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NOTE ON THE k-DIMENSIONAL JENSEN INEQUALITY

By MARTIN SCHAEFER
University of Hamburg

Let f be a measurable convex function from Rk to R and let X3, - -+, Xz
be real-valued integrable random variables. The best approximation for
fEX,, - -+, EXy) one can get by Jensen’s inequality is fIEXy, - -+, EXy) <
inf Ef(Z) where the infimum is taken over all k-dim. random vectors Z =
(Zy, - -+, Zi) such that Z; has the same distribution as X; (1 <i < k). An
application is given in the case where f(y) is the span of the vector y which
leads to a new approximation for f{Au) where A is a stochastic (k X m)-
matrix and u is an arbitrary element of Rm.

Let X = (X;, ---, X,)’ be a k-dimensional random vector with integrable
components X, ---, X, and let f be a measurable convex function from R* to
R'. Then it is well known (cf. Perlman (1974), page 52) that Ef(X) exists and
it holds that f(EX) < Ef(X).

An interesting and useful aspect of this inequality—which to the author’s
knowledge has not been pointed out before in the literature—is the following.
The left-hand side of the inequality above depends on the (marginal) distributions
of X, - - -, X, only, but in general (if kK > 1) the right-hand side depends on the
k-dim. distribution of the vector X = (X,, ---, X;). Therefore, considering
real-valued integrable random variables X, - - -, X, the best approximation for
f(EX,, ---,EX,) one can get by Jensen’s inequality is f(EX,, ---, EX,) <
inf Ef(Z) where the infimum is taken over all k-dim. random vectors Z =
(Z, -+, Z,) such that Z, has the same (1-dim.) distribution as X, (1 < i < k).
The following example illustrates the usefulness of this aspect. Let 4 = (a,;)
be a stochastic (k X m)-matrix (i.e.,a;; = 0, a, + --- + a;, = 1)and for y =
(s + - i) € R¥ let fi(y) = max{y,, - -+, y,} — min{y, -, y,} be the span of
the vector y. In stochastic dynamic programming one is interested in approxi-
mations for f,(Au) where u is an arbitrary element of R™ (cf. e.g., Hiibner [2]
and White [5]). It is well known that there exists a constant ¢ > 0 depending
on A only such that

1) [fo(Au) < cf,(u) holds for all ueR™.
The best constant is ¢* = max;, [l — Y7, min {a,;, a,,;}] in the sense of
) ¢* = sup fy(Au)(fu(w)~

where the supremum is taken over all ue R™ such that f, (u) == 0 (cf. Hiibner

(2])-

Now, using the fact that f, is a measurable convex function and that 4u can
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be written in the form
3) Aw= (EZ, ---,EZ)),

where Z; is a random variable such that P(Z, = u;) = a
approximation according to

4 fu(Av) < inf Ef(Z) .

Here, the infimum is taken over all such random vectors Z = (Z, - - -, Z,)’ and
it can be calculated by the help of the following

one can get a new

159

THEOREM. Let P,, - - -, P, be 1-dim. probability measures with corresponding dis-
tribution functions (dfs) F,, . - -, F, such that § u dP; exists and is finite and let 7
be the class of all k-dim. probability measures with marginal distributions P,, - - -, P,,.
Then we have inf_ § f,(y)dP = § f,(y) dP*. P* corresponds to the k-dim. df
F*(y) = min {Fl(yl’ ttty Fk(yk)}'

Proor. For arbitrary Pe .Z? consider the following 1-dim. dfs F,(u) =
P(min {y,, - -+, y,} < u) and G,(¥) = P(max {y,, ---, y,} < u). Because of

(5) Gp(u) < min,; Fy () < max, F,(u) £ Fp(u) forall ueR
and
6) Gp.(#) = min, F,(u), Fpu(u) = max; F,(u) forall ueR
we obtain for P e &
(1) VAW AP = §udGy — Fp) Z § ud(Gp — Fpa) = § fu(y) dP* .
Since P* ¢ & the assertion follows.

Now it is easy to verify the first part of the next

CoROLLARY. Let A = (a,;) be a stochastic (k X m)-matrix andletu = (uy, - - -,
u,) € R™ such thatu, < --. < u,,. Then

fk(Au) g inf Efk(z) = Z:ngllfk(slv’ R skv)(uv+l - uv) é C*(llm - ul) ’
where 5, = X.%_, a;;.

Proor. The first equality is an immediate consequence of the theorem above.
The second inequality follows because of

(8) fk(slv"""sk,,)§(:* forall V:l,--.,m_l'

ReMARK. If H is a joint distribution with marginal distributions F,, ..., F,,
then it is well known and easily demonstrated that H(y) < F*(y) for ally. This
result goes back to Hoeffding (1940, his thesis) and was rediscovered by Fréchet.
(cf. e.g., Fréchet (1950), page 25). '

ReEMARK. Using the fact that the expectation of a random variable can be
expressed according to

EX={¢{l —PX<1)— PX < —1))dt
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then because of (6) it is easily shown that

inf,, § fu(y) dP = (13 fu(Fi(9), - - -, Fi(0)) dt .

This is a slight generalization of a result of Vallender (1973) who has treated
the case k = 2.
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