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ON r-QUICK CONVERGENCE AND A CONJECTURE
OF STRASSEN!

By Tze LEUNG LAl
Columbia University

In this paper, we prove a conjecture of Strassen on the set of r-quick
limit points of the normalized linearly interpolated sample sum process in
C[0, 1]. We give the best possible moment conditions for this conjecture
to hold by finding the r-quick analogue of the classical law of the iterated
logarithm and its converse. The proof is based on an r-quick version of
Strassen’s strong invariance principle and a theorem on the r-quick limit
set of a semi-stable Gaussian process. Some applications of Strassen’s con-
jecture are given. We also consider the notion of r-quick convergence
related to the law of large numbers and outline some statistical appllcatlons
to indicate the usefulness of this concept.

1. Introduction. In[16], Strassen introduced the notion of r-quick limit points
of a sequence of real-valued random variables 6,. For any real number c, define
the random variable

(1.1) T,=sup{n=1:60,=c} (sup@ =0),
i.e., T, is the last time when 6, exceeds c. We note that the statement
1.2) limsup, .0, =y a.s.
~ can be expressed in terms of T, as follows:
(1.3) P[T, < 0] =1 if ¢>y,
=0 if e<y.

This observation leads Strassen to give the following definition.

DEFINITION 1. Let @, be a sequence of real-valued random variables. For any
real number c, define T, as in (1.1). Let r > 0 and y be a real constant. Then

(1.4) limsup,_. 0, =y (r-quickly)
if and only if the following two conditions hold:
(1.5a) ET" < for ¢>y,
(1.5b) ET" = oo for c<y.

In other words, (1.4) holds if and only if y = sup {c: ET,” = co}. We shall also
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say that lim sup,_,, 0, < y (r-quickly) if (1.5a) holds, and limsup,_.. 6, = y (r-
quickly) if (1.5b) holds. Therefore we say that lim sup, .., 6, < oo (r-quickly) if
there exists a real constant ¢ for which ET,” < oo, and we say that limsup,, .. 0, =
oo if otherwise. Likewise if ET,” < oo for all real constants ¢, then we write
lim,_, 0, = — oo (r-quickly).

The following theorem on the r-quick lim sup of sample sums was proved by
Strassen in [16].

THEOREM 1 (Strassen). Let X,, X,, - - - be a sequence of i.i.d. real-valued random
variables such that EX, = 0 and EX*=1. Letr > 0, p > 2(r + 1) and E|X,|? < co.
LetS, =X, + --- + X,, S =0. Then
(1.6) lim sup, .. (2n log n)~%S, = rt (r-quickly).

In an earlier paper [15], Strassen proved his well-known functional form of
the law of the iterated logarithm. Let C[0, 1] be the Banach space of continuous
functions f: [0, 1] — (— oo, co0) with ||f]|, = max, | f(#)|. Letting S, =0, S, =
X, + ... + X,, where X, X,, ... are i.i.d. real-valued random variables with
mean 0 and variance 1, define
(1.7 7.(t) = (2nlog log n)~1S, at t=imn (i=0,1,...,n)),

7y, islinear on [(i — 1)/n, i/n], i=1,...,n.
Then with probability 1, (»,).»s is relatively compact in C[0, 1] and its set of
limit points in C[0, 1] is
(1.8) K, = {he C[0, 1]: #(0) = 0, h is absolutely continuous and
b () dt < 1} .

Strassen’s result (1.6) led him to consider an r-quick analogue of the above

functional form of the law of the iterated logarithm. In analogy with Definition

1, he defined r-quick limit points in C[0, 1] and stated a conjecture about the
functional form of Theorem 1 (cf. [16] page 319).

DEFINITION 2. Let M be a metric space, endowed with its g-algebra of Borel
sets. Let ({,) be a sequence of random variables taking values in M. Then ({,)
is said to be r-quickly relatively compact in M if for every ¢ > 0, there is a finite
union U of e-spheres in M such that
1.9) E(sup{n:{,¢ U} < oo.

An element x of M is called an r-quick limit point of ({,) in M if for any open
neighborhood ¥ of x,
(1.10) E(sup{n:{, eV = .

STRASSEN’S CONJECTURE. With the same assumptions and notations as in
Theorem 1, define '

(1.11) £.(t) = (2nlog n)~1S,; at t=imn (=0,1,...,n),

€, islinearon [(i — 1)/n,i/n], i=1,.--.,n.
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Then the sequence ({,),s, is r-quickly relatively compact in C[0, 1] and the set
of its r-quick limit points in C[0, 1] is
(1.12)  riK, = {he C[0, 1]: h(0) = 0, % is absolutely continuous and
L(H(n)ydr<r}.
There is in fact a misprint in [16] where the factor } is erroneously-appended

to the integral in (1.12). In Section 4 below, we shall give a proof of Strassen’s
conjecture. In fact we shall prove the following stronger result.

THEOREM 2. Letr > 0 and let X,, X,, - -- be a sequence of i.i.d. real-valued
random variables such that EX, = 0, EX* = 1 and

(1.13) E\X |*+V(logt |X| + 1)~ < oo .

Define ¢, as in (1.11) and riK, as in (1.12). Then for every ¢ > 0, letting U denote
the open e-neighborhood of rK,,

(1.14) E(sup{n: ¢, ¢ U} < oo,

and so the sequence ((,),», is r-quickly relatively compact in C[0, 1]. The set of its
r-quick limit points in C[0, 1] is riK,.

In Theorem 2 above, the terminology “open e-neighborhood’” U of a set 4 in
C[0, 1] refers to the set {xe C[0, 1]: inf ., ||x — y|| < ¢}, and we define the
closed e-neighborhood of 4 to be {x € C[0, 1]: inf ., ||x — y||; < ¢}. Likewise
we shall define the open (or closed) e-neighborhood of a set 4 in a general metric
space M. As the following theorem shows, the moment condition (1.13), which
is weaker than Strassen’s condition E|X)|” < co for some p > 2(r + 1), is in
fact the best possible.

THEOREM 3. Suppose X,, X,, - -- are i.i.d. real-valued random variables and
S, =X, + .-+ + X,. Then for any r > 0,

(1.15) lim sup, _, (nlog n)=|S,| < co (r-quickly)

—EX,=0 and  EX,[** (log* |X,| + 1)~"*) < oo .
In this case, ‘
(1.16) lim sup,, ., (2n log n)~tS, = (rEX'f)* (r-quickly) .

It is interesting to compare Theorem 3 with the corresponding result for the
a.s. lim sup of normalized sample sums. As is well known,

(1.17) EX; =0 and EX?=¢*< limsup,,, (2nloglogn)~tS, =0 a.s.
However, under the conditions of (1.17), we have for every r > 0,
(1.18) lim sup,,_,., (2n log log n)=S, = oo (r-quickly)

(cf. [14], [16]). The proof of Theorem 3 will be given in Section 2 below.
In Section 3, we shall obtain an analogue of Theorem 2 for Brownian motion
(and in fact more generally for a semi-stable Gaussian process) which we shall
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use in Section 4 to prove Strassen’s conjecture. We shall study the properties
of r-quick limit sets and give some applications of Theorem 2 in Section 5. In
Section 6, we shall consider the somewhat simpler notion of r-quick convergence
related to the law of large numbers and outline some statistical applications of
these concepts.

2. Proof of Theorem 3. The proof of Theorem 3 makes use of the follow-
ing result of [5] (see Theorem 3 on page 438 of that paper): Let p > 2 and
X, X,, -+« be i.i.d. real-valued random variables and S, = X, + --- + X,,. If
EX, = 0, EX;? = o*and E|X,|?(log* |X;| 4+ 1)7?/2 < oo, then for any ¢ > o(p — 2)},

2.1 X3 nP22P[|S, | = e(nlog n)t] < oo,
2.2) 23 n?* 7 P[Sup,s, (k log k)~HS,| = ¢] < oo .

Conversely, if for some ¢ > 0, either (2.1) or (2.2) holds, then EX, = 0 and
E|X,|*(log* |X;| + 1)77/* < oo.

We now prove the equivalence (1.15) in Theorem 3. First assume that EX; = 0
and E|X|*+V(log* |X| + 1)~V < co. Let ¢ > (2rEX,*)t. Then by (2.2),

(2.3) 2, ntUIP[sup,,, (k log k)~HS,| = ¢] < oo,
ie., )1 n"'P[T, = n] < co, where
2.4 T,=sup{n =1:(nlogn)#S,| = c}.

Hence ET,” < oo and lim sup,,_,., (n log n)~}|S,| < (2rEX,*)t (r-quickly).
Conversely, if lim sup, ., (n log n)~S,| < co (r-quickly), then there exists a
positive constant ¢ for which ET,” < oo, where T, is as defined in (2.4).
Therefore Y, n"'P[T, = n] < oo, i.e., (2.3) holds. Hence EX, =0 and
E|X1|2('r+1)(log+ |X1I + 1)—(r+1) < oo.
Thus we have proved (1.15). The relation (1.16) follows as an easy corollary
of Theorem 2 (see Example 1 in Section 5 below).

3. The r-quick limit set of a semi-stable Gaussian process. In[13], Oodaira
has proved a functional form of the law of the iterated logarithm for a continuous
real-valued Gaussian process X(7), + = 0, with X(0) = 0, EX(f) = 0 and con-
tinuous covariance kernel R(s, r) = EX(s)X(¢) satisfying conditions (3.2) and
(3.3) below. Let

Z,(t) = X(nt)/(2n* log log n)? , tef0, 17,
where 1 is as given by (3.2). Oodaira’s result states that with probability 1, the

sequence (Z,),; is relatively compact in C[0, 1] and its set of limit points is
contained in the set

(3.1) K = {he HR): [[Hlly < 1},

where H(R,) is the reproducing kernel Hilbert space corresponding to the kernel
R(s,1),0 < s,t <1, and ||+|| denotes the norm of H(R,), i.e., K is the unit
ball of H(R;). Under additional assumptions on R(s, ), the set of limit points
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of (Z,),25n C[0, 1]in fact coincides with K. We remark that although Oodaira’s
original theorem imposes a somewhat stronger condition in place of (3.3), con-
dition (3.3) in fact would suffice, as can be proved by using Theorem 1 of [6].
The following theorem gives an r-quick version of Oodaira’s result.

THEOREM 4. Let X(t), t = 0, be a continuous real-valued Gaussian process with
X(0) = 0, EX(f) = O and continuous covariance kernel R(s, ) = EX(s)X(t) such
that the following two conditions are satisfied:

(3.2) There exists A >0 such that R(0s, 0r) = 0'R(s, t) for all

6 >0 and s,t=0, i.e., the process is semi-stable.

There exists a positive nondecreasing function ¢ on [0, 1]
(3.3) such that (2 ¢(e=)du < oo and for all s,te][0, 1],
E(X(s) — X(1)* = ¢*(|t — sI) -
Define K as in (3.1) and set
(3.4) Y, (1) = X(nt)/(2n* log n)t , te[0,1].

Then for every r > 0, letting (rtK), denote the closed e-neighborhood of r*K in C [0, 11,
we have

3.5) E(sup{n: Y, ¢ (r*K)})r < o  foral ¢>0,

and so the sequence (Y,),s, is r-quickly relatively compact in C[0, 1]. The set of its
r-quick limit points is rK. ‘

REMARK. The notion of semi-stable Gaussian processes was introduced by
Lamperti [11] whose results imply that if R(s, ¢) satisfies R(fs, 6f) = v(6)R(s, 1)
for all 4, 5, t = 0, where v() is a positive function such that v(f) 7 oo (Which
is in fact the condition stated by Oodaira in [13]), then v(6) is of the form §*
with 2 > 0. By a theorem of Fernique [3], condition (3.3) implies that the
processes Y, (1), 0 < ¢t < 1, are continuous with probability 1.

LemMa 1. Suppose U(t), t € [0, 1], is a continuous real-valued Gaussian process
with mean O and continuous covariance R(s, t). Let (X,(1)),21 be a sequence of
Gaussian processes defined on the same probability space and having the same. dis-
tribution as the process U(f) and let V,(t) = X,(1)/(2 log n)t. Let {e,(t), t € [0} 1
be a complete orthonormal system in the reproducing kernel Hilbert space H(R) and
let ¢, H(R) — Ly(X,) be the isometric isomorphism (defined by ¢,(R(t, +)) = X, (1))
between H(R) and the closed linear manifold L,(X,) spanned by {X,(t), t € [0, 1]}.
Let £, = ¢,(e;) be the Gaussian random variable corresponding to e;. Then given
€>0,0>0and ky= 1, there exists k = k(e, p, ko) such that k = k, and

(3.6) P||V, — Qlogn)~t Tk, £, Del|, > €] = o(n~).

Proor. Take a such that 2a¢* > p and choose k > k, such that P[||X; —
YE_ 6%l < 11 =g > L and log (¢/(1 — ¢)) > 24a. Then by a theorem of
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Fernique [4], E exp{a||X; — 23%_, &€’} < co. Hence
PlIIX, — X5 €a7%llo > (2 log n)?]
< {exp(—2ac®log n)}E exp (a||X; — 24, §Pel?) = o(n7?).
PrROOF OF THEOREM 4. Let 1 > ¢ > 0, p > r + 1 and set

3.7 0 =1 + rtmax.,, R¥t,1).
Define L(¢) = sup{n = 1: Y, ¢ (r*K),;.}. We now proceed to show
(3.8) EL"(c) < oo .

Choose « > 1 sufficiently close to 1 such that a/(a — 1) is an integer and the
following two inequalities hold:

(3.9a) s(@? — 1)1 > pH{maxg,q, RE(t, 1) + 4 {7 ¢(27*) du},
(3.99) et > pHp(2a — 1)/a) + 4 §7 (g7 du}
for some integer ¢ > 1.

In what follows, we shall let Y, = Y;,; for any positive number z. We note
that

e a™P[L(e) = a”]
= e, amPlY, ¢ (rK),;, forsome m = a"]
< 3w am™ e, PlY, ¢ (rK),, forsome a' < m < a't']
S X @ N P[Y i € (1K),
+ Z::=1 am™ Z?:n P[maxaism<ai+1 ”Ym - Yai”C > 255] .
Set X,(f) = n=*?X(nt), 0 < r < 1. Then X, has the same distribution as X;.
Define e; and £, as in Lemma 1 and choose & such that (3.6) holds. We note
that if x € H(R,) and ||x||, < (1 + ¢)r, then x € (r*K),, since (1 4 ¢)~'x € riK and
[|x — (1 + ¢)7x||¢ < e(1 + €)7'||x||z MmaX,g,<; R, t) < de by (3.7). Therefore
P[Yy @ (r*K)y] < PlI|Ye: — (2log [a])7F Tho Eeslle > €]
(3.11) + P[2 log [a' ) H| Zhai Eilneslln > (1 4 &)rt]
— O(a,—-pi) + O(ik—-la—ir(1+e)2) .
The last relation above follows from (3.6) and the following estimate:
P|| = € eslln > (1 4 €)(2r log [a'])?]
= P[5 (59) > (1 + &)*2rlog [a'])] = O(a~*r*+X(log a’)*™) ,

since Y %_, (§,'”)* has a y’-distribution with k degrees of freedom. From (3.11),
it follows that

(3'12) Z?:l arn Z:;n P[ Yai ¢ (r&K)zds] < .
Since 6 > 1 and
1Yn — Yaille < (Maxogq [X([']0)])|(2m* log m)~F — (2[a']* log [a*])~H|
+ (2m* log m)~* max,.,, |[X(mt) — X([a']?)] ,

(3.10)



618 TZE LEUNG LAI

we obtain that for all large i,
P[maX igpneqitt ||V — Yaille > 20¢]
(3.13) < P[maxyg,g [X([@])] > e(@¥® — 1)7(2[a’]’ log a')}]
+ P[MaX,q, ait1,ji-osia-nai | X(2) — X(s)] > e(2a* loga’)?].
Since the process n=*?X(nt), 0 < ¢t < 1, has the same distribution as X(¢),
0 < r <1, it follows that
(3.14)  Plmaxyg,g [X([a'])| > (e — 1)72[a’} log a’)?]
= P[max,_,, |X(t)| > ¢(a?? — 1)7(2 log a’)}].
By (3.3), we can apply Fernique’s inequality (cf. [3], [13]) to obtain that for
all large i,
P[max,_,, | X(1)] > e(a** — 1)7}(2 log a*)}]
(3.15) < 16 §Shg10gairt €Xp(—u?[2) du, in view of (3.9a)
= O(a™"%).
We note that
P[MAaXyg, i<aitt, —sizia-nai [X(f) — X(5)] > &(2a* log a’)t]
= P[MaXyg, <1, —sisa-1/a [X(@ 1) — X(a's)| > e(2a* log a')?]
= P[MaX,g, ;<1 1-ssiaya | X(1) — X(5)] > e(2a=* log a’)}]
(3.16) < N8l47D P[MAX gy (am1yjass esvia-ra [X () — X(9)]
> ¢(2a~* log at)}]

-—g Zfi(g_l) P[max(v—2)(a—l)/ast5v(a—l)/a |X(t) - X(()J - 2)(a - 1)/0.')'
> <_;—> (2a=*log a“){l

= 4q’a/(a - 1) S:.%(zlogai)i CXP(—u’/Z) du ,

where g is given by (3.9b). The last relation above follows from (3.9b) and
Fernique’s inequality since (3.3) holds and for (v — 2)(a@ — 1)/a = ¢t < v(a — 1)/a,
E(X(t) — X((v — 2)(a — 1)/a))* < ¢*2(a — 1)/a). It then follows from (3.13),
(3.14), (3.15) and (3.16) that

(3‘17) Z:::l a,rn Z:;'n P[maxaiSméaiH ”Ym - Yai”(f > 256] < oo .

From (3.10), (3.12) and (3.17), we obtain that Y} 7, a™P[L(c) = a"] < co.
Therefore (3.8) holds. Since K is compact, (rK),;, can be covered by a finite
union of 5dc-spheres in C[0, 1]. As ¢ is arbitrary, we obtain from (3.8) that the
sequence (Y,) is r-quickly relatively compact in C[0, 1] and the set of its r-quick
limit points is contained in (.5, (r*K),;. = K, since K is closed.

Given any k € rtK, we shall show that # is an r-quick limit point of Y. Define
L¥(@)=sup{n=1: ||Y, — k|l < ¢(3 + ||Al|c)}- Weshall show that E(L*(¢))" = co.
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Letting g = (1 — ¢)h, we have ||g — k||, = ¢||||, and so we need only show that
(3.18)  EL7(e) = oo,  where L(s)=sup{n=1:]Y, — gl < 3¢}.

Since g has the expansion g(f) = >;5., g,e;(f) with the above series converging
uniformly for € [0, 1], we can choose k, such that ||g — }3%_, g,¢,|| < ¢ for
all k = k). By Lemma 1, we can choose k = k(c, p, k,) = k, such that (3.6)
holds. Hence to prove (3.18), it suffices to show

(3:19) X n'P[lI2log n)7t 3L €, — T gieille S €] = oo
Forj=1, ..., k, we define
B, = [|l{€. — (2 log n)tg;le;lle < (¢/k)(2 log n)?],
C,? = [|§,9 — (2 logn)tg,| < (¢/kT')(2 log n)}],
where I' = max,,, R¥t, 1) = |le;|lo. It is easy to see that B, > C, and
N4 B, C [||(2logn)~t 31k £, P%e; — 3% ,0;¢;]lc < ¢]. Hence to prove (3.19),
it suffices to show
(3.20) Diwea 1IP[|6, — (2 log m)tg;| < (¢/kT)(2 log n)t
for j= 1, co k] =00
Let @ denote the distribution function of the standard normal distribution.
Since £,?, .-, §,® are independent, we have for n = n,,
P[|§," — (2log n)tg,| < (¢/kI')(2logn)t for j=1, ..., k]
(3.21) = [I5= {@((2 log m)¥(lg,| + (¢/kT))) — D((2 log n)t|g;])}
2 C(log n)~*exp (—(X5-1 9,%) log n)
where C is a positive constant. Since g belongs to (1 — ¢)riK, 37, 9, < r and
so0 (3.20) follows from (3.21). .

COROLLARY 1. Let W(t), t = 0, be the standard Wiener process. Define K, as
in (1.8) and set Y,(t) = W(nt)/(2nlogn)t, 0 < ¢t < 1. Then for every r > 0,

(3.22) E(sup{n: Y, ¢ (rtk,).})" < o forall ¢>0,

and so the sequence (Y,),s, is r-quickly relatively compact in C[0, 1]. The set of
its r-quick limit points is rtK,.

Proor. As is well known, R(s, t) = min (s, ) is the covariance kernel for the
process W(t) and K, is the unit ball in the reproducing kernel Hilbert space cor-
responding to W(¢), 0 < ¢t < 1. The desired conclusion is therefore a special
case of Theorem 4.

4. An r-quick version of the strong invariance principle and the proof of
Strassen’s conjecture. To prove Theorem 2 on Strassen’s conjecture as stated
in Section 1, we shall first obtain in Theorem 5 below an r-quick version of
the strong invariance principle and then apply Corollary 1 of the preceding
section.
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LEMMA 2. Suppose X,, X,, - -- are i.i.d. random variables with mean O and
EX? < oco. Let b:[0, 0)—[0,c0) be ultimately nondecreasing such that
lim,_ t7%b(¢) = oco. Letr > 0. Suppose
4.1 2 nmPIS,| > b(n)] < oo .

Then for every ¢ > 1,
(4.2) > nm'P[max;,, |S;| > eb(em) for some m = n] < oo .

Proor. Without loss of generality, we can assume that b(¢) is nondecreasing
for t = 1. Take « > 1 such that a® < e. We note that

Yinza HFP[mMax; ., |S;| > eb(em) for some m = n]

D1 Daisnsaivt NWTIP[mMaAX; o, |S;] > eb(em) for some m = ']

¢ x,atP[max; ., |S;| > eb(em) for some m = af]

¢y a” v P[max,, |S;| > eb(em) for some a"™*!'=m = a”]
€ Dimey @V P[MAX;  yne1 |S;] > eb(ea™)]

€y Dime1 Diantigmean+z M7 P[MAX; o i1 |S;] > eb(ea~?a™*?)]

€3 Dimay MTIP[maAX; ., |S;] > eb(ca=?m)]

IA A IA A IATIA

where ¢, ¢, ¢,, ¢; are constants. Since ¢ > a’, we need only show

(4.3) S P[max, g, [S] > eb(n)] < oo .

To prove (4.3), we make use of the Lévy inequality (cf. [12, page 248]) to
obtain

P[max,_, |S,;| > eb(n)] < 2P[|S,| > eb(n) — (2nEX?)}]
= 2P[|S,| > b(n)]
for all large n since nt = o(b(n)). Therefore (4.3) follows from (4.1).

THEOREM 5. Suppose X,, X,, --- are i.i.d. real-valued random variables with
EX, = 0, EX;* = 1 and E|X,*"*V(log" |X}| 4+ 1)="*Y < oo. Define{, asin (1.11).
Then there is a standard Wiener process W(t), t = 0, such that defining Y, () =
W(nt)[(2nlogn)t, 0 < t < 1, we have

4.4) E(sup{n=1:||{, — Y|l >¢}) < oo  forevery ¢ >0.

Proor. The proof of Theorem 5 makes use of Theorem 3 of [5] which we
havealready referred to in Section2." Leto,* = Var X, Iz, s X' = {XiJyix,20 —
EXII[lelsc]}/Gc’ X/ = X, — X/, where c is chosen so large that #E}(X,"")? < ¢/3.
Therefore letting S,” = X, + .. + X,”, we obtain by Theorem 3 of [5] that
2 nm'P[|S,”"| > (¢/3)(2n log n)}] < co. Hence by Lemma 2,

4.5) 2 nr'P[max; ., |S;'| > (¢/2)(2m log m)t for some m = n] < oo .
Therefore

(4.6) E(sup {n: (2nlog n)~t max,_, [5,”| > ¢/2}) < oo .
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Let S,) = X,/ + --- + X,” and let {,’ be obtained by linearly interpolating
(2nlogn)~tS/att = i/n(1 < i < n). Then by the Skorohod embedding theorem,
there is (without loss of generality) a standard Wiener process W(f), t = 0, to-
gether with a sequence of i.i.d. nonnegative random variables T, T, - - - such
that ET, = 1 and with probability 1,

S, =wrT), n=1,2,:...
Since X,’ is bounded, ET,” < oo for all p > 0. Takeany 1 >4 > 4. We note
that
Pl||lw’ — Yullc > ¢/2 for some m = n]
< P[maxgcp MAX),_ycms [W(1) — W(I)| > (¢/4)(2m log m)?
4.7) for some m = n and
maX,gcm | 2152 T; — i| < m® forall m = n]
4+ P[max, ;e [ 215, T; — il > m’ for some m = n]
=P,» 4 P®, say.
Since ET\? < oo for all p > 0, 33 n"'P[|23%, T, — 1| > en’] < oo foralle > 0.
Therefore by Lemma 2,
(4.8) D NP, L oo
Noting that
P,Y < 3ie_, {3m’P[max g, cms |W(2)] > (¢/8)(2m log m)}]
+ Lismicism P[MAX,_jcms [W(1) — W(i — m®)| > (¢/8)(2m log m)t]}
S ¢ 2imzn Mexp(—c,m'=* logm),
where ¢, ¢, are positive constants, we obtain that
4.9) v nPM <L oo
From (4.6), (4.7), (4.8) and (4.9), the desired conclusion follows.

Proor oF THEOREM 2. We now proceed to prove Theorem 2 on Strassen’s
conjecture as stated in Section 1. With the same notations as in Theorem 5, we
obtain (1.14) from Corollary 1and Theorem 5, so the sequence (&,,),, is r-quickly
relatively compact in C[0, 1].

Suppose x is an r-quick limit point of the sequence (Y,),s,. Take any ¢ > 0
and let L = sup{n: ||Y, — ,|lc > ¢}. Wenote thatifn > Land||x — Y,||, < ¢,
then ||x — {,||c < 2¢. Therefore

L+ 14 supfn:[lx —Cullo < 2¢} Zsup{n: lx — Y,[lp < ¢} .
Hence '
E(L + 1) + E(sup{n: ||lx — C,llo < 2¢}y"
> 2 E(sup (n: |Ix — Y[l < e})" = oo .
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Since EL™ < oo by Theorem 5, it then follows that x is an r-quick limit point
of the sequence ({,),-,. Likewise if x is an r-quick limit point of ({;),.,, then
it is also an r-quick limit point of (Y,),.,. Hence by Corollary 1, riK| is the set:
of r-quick limit points of ({,),,-

5. Some applications of Strassen’s conjecture. In [15], Strassen gave some
beautiful applications of his functional form of the law of the iterated logarithm.
In this section, we shall give similar applications of Theorem 2. First we study
in the following lemmas some properties of r-quick limit sets which will be used
in the sequel.

LEMMA 3. Let (M, d) be a metric space and let (§,) be a sequence of random
variables taking values in M. Then the set K of r-quick limit points of (,) is a
closed subset of M. Consequently if M is complete and (§,) is r-quickly relatively
compact in M, then K is a compact subset of M.

ProoF. Let x; be a sequence of points in K such that lim,_, x;, = x. We shall
show that x ¢ K. Assume the contrary. Then there exists an open neighborhood
V of x such that E(sup {n: {, € V})" < co. Since x; € V for all large i, this con-
tradicts that every x, is an r-quick limit point of ({,). ’

Now assume that M is complete and (£,) is r-quickly relatively compact in M.
Then given any ¢ > 0, there is a finite union U(e) of closed e-spheres in M such .
that e
(5.1 E(sup{n:,¢U(e)h)" < oo .

It follows easily from (5.1) that K  U(¢). Hence K is totally bounded. Since
K is a closed subset of M and is therefore complete, it is a compact subset of M.

LeMMA 4. Let (M,, dy), (M,, d,) be metric spaces. Let ¢: M, — M, be a con-
tinuous function. Suppose (C,) is a sequence of random variables taking values in M,."
Let A(C,) (respectively (p(L,))) denote the set of r-quick limit points of (§,)
(respectively of (¢(£,))). Then

(3:2) e[ZAC)] © LAe(Cn)) -

Assume further that the following condition holds:
(5.3) “AL,) is compact and for every ¢ >0, E(sup{n:{,¢ L)) <
co, where (L) denotes the open e-neighborhood of £(L,) in
M,. <

Then the sequence (C,) (respectively (¢(C,))) is r-quickly relatively compact in M,
(respectively M,), and equality holds in (5.2), i.e.,

(5-4) P[LE] = ZAe () -

Proor. To prove (5.2), let x be an r-quick limit point of ({,) in M,. Let V
be an open neighborhood of ¢(x). Then there is an open neighborhood U of x
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such that o[U] c V. Obviously

E(sup{n: ¢(L,) eV} = E(sup{n: {,e U} =
Therefore ¢(x) is an r-quick limit point of (¢(,)) in M,.
* We now assume (5.3). Given é > 0, let N, denote the open d-neighborheod
of o[A((,)] in M,. By the continuity of ¢, there exists an open set M contain-
ing <{,) such that o[ M] C N,. Let e = inf{d\(a, b): ae ZL,), be M, — M}.
Since ~¢,) is a compact set disjoint from the closed set M, — M, ¢ > 0. Noting
that £(¢,) € M and so 9[-~ ,({,)] C N,, we obtain that sup {n: ¢((,) ¢ N;} <
sup{n: {, ¢ <(£,)}. Hence it follows from (5.3) that

(5 5) E(sup{n: ¢(£,) ¢ N,})" < o for every 6> 0.

By the continuity of ¢ and the compactness of £(,), ¢[-£(£,)] is a compact
subset of M,. Therefore (5.5) implies that (¢(C,)) is 7-quickly relatively compact
in M, and

(5.6) A¢(La)) C Niso N,

The compactness of ¢[-#((,)] implies that it is a closed subset of M,, so
Niso N; = ¢[-££,)]. Hence from (5.2) and (5.6), (5.4) follows.

LEMMA 5. Let R denote the real line and (0,) be a sequence of real-valued random
variables such that (0,) is r-quickly relatively compact in R. Let K be the set of all
r-quick limit points of (0,) and let y = sup {x: x € K}. Then y is finite and

5.7 limsup, .0, =y (r-quickly).

Proor. Since (¢,) is r-quickly relatively compact in R, it follows from Lemma
3 that K is compact. Hence y is finite and y e K. Therefore for any ¢ < y,
noting that (c, co) is an open neighborhood of y, we have ET,” = co, where
T, =sup{n: 0, = c} as defined in (1.1).

Now let ¢ > y and set 2¢ = ¢ — y. The r-quick relative compactness of (0,,)
implies that there exists a finite union U = =, (a,, b;) of open intervals (a;, b,)
each of length ¢ such that

(5.8) E(sup{n:0,¢ U} < oo .

If a, > y, then each x € [a,, b,] is not an r-quick limit point of (¢,) and therefore
there is an open neighborhood ¥, such that E(sup {n: 6, € V,}) < oo; so by the
Heine-Borel theorem, there is-an open set G D [a,, b,] such that E(sup {n: 0, e
G})” < co. Hence without loss of generality, we can assume that a, < y and
therefore b, < y + ¢(< ¢) foralli =1, ..., m, so (5.8) implies that ET,” < co.
Therefore we have established (5.7).

. In what follows, we shall let X, X, - -+ bei.i.d. real-valued random variables
’ such that EX; = 0, EX;> = | and E|X,[*"*"(log* |X| + 1)~"*Y < co. Let S, =
X, 4+ -+ + X, and define ¢, as in (1.11) and r*K, as in (1.12). Then Theorem 2
is applicable and {, satisfies condition (5.3), as it is well known that riK, is a
compact subset of C[0, 1]. We now give some applications of Theorem 2 below.
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ExaMPLE 1. Define ¢: C[0, 1] — R by ¢(x) = x(1). Clearly ¢ is continuous,
and so by Theorem 2 and Lemmas 4 and 5,

(5.9) lim sup, ., (2nlog n)~4S, = sup,c,ix, x(1) (r-quickly) .
Since the supremum in (5.9) is attained with x(¢) = rit, we have established
(1.16), thus completing the proof of Theorem 3.

ExAMPLE 2. Define ¢: C[0, 11— R by ¢(x) = ||x||c. Then ¢ is continuous
and sup,,ix, ¢(x) = rt. Therefore by Theorem 2 and Lemmas 4 and 5,

(5.10) lim sup, ., (2n log n)~t max,_;, |S;| = r* (r-quickly).

ExAMPLE 3. Let f be a continuous real-valued function on [0, 1] and set
F(t) = (if(s)ds, 0 <t < 1. Define ¢: C[0,1]— R by ¢(x) = {3 x(2)f(?) dt.
Then ¢ is continuous and sup,.,sx, ¢(x) = (r §§ F(r) dt)t (cf. [15, page 219]).
Therefore by Theorem 2 and Lemmas 4 and 5,

(5.11) lim sup, ., §§ (1)L, (¢) dt = (r §§ F*(t) dr)t  (r-quickly) .
We note that
|n=t 230, fli/n)(2nlog n)=2 S, — §3 A(0)C,.(¢) dt|
(:12) = (X §6ym (f[n) — fO)u(r) dt + (2m)7 T3, fli[n)(2n log n) =2 X;|
< a,(2nlog m)~t max g, |S;| + ||f1le(2n log n)~F max,g; <, | X,] ,

where a, = max {|f(ifn) — f(H)|: ( — Dn <t Zifn,i=1,...,n}. We now
show that

(5.13) lim sup, _, (n log n)~* max,;, |X;| = 0 (r-quickly).
To prove (5.13), since E|X,[*"+V(log* |X]| 4+ 1)~V < oo, it follows that
(5.14) 2 n"P[|X)| > e(nlogn)t] < oo forall ¢>0.

Obviously (5.14) implies that
(5.15) X nm'P[max,, |X;| > e(nlogn)}] < o forall ¢>0.
By an argument similar to the proof of Lemma 2, we obtain that
(5.16) Dimeg "I P[max; . | X;| > ¢(mlogm)? for some m = n]

= ¢ DnamrTP[max, g, | X;| > (¢/2)(m log m)t],

where c is a positive constant. Using (5.15) and (5.16), we establish (5.13).
From (5.10), (5.11), (5.12) and (5.13), it follows that

(5.17) lim sup,_., (2n®log n)~ 337, f(i/n)S, = (r {3 F*(t) dt)t (r-quickly) .
EXAMPLE 4. Let p > 1 be a real constant. Define ¢: C[0, 1] — R by ¢(x) =
{5 |x(6)|? dt. Clearly ¢ is continuous. Therefore making use of Theorem 2 and

Lemmas 4 and 5, we obtain by a similar argument as in [15, pages 220-221]
that '

(5.18)  limsup,_. n~=%/>(2 log n)~** 317, |S,|?
= 2(r/py"(p + 2)*-P{§} (1 — 17)"t i) (r-quickly) .
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6. r-quick convergence and statistical applications. While Theorems 2 and
3 deal with r-quick versions of the law of the iterated logarithm, we shall ex-
amine in this section the r-quick version of the strong law of large numbers.
Our results in this section are mainly expository in nature, reformulating earlier
results in the literature in the framework of r-quick convergence. We shall
also outline some statistical applications which have appeared elsewhere to in-
dicate the usefulness of the concept of r-quick convergence.

First we note that for a sequence (#,) of real-valued random variables, the
statement lim,_, €, = 0 a.s. can be expressed as P[T.* < co] = 1foralle > 0,
where

6.1) T*=sup{n=1:10,] = ¢}.

Therefore in analogy with Definition 1, we define r-quick convergence as follows.
DEFINITION 3. Let (M, d) be a metric space and let {,{,(n=1,2,..-) be

random variables taking values in M. Then

6.2) lim,_., ¢, = { (r-quickly)

if and only if

(6.3) E(sup{n = 1:4d({,C,) =€) < o forall ¢ >0.

Suppose X, X,, --- are i.i.d. real-valued random variables and 0 < 8 < 2.
Let S, = X; + --- + X,. The Marcinkiewicz-Zygmund strong law of large
numbers states that

6.4) n~vtS, —0 as. = E|X|f < o andinthecase f=1, EX =0.

An r-quick version of the above strong law is the following: For any p > l/a
and a« > 4, '
E|Xj|» < oo andforthecase a <1, EX;=0

(6.5) = 3 n***P[|S,| = en®] < oo forall ¢ >0
= 3, n?*7Psup,,, |S,/k*| = €] < oo forall ¢ >0
=n*S, -0 (pa—1 quickly)

(cf. [1], [2]). The results (2.1) and (2.2) can therefore be regarded as an ex-

tension of (6.5) in the limiting case & = .

In [7], the r-quick version (6.5) of the strong law has been extended to i.i.d.
random variables X;, X,, - - - taking values in a separable Banach space B. Itis
proved that for « = 1 and p > 1/a,

E||X|||» < oo and for the case a =1,
(6.6) EX, = 0 in the Bochner sense
= >, nP*P[|[S,|| = en®] < o forall ¢ >0
=n=S, >0 (pa — 1 quickly).
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‘A counterexample is given in [7] to show that (6.6) may fail to. hold for § <
a < 1 and pa > 1. However, if the Banach space B satisfies additional assump-
tions (for example, if B is a Hilbert space), then (6.6) still holds for § < a < 1
and pa > 1. Applications to the Cramér-von Mises statistic. and to likelihood
furction statistics are given in [7].

- In [9], by making use of the notion of r-quick convergence, we obtain as-
ymptotic approximations for the expected sample size in.certain invariant se-
quential tests. : For example, for the sequential s-test which tests sequentially
the null hypothesis H, that the observations Z,, Z,, - - - are i.i.d. N({, ¢%) with
{|o = 7, versus the alternative H, that Z,, Z,, - . . are i.i.d. N({, ¢%) with {/o = 1,,
where 7, # 1, are given and {, ¢ are unknown parameters, we stop at stage

=inf{n = 1:1,¢(—a,b)},

wherel is the logarithm of the likelihood ratio of the maximal invariant at
stage n (cf. [9]). Although [, has a fairly complicated structure, we have the
following approximation: There exists a constant ¢ for which’

Iln_n¢(Tn)|§c.’ n=1,2,..

where

T,=(n'X5rZ)/(nt ¢ Z and

$(y) = B(r1y) — B(roy) — 31 + 475"
B(u) = Lua(u) + log a(u), a() = Hu + @ + 4)4}.

(See [9].) Now assume that Z,, Z,, - - . are i.i.d. (not necessarily normal) with
0 < E|Z,|*"*Y < oo for some r > 0. Then by (6.5),
6.7) lim,_, T, =2 (r-quickly),

where 1 = (EZ))|(EZ?)?}. Let us first consider the case where ¢(4) > 0. It is
easy to see that as min (a, b) — oo, ¢(2)N/b — 1 a.s. Choose ¢ > 0 such that
O(t) = (> 0) for |t — 2| < e. Then defining L =sup{n: |T, — | = ¢}, we
obtain (cf. [9]) that N < L + 2 + 57(b + ¢). Since EL™ < oo by (6.7), it then
follows by the dominated convergence theorem that as min (a, b) — oo,

(6.8) EN ~ (b)) -

Similarly if ¢(2) < 0, then EN" ~ (a/|¢(2)])"

In [8], we make use of r-quick convergence to prove.uniform integrability
theorems in renewal theory. Applications of r-quick convergence to linear rank
statistics are given in [10], where it is proved that the remainder term in the
Chernoff-Savage representation of linear rank statistics, when suitably normal-
ized, in fact converges to 0 r-quickly under certain assumptions. Since r-quick
convergence implies almost sure convergence, we obtain as an.immediate cor-
ollary an invariance principle and a law of the iterated logarithm for linear
rank statistics. Some applications of these results to study the expected sample
size of certain sequential rank tests are also given in [10].
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