

sponds to the discrete version of the stirring process treated by Lee (1974)).
Take V' = |J N;. Then % = 3} .97, has a Markov associate with =;~! replacing
;.

Now suppose N; = O U x;, 1 < j < k, where the x; are distinct from each
other and from O. Suppose no #; is the identity. Then .9 corresponds to a
symmetric simple exclusion process where a particle at x has intensity 4; for
jumping to x + x; if the latter is empty, and the same intensity for jumping to
x — x;. Since 7; = m,;7%, this process is self-associate, as shown essentially by
Spitzer (1970). The proof just given is more special because it requires an upper
bound on the jump size.

Taking k = 1 and |N| = 3, we obtain examples which may be interpreted as
motion of particles with speed change. These will not be described here.

b. Contact processes (extended). Let NC Z, 1 < |N| < oo, OgN. Let
A(§) = 0 depend only on {§(x), xe N}, 4(§) = 0 if £(N) = 0. Let a constant
¢ = 0 be given. Take V=0 U N, let

(71.2) A f€) = (1 = EONAE)f(E U 0) — f()) + 1E(O)(f(E\O) — f(§))

and put % = } %7,. We will call this a contact process, extending the termi-
nology of [4]. The birth rate at x depends on the condition of N -+ x; the death
rate is constant.

Suppose 4(§) depends only on £(N), say A(§) = 4, if §(N) = k. Let n = |N|.
Using Theorem 5.7 and a and d of Section 6, we see that {£,} has an associate
if (6.5) is true (or more generally (6.3) with appropriate changes of notation).

Moreover, (6.5) is necessary for the existence of an associate process. For, sup-
pose {§,*} exists. Let =0 U N, and let ¢ = ¢, be defined as in (2.3), taking
Z = V. Fixtand define a 1-step transition function P'(§, dy), for &,y C V, by

P'(§,dn) = P(6, n Vedy).
Define P'* similarly using §,*. Then ’
PO = T0) = TA0,6) = P*0,6).  EncV,
so that P" and P’* are associates. From (4.7) we have
(7.3) PP'O({C}) = 0, eV i+0.
Letting £ = O in (7.3), replacing P'0, by 6, + 1578, + o(f), and noting that



186 T. E. HARRIS

P0,({n}) = 0if n = @ or O, since ¢, = 6, — d,, we find

(7.4) 65057} 2 0, nCV.g£@ or 0.

It can be verified that VQ/OO‘: 7, 0,, where %7, is given by (7.2). Moreover,
writing the right side of (7.2) as %7’ + .&7,,”” where .%7,”" corresponds to death,
we find that ¢.7"0,({n}) = 0 if O ey, O # 7 because this is the intensity for

the transition O — » of the associate to a death process and hence of the pro-
cess itself. Hence we have

(7.5) $750o({n}) 2 0, OencV,0=%#7.

But the inequalities in (7.5) are just (6.5) or (1.3), and necessity is proved.

If IN| = 1, say N = {y}, it follows from Section 6 (2 paragraphs below (6.7))
that {£,*} has the same law as {£,} with {y} replaced by {—y}. Hence if 2, =
k2,0 < k < |N|, then {£,*} has the same law as {§,} with N replaced by —N.
In particular if N is symmetric with respect to O, then {§} is self-associate.

If 2, = 2, 1 £ k < |N|, we have the case mentioned at the end of Section 6,
and {£,*} is an example of a branching process with interference (see [7]).

Since a pure death process is self-associate, the associate of a contact process
has the same death intensities as the original process.

c. Variable death rates; the voter model. We are led to a wider class of pro-
cesses, where p depends on ¢, if we combine the death process of 6a with the
process of 6d. Again take NC Z, 1 < |N] < oo, O¢N, V=0 U N and let
Uy = t = 0 be given. For each y ¢ N define %7 and 7" by

SEfE) = EONmED) + w1 = EONIFE\0) — f(§)),  feC,
7€) = ()1 — EON(fE U 0) - f(9)) fec,

where 4 = p, — g, Then &7/ 4 97" corresponds to death at O with rate g,
if y is occupied and g, if not, and birth at O with rate 4 if y is occupied. From
Section 6a and the next-to-last paragraph of Section 6, we find that the as-

sociate of %’ 4- %" has the following matrix <Z'*d,(y), restricting & and 7
to O U y.

7
%) o ‘ y Ouy
» 0 0 0 0
§: 0 o == pe— A= (¢ — )
y 0 0 0 0
Ouy 0 0 Ho —

This matrix is Markov if 2 > g, — g, = 0, which we henceforth assume.

Putting &7, = 3, .y (&) + 7)), % = 3] 97, we get a process {£,} with
an associate process {§,*}. The intensities are as follows, given &, = £ or £,* =
respectively, putting N’ = —N. In the table, y e N.
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Before After Intensity
§(x)=0 §(x) =1 (I —&(x)A-&(x + N)
§(x) =1 §(x)=0 E(X) [l N — (1o — 1)E(x + N)]
£x(x) =1 £5(x) =0
{5;*(-’5 +y)=0 {ft*(x +y) =1 )L — &(x + ¥)(¢0 — 1)
§X(x)=0 §X(x) =1 (1 = €))A — (1o — m))EN" + x)
§4(x) =1 §X(x)=0 E(X)(lN| + (o — m)E(N + X))

Note that Z is an absorbing state for {£,} iff 1, = 0. The following cases are
of interest.

(i) If py = p, we have a contact process. If also N is symmetric (N = N'),
then {§,} is self-associate. If py < p,, we have transport as well as birth and
death for &,*.

(i) If 2 = p, — py, we see that |£,*| can never increase with 7, and hence
has a relatively simple behavior. This can be of great help in studying {¢,} by
means of (5.1). If in addition g, = 0, {£,} is a special case of the “voter model”,
which Holley and Liggett studied by means of {£,*}.

(iiiy If Z = Z,, p, = 0, and 2 = p,, then {£,} is a degenerate case of the time-
dependent Ising model of Glauber (1963), if we identify the coordinates 1 and
0 with the spin states 1 and —1 and take N = {—1, 1}.

(iv) Some of the processes {§,} of the present Section 6 are examples of the
proximity processes of [7], although the author has not verified that all of
them are.

8. Processes of constant size; double stochasticity. The process {¢,} is said
to have constant size if P{|&,| = |§|} = 1, t = 0 whenever |§| < oo.

8.1) THEOREM. Suppose |Z| < oo. If {£,} has constant size and has an as-
sociate {£,*}, then (a) {§,*} has constant size; (b) both processes are doubly sto-
chastic, i.e.,

(8.2) Zee=in P66 {nh) = 1,
and similarly for P*.

Proor. Let [Z]| = n; let m be an integer, 0 < m < n. If S is any random
subset of Z such that Prob (|S| = m) = 1, and if ¢(4) = Prob (S = 4), then

(8.3) Zia=n-m 9(A) = () — 1,
(8.4) Ziacz 9(A) =2%(1 — (3)") -

To get (8.3), write the left side as

(8.5) 2iic1=m PTOD (S = C) 371 41o0-m 0c(4) -

Only one of the (},) terms in the inner sum is 0 rather than 1, whence we get
(8.3). A similar argument leads to (8.4).
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If |¢] 4 |9] > n, then 1 = P {&, # &} = P.* {§,* £ 1}, showing that P*{|§,*| =
|§]} = 1. From this and association,
(8-6) Py B) = XZciozim P*(t, B, {CHO(C, A)

BcZz, Ac Z.
Summing over all B such that |B| = n — m, where m = |4|, and using (8.3),
we get
(8.7) () — 1= Zigien-m (1 — P*(t, B, {A7)))
= () — Zipi=n-n P*(t, B, {47) .

Hence for each A’ — Z we have

(8.8) Dippi=ian P*(t, B, A') = L.
Summing over all A’ ¢ Z and changing the order of summation, we get
(8.9) Yipez Daarqan=p P¥(t, B, A) = 2.

Each inner sum in (8.9) is < 1, whence each must equal 1. Hence {§,*} is of
constant size and, from (8.8), is doubly stochastic. Then {,} is doubly stochastic
since it is associate to {£,*}. [I

REMARK. Double stochasticity was used by Lee (1974) in proving a limit
theorem for the “stirring processes” mentioned in Section 7, and might be of
use in some other cases with infinite Z. Theorem 7.1 might be extended to the
case of infinite Z, with suitable technical assumptions.

The author does not have an example of associate processes of constant size
other than stirring processes like those of Section 7a.

9. Application: convergence and invariant measures. In thissection Z = Z;.
A measure will always mean a probability measure in E. Convergence means
weak convergence. A measure p will be called time invariant (for &,) if p(A) =
§ ((d€)P(1, &, A), translation invariant if p(A 4 x) = p(A), and invariant if it is
both time and translation invariant. The processes &, considered in this section
will automatically have translation-invariant transition functions: P(t, § + x,
A+ x) = P(t,&, A). In this section g will always be a measure and

U (4) = § pd)P(t, €, A).

(9.1) DEFINITION. Let (%" be the class of Feller semigroups with generator
S = Y ,e7,, where 7, is as in (7.1), &7, € &, for some V, (Definition 5.2),
and &, has a Markov associate.

(9.2)  TueoreM. Let {T,} e ¢ and satisfy the following conditions.
(a) Foreacht>O0andn=1,2,...
7 SUP;.je1=n PAAE €} < 1.
(b) Foreacht>0,xeZ, &+ @, we have P{§, % x} > 0.
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Then: (i) U,0, converges to a measure v. (ii) If v = 0, then for each yt we have
lim U, pt = 0. (iii) Ifv # 0y, then v({@}) = O, and if p1 is any translation invariant
measure then im U, x = p({@)o, + (1 — p({@}))v. Hence every invariant p has
the form c¢d, + (1 — c)v.

For criteria whether v = d, or not, see [3], [4] or [7].

Assumption (a) of the theorem does not hold for processes having ¢ = Z as
an absorbing state; for such processes, the situation can be very different. See
for example the discussion of the voter model in [7].

Assumption (b) cannot be dropped entirely. However, at least if d = 1, it
can be weakened; see Theorem 9.20 below.

I am indebted to David Griffeath for the present form of Theorem 9.2; the
original statement gave only the form of the invariant measures, not convergence.

Theorem 9.2 is very similar to Theorem 4.11 of [14], although not contained
in it. The results of [14], applying to certain discrete time processes named for
O. N. Stavskaya, extend results of Vasil’ev (1969), Vasershtein and Leontovich
(1970), and others. The present proof borrows several ideas of [14], but makes
extensive use of (9.5), which has no counterpart in [14]. Some ideas of [6] and
[7] are also used. :

See Section 11 for a brief discussion of hypermonotonicity, a notion used ‘in
[14], which is closely related to association.

We need several lemmas for the proof. The conditions of the theorem will
be assumed, and {§,} and {£,*} will be standard processes governed by {7}
and {T,*}.

(9.3) LemMA. lim, ., P*{0 < |§* <k} =0,k >0, £cE.
Proor. We have from 9.2 (a)
sUpi<i P*{E* $ Z) = sup i PL{E 46} < 1, t>0.
That is, inf, ., P.*{§,* = @} > Ofor fixed r > 0. Since (» is an absorbing state,
the lemma follows from familiar results about Markov processes. []
(9.4)  DeriNITION. If 2 is a probability measure in E let £,(§) = pfn: n 4§ &},
and when dealing with a fixed p, write A, instead of 4, ,, putting # = h,. Note
that 2,(@®) = 0.
Writing ,
hsln) = §§ #(dE)P( + 5, €, dr)0,(7)
= § () § P(t, €, ) § (s, L, dnf(p)
replacing the inmost integral by § P*(s, », dy)f.(y), and changing the order of
integration, we obtain .

®-5) hevo(n) = § P*(s, 5 dr)h(y) » 5,620, |9 < oo,
and if g is time-invariant,
(9-9) h(y) = § P*(s, 7, dr)h(y) -

These useful forms of the relation of association were utilized in [7].
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°.7 LEMMA. For any p, and any k, t > 0, |p| < oo, we have

lim inf, .., §,,54 P*(5, 7, dr)h(r)
= lim infs—»oo ht+s(77) é lim SuPS—wO ht+s(7])

< limsup,_, §,50 P*(s, 7, dr)hu(y) -
Proor. This is an immediate consequence of (9.5) and Lemma 9.3. []

The main step remaining is to show that if x is any translation invariant
measure and p({@}) = 0, then inf ., &, (y) — 1 as k — oo for an appropriate
t, > 0. For this we use some ideas of [14], but in order to avoid certain inde-
pendence assumptions of [14] we use some results of [6].

9.8) DEerFINITIONS. Recall the definition of V, in (9.1). If " cC Z, let
S(Vy =V u U, (¥, + x), where |J’ is taken over all x such that (V, 4 x) 4 V.
Put S(V) =V, S(V) =S¥) and S, (V) = SES(V)), n=1,2,---. Call V'
and V" strongly disjoint if S(V') n V"' =V'n S(V") = @. Below, V" and V"’
are finite.

(9.9) LemMA. Suppose f'e Cy,., f"eCps |||, IIf7| £ 1; and S, (V') and
S.(V") are strongly disjoint for m + n < k — 1. Then for some t, > O depending
on ||7,|| and |V,| (not V' or V")

TS f") — (T NT S < 5™ k(@) 0=t=n, k=1,2,....

The proof is omitted, since it follows closely the methods and results, espe-
cially (2.8) and Lemma 3.5, of [6]. However, note the following results of [6]
which are used.

(a) If fe C, for some finite V, then T, f = }v_, (t*/k)*, 0 < t < ¢,

(b) If S, (V") and S, (V") are strongly disjoint for all m 4 n < k — 1, and f’
and f” are as above, then 7*(f'f") = Yk, (5) " f' 7% f”, and 7" f' ¢
Cs,pny F=0,1, ...

(9.10) DEFINITION. For |§] = 2, let A(§) = min, e, .., [¥ — )|

(9.11) LeMMA. Givene > 0and m = 1,2, ..., there exists L = L(e, m) such
that |p| = m, A(y) = L implies

(0.12) & ILoey (1 = §u2)) — [Lee, &1 = E0) <6, O=t=1,8ek
where t, is as in (9.9).

The proof is readily carried out by induction on m, using (9.9).
For convenience we give a result used in [14].

(9.13) LeMMA. Let X, - -., X, be random variables such that 0 < X,. < 1 and
Prob(X; > p)<e, 1 i<k, for some ¢ >0 and some 0 < p < 1. Then
EX, - X) < ¢ + 0F)

For k = 2, this result follows from number 378 of Hardy-Littlewood-Pdlya
(1964), and the method used there also can be used for general k.
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©(9.14) LEMMA. Let u be translation invariant with p({@}) = 0. Given ¢ > 0,
there exists an integer k, = ki(¢) such that || = k, implies h, (7) = 1 — 3e.

PROOF. Since both g and the transition function'are translation invariant,
we have ‘

pEE( = () =1 =,

where ¢ does not depend on x. From 9.2(b), ¢ = 0 and hence there exists 2 <1
such that '

(9.15) e (L — E () > p) <c

Now write .
(9.16) 1 — k() = § (d6)& Toe, (1 — &, (%)) -

From (9.12), (9.13), (9.15) and (9.16) we have
U hy(n) < § 4(d8) ey o1 — £,(3) + ¢ < 26 + o7,
| 2= |1l < o0, A(y) = Le, I7]) -
Letting N, be the smallest integer such that (p,)"s < ¢, we have
1 —h(7) < 3e if |pl=N, and A(yp) = L(s, N,) .
Let k,(c) be an integer such that |p| = k, implies the existence of 7’ c 5 with
[7’| = N, and A(y') = L(e, N,). Then || = k, implies | — k,(9) < 1 — h,(7') <
3¢, and the lemma is proved. [] '
ProOF OF THEOREM 9.2. If || < oo, Py{§, £} = P,,*{E,* #+ (@} decreases as
t increases and hence has a limit. The corresponding weak limit v is invariant

because of the Feller property. This proves (i). If the measure v of (i) is d,,
and if # is any measure, then

§v(dE)P{E #m} = § p(dE)PL{S %} — 0
if || < oo, proving (ii). Here we used the fact, a consequence of the existence
of £&,*, that P.{&, 4 »} is monotone in §. Now suppose v  d,. Puttingv({@}) = ¢,
we show ¢ = 0. Let W, ={£:6(x)=01if |x=<n},n=1,2,.... Since P(¢,
@, W,) = 1 we have
v(W,) = ¢ + §,up v(dE)P(t, &, W)
= ¢+ Seup v(dE)P(t, Z, W,)
=c+ {1 —-o)Pt, Z,W,).
Letting t — oo, we havey(W,) = ¢ + (1 — (W), orex(W,) = ¢c,n = 1,2, ...
Since v(W,) < 1 for some n, we must have ¢ = 0.
Let p.*(n) = P,*{&* # @ V#}. This is lim,_, P,*{|&,*| > k} for each &k > 0,
in view of Lemma 9.3. Let # be a translation invariant measure such that
#({@}) = 0. From Lemma 9.7 and Lemma 9.14 we have, given ¢ > 0,

(1 — 3e)p.*(n) = liminf,_ A, () < limsup, ., &, , (1)
=p-") Il = ki),
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showing that lim,_, k,(y) = p..*(7). - This limit is the same for all perm1s51b1e o
and hence lim U, ¢ = lim U,y = v.

‘Finally if  is any translation invariant measure with p({@}) = ¢ < 1, put
t=ciy + (I — c)/x where ¢/ = (1 — ¢)*(¢ — ¢d,) and p/({@}) = 0. Since
U,0, = d,and U, p' — v, the proof of Theorem 9.2 is complete. ]

ExampLE. The process {§,} given by the table in Section 7b satisfies the
conditions of Theorem 9.2 if 2 >0, 2>y, —p, =0, 2> 0, and the additive
semigroup generated by N includes all of Z. .

A one-sided example. The followihg example in Z,, for which 9.2 (b) does not
hold, was suggested by David Griffeath, and the strengthened form given below
for Theorem 9.2 in Z, arose in correspondence with him. ‘

Consider a contact process {§,} in Z, where N={—1}, 4, =2>0, ¢ > 0.
Thus {&,} can spread only to the right. If 2/u is sufficiently large, there is a
nontrivial invariant measure and P&, + @ for all i} > 0if € = @. Thiscan
be shown by arguments somewhat like those of Section 9 of [4], although changes
are required because of the one-sided nature of the present process. The follow-
ing result covers {§,}.

(9.17) THEOREM. Let d =1 and suppose 9.2(a) is true. Suppose for each
E+ @,t>0,xe Z thereexistsy € Z, such that z < y implies P, {§,(0) = 1} > 0.
Then the conclusions of Theorem 9.2 hold.

There is a similar result with z < y replaced by z = y.

‘Proor. We need only show (9.15). ‘Thus it suffices to show that if g is
translation invariant and p({@}) = 0, then :

(9.18) pE:E (1 —E(x) =1} =0, xeZ,t>0.

Let Y, (&) =0 if P(é(x)=1)>0 and 1 if not. Since P,(§(x)=1) =
P,_.(£(0) = 1), the sequence --- Y_,, Y,, Y;, --- is stationary (), and by as-
sumption Y,(§) = O for all sufficiently large x, for a.e. (#)§. Hence

Yo+ Yo+ o+ Y g
n

implying § Y, dp¢ = 0, which is (9.18). [J.

10. Extinction. There are several variants of the idea that a process §,
“becomes extinct,” including (1) P(z, &, +) converges. weakly to d, if |§] < oo
or (1) if |&] < oo, and (2) P,{§, = @ eventually} = 1 if |§| < co. Clearly (2)
implies (1), but the relations among the three notions have not been clarified in
general. Griffeath has pointed out that the 1-dimensional process discussed at
the end of Section 9 is a case where (1) holds but (1”) and (2) do not, if 2/p is
sufficiently large.

If {¢,} is self-associate, then (1) and (2) are equivalent, as we find by removing
the asterisks from the following statement.

a.s. (p),
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(10.1) THEOREM. Let {§,} be a Feller process (countable Z) having a Feller
associate {§,*}. Then either (a), (b) and (c) all hold or none holds.

(a) lim,_,, Pié, = @} =1, all |§] < oo.
(b) {&.*} has no invariant measure different from d,.
(c) P*(t, &, ) converges weakly to o, for each &, |§| £ oo.

Proor. The equivalence of (a) and (c) follows from P*{é*#7} <.
P*&* %9} = PlE, #+ @), || < oo. Suppose (b) is true. Arguing as below
(9.19), P*(t, Z, «) converges to an invariant v which must be d,, implying (c).
If (c) is true, the inequality P,*{€,* % n} < P,*{€,* # »} shows there is no time-
invariant measure except 0. []

11. Association and hypermonotonicity. In this section Z is finite and time
is discrete. Let P be a transition matrix corresponding to a process &), &,, -
Let §,/(x) = 1 — &,(x). The process {§,'} has the transition matrix P’, where

(11.1) P'f(§) = Pf'(1 — &),
f&=f1-=%).
Letl(§) = H;eﬂé(x), l5(§) = 1. Thenl/(9) =1 — 0,(). From(11.1)and (2.10),

(11.2) Pl =1— PO(Z) + Xisop $PO({1DE, -

From this and Section 4.1 we find that {¢,} has an associate iff {£,’} has the
following properties: &, = Z implies £, = Z,n = 1, 2, . .., and the expansion
of each function P, § C Z, in terms of functions [, has nonnegative coefficients.
If, as in [14], we have the independence property

(11.3) P'l, = [Lae; P'L, »

we need only require that each expansion P’l,, x € Z, has nonnegative coeffi-
cients. But this is precisely the property of hypermonotonicity for {¢,’}. See [14].
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