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A COUNTEREXAMPLE FOR BANACH SPACE
VALUED RANDOM VARIABLES!

By J. KUELBs
University of Wisconsin

There exists a sequence of i.i.d. random variables taking values in the
infinite dimensional Banach space ¢, satisfying the law of the iterated loga-
rithm and failing to obey the central limit theorem.

1. Introduction.
and throughout assume X, X,, - .. are i.i.d. B-valued random variables such
that E(X,) = 0 and E||X,|| < co. AsusualS, = X; + --- + X, forn > 1, and
we write Lx to denote log x for x = e and 1 otherwise.

A measure g on the Borel subsets of B is called a mean-zero Gaussian measure
if every continuous linear function fon B has a mean-zero Gaussian distribution
with variance §, | f(x)|* du(x).

If X is a B-valued random variable then ~7(X) denotes the distribution of X
on B. If X,, X,, - - - are independent copies of X, i.e. <(X,) = Z(X) for k > 1,
then we say X satisfies the central limit theorem (CLT) on B if there exists a mean-
zero Gaussian measure p on B such that the sequence of probability measures
S, [nt) converges weakly to ¢ on B. Furthermore, using the CLT in finite
dimensions the limiting measure y is easily seen to be uniquely determined by
the covariance structure of X;, i.e. by the function T( [ 9) = E(f(X)g(X))) for
/> g€ B~

In view of Strassen’s fundamental result [6] and the recent results in [3], [4]
we say X satisfies the law of the iterated logarithm (LIL) if for X, X,, - - - inde-
pendent copies of X we have a limit set K in B such that

(1.1) P{w: 1imnar<(2nnL(‘£’)n)i ) =0l =1
and

(1-2) Pf““"({(znl(ﬁ){”%1}>=K}:1
where

d(x, A) = inf,c, [|x — y||
and )
C({a,}) = all limit points of {a,} in B.

In the LIL the limit set K is also uniquely determined by the covariance
structure of X,. In [3, 4] we carefully identify this limit set, and prove the
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LIL = CLT 685

following theorem which implies, among other things, that K is necessarily a
compact subset of B whenever E||X||* < co. In fact, K is compact even if the co-
variance function T(f, g) is only weak-star sequentially continuous on B* X B*,
but we do not use that fact here.

THEOREM A. Let X, X,, --- be i.i.d. B-valued random variables such that
E(X,) = 0 and E||X,|| < oo. Then:

I. There exists a compact, symmetric, convex set K C B such that

(1.3) P{w:c<{_ML:ngl}>g__K}=o.
(2nLL n)t
IL. In addition, there exists a compact, symmetric, convex set K satisfying (1.3)
such that (1.1) and (1.2) hold iff

1.4 P {w: {_———S"(w) tn=1 } is conditionally compact in B} =1.
(2nLL n)t

In case B is a finite dimensional Banach space then [7] and an easy application
of Theorem A imply that X satisfies the CLT and LIL iff E(X) = 0 and E||X|* <
co. Hence the LIL and the CLT for X are equivalent in finite dimensional spaces.
However, if B is infinite dimensional the relationship between the CLT and the
LIL is still unclear.

The purpose of this note is to record an example of a random variable X
which obeys the LIL and yet fails to satisfy the CLT. Previous examples of
situations where the CLT failed had the property that the LIL also failed, and
hence the example given here is a counterexample to the fairly natural conjec-
ture that the CLT and LIL are equivalent even in the infinite dimensional setting.
Furthermore, a recent example due to N. C. Jain shows that CLT = LIL.

It is a pleasure to acknowledge a number of constructive remarks provided
by the referee and also by M. J. Wichura. Both also found a more “classical
proof” of Lemma 1 below.

2. A modification of an example of Jain and Marcus. Let ¢,denote the sepa-
rable Banach space of all real sequences {x,} such that lim, x, = 0 normed by

2.1) I{xe}| = supy |x,| -

Lete; = {§;;: i = 1} forj=1,2, .., where §;; = 0 fori + jand I fori = j.
Then we define

(2.2) X(o) = Zijziei(0)a;e;
where ¢, ¢;, - - - are independent random variables such that P(e; = +1) = }
and a; = (2 Lj)~t. '

The random variable X takes values in ¢, with probability one, and in modi-
fied form was introduced by N. Jain and M. Marcus in [2] as a counterexample
to the CLT. The rather surprising fact is that X does satisfy the LIL.
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THEOREM. Let X be defined as in (2.2). Then
(a) P(Xec) = 1.

(b) P(IX]| = 274 = 1.

(c) X does not satisfy the CLT.

(d) X satisfies the LIL with the limit set

K= {{x}ecy: X (xp/a) < 1}.

Proor. If X is defined as in (2.2), then since lim; a; = 0 it is easy to see that
(a) holds. Similarly, from (2.1) and that Lx = log x for x > e and one otherwise
we easily have (b).

To establish (¢) and (d) assume X;, X, - - - are independent copies of X such
that

2.3) Xy = Xz eiPaje;
where {¢;*: j > 1} are independent random variables such that P(¢;* = +1) =%

forj=1,k=1.
Then

2.4 S 2zt (&0 4 - 4 &™) a;e;

P nt

with probability one. Now {¢;*’: k = 1} is an independent sequence and hence
;P + - -+ + ¢;™)/nt) converges weakly to a Gaussian random variable g;
with mean zero and variance one for each j = 1,2, .... Now the sequence
{9;:j = 1} necessarily consists of independent random variables, and hence it
is impossible for the CLT to hold.

To see that it is impossible for the CLT to hold simply observe that {g,: j = 1}
independent Gaussian random variables with mean zero and variance one implies
that P(limsup, g;a; = 1) = 1. Hence there is no Gaussian measure ¢ on ¢,
whose finite dimensional distributions are the limits of the finite dimensional
distributions of .£7(S,/n?), and this, of course, proves (c).

We now turn to the proof of (d). First, however, we record a simple lemma.

LemMma 1. If{e;: j = 1} is a sequence of independent random variables such that
Ple; = 1) =4 forj= 1, and if

2.5 M=sup ot -+l
(2-3) P o LL ny

9

then for every a > 0
(2.6) E(exp{aM?}) < oo .

Proor. Fix a > 0. Since the ¢;’s are uniformly bounded by one, (2.6) holds
if for some A
E(exp{aM,*}) < oo
where

M, = | N A=1,2, ...
A Supn>A (2nLLn)i ’ ’
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Let Y,, Y,, --- be independent Gaussian random variables with mean zero
and variance one. Let ' ‘
Vit oo+ Y,
2.7 N, = sup,,, 1 n A=0,1,--.
@7 N TYAA

Now P(N, < oo) = 1 follows from the LIL applied to the sequence {Y,}. In
fact, by the LIL we have

Y

(2.8) P(N, | )=1.

Since & > 0 is given, we next choose i(a) such that § < A(a) < 1 and
h(@) ]

2.9 = 5l —

2.9) « 5 4y log| s

Furthermore, by (2.8) there exists A, such that A = A, implies

(2.10) P(N, < 2% = h(a) .

Then by the Landau-Shepp result [5] as formulated by Fernique in [1] we have
(2.11) E(exp{aN,?}) < oo A=A, 2

To see that the results of [1] imply (2.11) let Z, = (Y; + ... + Y,)/n? for
n=1. Then y = AZ, Z,, - --) is a mean-zero Gaussian measure on R and

. o0 . Iznl =1
p({ZJ}GR : sup, GLL) < oo> =1.

Let Ny ({z,}) = sup,s4 |2,//(2 LL n)t for A = 0, 1, ... and {z,} e R*. Then N, is
a measurable pseudo seminorm on R> in the sense of ([1], page 8) and since the
distribution of N, is the same as N, we have (2.11) if

(2.12) § e eXp{aN,% dp < oo .

Now (2.12) follows immediately from ([1], page 12) since (2.9) holds and (2.10)
implies
#(V, < 24) 2 ha) .

Now assume {¢;: j = 1} is as given in the theorem and defined on the prob-
ability space (Q,, &, P,). Let {Y;:j = 1} be independent Gaussian random
variables with mean zero and variance one defined on (Q,, & ,, P,). Form the
product probability space (2, x Q,, &, x &, P, x P,) and note that {¢;|Y,|:
Jj = 1} can be viewed as a sequence of independent Gaussian random variables
with mean zero and variance one on (Q, x Q,, .Z; x %, P, x P,).

Thus by (2.11) and Fubini’s theorem for A = A, we have

(2.13) 0o > E(exp{aN,?)

= E, {Ez {exp <a SUP,s A alfil 4 - + eV,

(2n LL n)}

ik

2 The paper “Intégrabilité des vecteurs Gaussians’ (C. R. Acad. Sci. Paris Sér. A-B 270 A
1698-1699) by X. Fernique (1970) also yields (2.11) when trivially modified.
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Since exp {au} is increasing and convex on [0, oo) for @ > 0, Jensen’s inequality
applied to the right-hand side of (2.13) yields
)

oo > E, {exp [aE2 <Supn>A &Y ;;nLL :);MY,L
i
i

Vi + -+ + &Yy
(2n LL n)*

e E|Y,| + - + ¢,E)Y,
(2n LL n)}

UL N

(2n LL n)t '
Since @ > 0 was arbitrary (2.14) implies (2.6) and lemma is proved.

Returning to the proof of (d) we let X}, X,, - - - be independent random vari-
ablesasin (2.3). Let K denote the limit set determined by the covariance struc-
ture of X as given in [3] and [4], and note that K is as indicated in (d).

Then by Theorem A the random variable X satisfies the LIL with limit set
K iff we can show

(2.14) > E, {exp [a sup,..» E,

= E| {exp [a SuUp,a

= E, {exp [270( SUp,sa

(2.15) P { : {__’SL@)—_ n=1 } is conditionally compact in Co} =1.
(2nLL n)}

Since the event in (2.15) is a tail event for the sequence X, X,, - - . the zero-one

law implies (2.15) iff for every ¢ > 0

2.16) Plo: {549 ., > 1] iscovered by finitely many e-spheres
@nLL n)t y IRILeTy many e-sp

centered at points in a countable dense subset of Co} >0.

That is, if the event in (2.16) has positive probability, then it has probability
one and hence (2.16) and (2.15) are easily seen to be equivalent.

To establish (2.16) fix ¢ > 0. Choose a > 0 such that ae? > 2 and let ¢(a) =
E(exp{aM?}). By Lemma 1 we have c(a) < co. Let Qy({x,}) = X ,an xie, and
IL,({x.})) = X<y x,€, for each N=1,2, ... and {x,} € ¢,, and choose N such
that k > N implies 2¢c(a) < k™2,

Using the LIL in finite dimensional Banach spaces we have (2.16) if we show

Su(@)

P(Q)) > 0 where
(2nLL ny? l = 8/2} '

@2.17) Q= {a): sup||Qy
That is, by the LIL in finite dimensional spaces we have P(Q;) = 1 where

(2.18) Q, = {a): {HN as%: n>=1 } is conditionally compact in IINco} ,

and hence if {b,} is a fixed dense sequence in ¢, and w € Q, N Q,, then

S . e — Ty < ¢
@19) |Gz 1] S Ui et i~ bl < o)
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In (2.19) I(w) is a finite subset of the integers such that

S,
(2.20) {HN(—E@L%—),—&: nz 1] S U (rellyey: [lx — bl < <2
and the existence of /(w) follows since w e Q,. Thus (2.19) holds for all
weQ,n Q, and since P(Q,) = 1 we have (2.16) if P(Q,) > 0.

To show P(Q,) > 0 observe that

S4(®) ‘ e + -+ + &™)

su — 2 7 Il = su u a

P ||y G L e Y 7 .
e, @ oo € (n)

= SUP;zy SUP, s (—;n LLny £ Iak

= sup,,y M*a,

where M® = sup, |e, + -+ + ¢™|/(2n LL n)t are independent identically
distributed random variables. Further, by Lemma 1 we have oo > ¢(a) =
E(exp(a[M*®)%) for k = 1,2, .... Thus
P(Q)) = P(supsy M*¥a, < ¢/2)

= [Lizy P(M*Pa, < ¢/2)

Z [ezw [1 — (@) exp{—a(e/2a,)}]

= TLian [1 — c(a)/k="]

>0
since 2¢(a) < k** and ae?/2 > 1.

Thus (2.16) holds, and, as mentioned previously, this implies (2.15). Hence
X satisfies LIL and the proof of the theorem is complete.
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