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THE ENUMERATION OF COMPARATIVE
PROBABILITY RELATIONS

By TERRENCE FINE AND JoHN GILL
Cornell University and Stanford University

An attempt is made to enumerate the distinct antisymmetric compara-
tive probability relations on sample spaces of # atoms. The results include
an upper bound to the total number of such relations and upper and lower
bounds to the size of the subset of the comparative probability relations
admitting an agreeing probability measure as representation. The theo-
retical results are supplemented by computer enumerations for n < 6. The
upper and lower bounds for the case of agreeing probability measures are
both

O@3an?)  for log:(3H) <ax1.

0. Background. Let 4 and B denote events. By comparative probability (CP)
we mean a theory of statements of the following forms:

(i) “Ais more probable than B,” written “4 > B”;
(ii) “A is as probable as B,” written “A4 ~ B”;
(iii) “A is at least as probable as B,” written “4 > B.”

Although we believe that CP is best formulated as a partial ordering between
events, for the purposes of this note we assume it to be a complete, antisym-
metric ordering of events A4, B, C, - .-, represented as subsets of a finite set Q.
For a complete order it suffices to axiomatize > since >, ~ can be defined
from > in the usual way. Discussions of complete CP are available in [1], [3],
[5]—[12]. ‘

The basic axioms for complete CP are the following: For all subsets 4, B, C
of Q
CP1. A>B or B> 4.

CP2. A>B and B>C=A4A>C.
CP3. It is false that @ > Q, where (@ denotes the empty set.
CP4. A= Q.

CPs. If AnBUC)=@, then B>C=AUB>=AUC.
Elementary consequences of these axioms include:

(i) ADB=A3x B,
(i) 4> B— B > A, where 4 is the complement of A.
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If Q@ = {w,, w,,- -+, w,} is a sample space containing »n atoms, then the indicator
vector I, of an event A is I, = {x;, X,, -+ -, X,», wWhere

x =1 if wed
=0 if wed.

A useful representation for > is‘obtained by associating the difference vector

I, — I to ordered pairs (4, B). Let 3" denote the space of n-tuples of elements
—1,0, 1. Define the subsets C>, C~ and C< of 3" by

C>={I, — I,: A> B};
C~={l, — I,: A~ B};
C<={l,—I,: B> A} ={z: —zeC}.

For antisymmetric orders, 4 ~ B—= 4 = B. Hence C~ = {0}, where 0 is the
n-tuple of 0’s.

An antisymmetric CP order is described by a subset C> of 3" having the de-
fining properties:

(i) if x > 0 then x e C> (we write x > 0if x = x; x, .-+ x, and x, = 0 for
all i and x; > 0 for some j);
(i) 3*=C> U C~ U Cs;
(ili) zeC> = —zeC<;
(iv) It is false that x + y 4+ z = 0 for any x, y, ze C>.

We can classify CP orders by their relationship to quantitative probability
measures as follows. The CP order > is additive if there is a probability meas-
ure P on Q such that 4 > B < P(A) = P(B) for all events 4 and B. P is then said
to agree with >. The CP order > is said to be nonadditive if it is not additive.

It is our aim to gain some enumerative knowledge about the basic family of
antisymmetric CP orders on finite Q. Our basic motivation is to advance the
study of the largely neglected subject of comparative probability. We are par-
ticularly interested in the new class of models of uncertainty and chance phe-
nomena given by the nonadditive relations. The novel properties of the non-
additive relations are discussed in [3, 4, 5, 7]. The object of our enumeration
attempt is to assess the richness and complexity of the family of CP models and
to prove (and here we were unsuccessful) that the additive subclass is of asymp-
totically (in the number of atoms) negligible size in comparison to the nonaddi-
tive subclass. ‘

1. Upper bound to the number of antisymmetric CP orders. We derive an
upper bound f, to the number s, of complete antisymmetric CP relations de-
fined on an n-atom sample space Q.

THEOREM 1. 4, < (n!)222"‘—§'n(n+1)—§+n1n(21r—§) = f,.

Proor. Without loss of generality assume the atoms {w,} are ordered so that
w; < w4, To derive a recursive formula for an upper bound consider any
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antisymmetric complete CP ordering of the subsets {4} of {w,, ---, w,_;} enu-
merated in order of increasing likelihood,

®=A0<A1< te <A2n-—1_1:{W1,"‘,wn_1}.

The ordering on n atoms derivable from {4,} arises by appropriately inter-
leaving {4;} and {{w,} U 4,}. We bound above the number of possible interleav-
ings as follows. Consider a possible interleaving {B;} of {4,} and {{w,} U 4,},
say, @ =B,=A4, < B =4< +++ < Byu_, = {w, -+, w,}. Define a corre-
sponding binary random walk {S,} by

S, = 2 x;, where x; =1 if w,¢B;_,
= —1 if w, € Bj—l .
Observe the following:

(i) S, =jforj < n,since w, > w; for j < n;
(i) S; >0 when 0 < i< 2" — 1, since {w,} U 4, > 4;
(iii) S; = Sy_; for every j, since C > D—=D > C.

Thus the number of possible interleavings is no more than the number of binary
random walks {S;} beginning at (n — 1, n — 1) that are positive for j < 2"~*. In
fact this yields a strict upper bound because some of the walk paths correspond
to interleavings inconsistent with the CP axioms. Taking into account the initial
linearly rising portion, we are interested in the number 2, of positive paths of
2"t — n + 1 steps that start at (0, n — 1).

Let us denote 2! — n 4 1 by N. Then, employing the reflection principle
([2], pages 69-70), we obtain for odd n

(1) Ay = Zk>—(n—1);keven (;<NN+k>) - Zkzm—l);keven (4(N+ki’m—1>>)

as the number of paths, with a similar result for n even. The summations in
(1) collapse, yielding

Z'n = ZZ;;;keven (i(NN+k)) < %”(fz’v) .
By Stirling’s formula ([2], page 52) we conclude that
2) 2, < r-bn2eri=im

We now have an upper bound 4, on the number of n-atom antisymmetric
complete CP relations that can be derived from any given (n — 1)-atom relation
by adding an nth and largest atom. Noting that 4, = 1, a recursive application
of the above argument yields

Ua < (n') II7s 4:

where the factor of n! accounts for the n! distinct relations on n-atoms derivable
by permutations of the atoms. Using our upper bound to 2, in (2) yields the
desired

U < (n!)zzz"‘—%'n('n-rl)—;-}nln(27r—i) . 0
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The accuracy of our bound £, to s, is open to doubt. Computer enumeration
has revealed that
n |23 4 5 6

win! |1 2 14 546 169,444

Our upper bound to g,/n! for n = 6 is approximately 10" and off by a factor of
about 10°. Nevertheless the dominant factor of 2*" may be of the right form.
Complete computer evaluation of the case n = 7 appears to be out of the ques-
tion and thus cannot be used to suggest the rate of growth.

The absence of a control on z,, as might have been provided by an interesting
lower bound g, to p,, is of concern to us. While we believe it likely that g,
can be trivially improved upon (i.e., the addition of terms of O(n) to the expo-
nent of O(2")), we are pessimistic about achieving a significant improvement.
This pessimism is based upon exploration of several unsuccessful arguments and
studies of a list of all S-atom CP relations, as well as data on the number of 6-
atom relations that are extensions of each of the 5-atom relations. We cannot
survey our unsuccessful efforts here, and it is always possible that we over-
looked the obvious. However, it is a poor prognosis for an easy solution that
our computer generated exact enumeration yields an integer sequence that is not
in Sloane [13].

2. Upper bound to the number of antisymmetric additive relations. Let o,
denote the number of distinct antisymmetric CP relations admitting an agreeing
probability distribution. To derive an upper bound &, to o, we invoke a result
of Schifli used in the study of linear threshold circuits.

LEMMA 1 ([14]). An upper bound to the number of disjoint regions formed by
passing m hyperplanes through the origin of n-space is

20 ("Y -

To apply this result we note that the space of all probability distributions on
n atoms is a compact subset of (n — 1)-dimensional space given by

Sy ={(x1 X))t X, =0, Drsix = 1}

We wish to identify all distributions that give rise to the same CP relation. Note
that two distributions =, 7/, give rise to the same CP relation if and only if
7(A) > m(B) = 7'(4) > «'(B) and n(4) = 7(B) = 7'(A) = '(B). Under the hy-
pothesis of antisymmetry, 7(4) = 7(B) < 4 = B.

It is convenient at this point to shift to the representation of > as the subset
C> of 3*. The order > is additive if for some vector 7 € [0, 1]* we have x € C”> =
7. x> 0. Two vectors = and =’ define the same order if and only if for all
xe3",n-x>0=7a".x>0.

There are (3" — 1) points in C>. Two vectors z and ’ in S, ; give rise to
the same order if they lie in the same region of S,_, defined by the hyperplanes
with normals the points in C>. Taking into account the reduction by one
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dimension to account for the irrelevant scale of the probability distribution, .
we see that we are interested in knowing into how many disjoint simplices the
1(3" — 1) hyperplanes with normals having elements drawn from {—1, 0, 1}*
divide the simplex S,_, of probability distribution on n-atoms. Any two points
in the same simplex correspond to probability vectors inducing the same CP
relation, whereas points in different simplices correspond to probability vectors
inducing different CP relations. An upper bound to the number of regions into
which C> divides §,_, is given by the upper bound to the number of regions into
which the hyperplanes defined by C> divide R*~'. Invoking Lemma 1 yields

THEOREM 2.
g, < 2 ZZ:oZ (;(3”;1)—-1) .
Simplification of the upper bound yields the simpler but larger expression [14]

on < 2(%(3::})_1 %(3n — 1) - + 1 = 5% N
=D — 20— 1)
Since our interest is not in very small n, we have the simpler approximation

3%(%—1)

7
2"3%n — 1)!

This upper bound to the number of additive antisymmetric CP relations, while
very large, is negligible in comparison with our upper bound to the number of all
antisymmetric CP relations; albeit in the absence of a lower bound to y, of the
same order of magnitude as the upper bound, this comparison may be spurious.

3. Lower bound to the number of antisymmetric additive relations. Our
lower bound ¢, is a consequence of

LEMMA 2. The number of linearly separable n-argument {0, 1}-valued functions
specified on some m = 2 points of the n-cube {—1, 0, 1}* is at least

4m(10g2 m—1)/2 .

Proor. Theorem 1 of Winder [15] is Lemma 2 with {—1, 0, 1} replaced by
{0, 1}. Winder’s proof of his Theorem 1 is by induction on m. We first evalu-
ate a lower bound R,™ to the minimum number of linearly separable subsets of
{—1, 0, 1}* specified on m points for m < 4. Two points X;, X, can be separated
in 4 ways as follows: X;, X, on the negative side; X, on the negative side and
X, on the positive side; X; on the positive side and X, on the negative side; X;,
X, both on the positive side. Hence Iﬁ,ﬁ = 4, as was the case for Winder in
{0, 1}*. For m = 3 we have the least flexible possibility, not available in {0, 1},
that the three points are collinear. We now find R,* = 6. For m = 4 we find
that R,* = 8. These three values satisfy the bound of Lemma 2. Hence the
initial conditions of the induction process are validated. The induction step
itself centers around equation (7) of Winder [15] and is easily seen to hold in
{—1,0,1}" as well as in {0, 1}". These observations when combined with
Winder’s proof establish Winder’s lower bound as valid in {—1, 0, 1}*. [
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The desired lower bound ¢, is given by
THEOREM 3. g, = 2*-"3(-Dir=Dlogy3-D/2
C 0, = .

Proor. To use Lemma 2 we observe that if in the representation in 3" via
indicators we delete the hyperplane corresponding to, say, the first coordinate
equalling O then the remaining 2(3"~") points are arranged on two parallel hyper-
planes in n-space. Furthermore the 2(3"~') are arrangeable as 3"~ pairs of the
form (x, —x). Since only one of x, —x, can be in C> we may take one repre-
sentative from each pair. We now ask for a lower bound on the number of
partitions by a hyperplane of the resulting set of 3*~* points. Invoking Lemma
2 yields

4. 3m_1)2log2(3)5—g(n-1) .

However, some of the linear separations being counted are by hyperplanes
with normals not all of whose coordinates are nonnegative, as required by the
CP axioms. Since there are at most 2" linear separations generable by changing
signs in the coordinates of a given normal, the desired lower bound results after
division by 2. []

We observe from a comparison of ¢, and ¢, that o, = 0(3**) for log, (3)} <
a< 1.

Computer enumeration has revealed that

n (23 4 5 6
g fnl |1 2 14 516 <140,000

These results are compatible with our bounds.

4. Conclusions. It is clear that much remains to be done in enumerating CP
relations. Our results suggest, but do not prove, that the usual additive CP
relations constitute an asymptotically negligible fraction of the large class of CP
relations on n atoms. Of greatest immediate interest would be a lower bound to
the number of all CP relations that would confirm the rate of growth as 0(2*").

We wish to acknowledge useful conversations with T. M. Cover.
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