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INSENSITIVITY OF STEADY-STATE DISTRIBUTIONS OF
GENERALIZED SEMI-MARKOV PROCESSES. PART II

By R. SCHASSBERGER

University of Calgary
In a number of well-known applied probability models certain steady-
state probabilities display an insensitivity property: they depend only on
the means of certain lifetime distributions entering the definition of the
model, not on their exact shapes. This phenomenon has been studied by

Matthes and co-workers in a general framework. New and simple proofs
are given for their essential results.

1. Introduction. In [15] a certain insensitivity phenomenon was investigated
for a class of stochastic processes named generalized semi-Markov processes
(GSMP’s). The class was introduced by Matthes in [13] for the purpose of
studying this phenomenon. The results derived in [15] are due to him with
one exception of minor importance (Corollary 4.1 of [15]), the purpose of [15]
being a presentation of new and simple proofs of those results. We restricted
our attention in [15] to a special case of the insensitivity problem (we varied one
lifetime-distribution only).

The first part of the present sequel of [15] deals with the unrestricted in-
sensitivity problem as formulated in [11] and [12]. Using the terminology of
[15] (familiarity with [15] being assumed henceforth) this problem reads: find
conditions for an irreducible generalized semi-Markov scheme (GSMS) X =
(G, S, p) to be Oy (4,; s € S)-insensitive, where @ = 8’ < S and Oy (4,; 5€S) =
{¢: ¢ e D), ¢, exponential with mean 4,7 for s¢ §’, ¢, arbitrary with mean
2,7t for se 8}, If &’ = {5} for some s5,€ S, we refer to our phenomenon as
®, (4,; s € S)-insensitivity. This special case was the topic of [15]. The general
case reduces to the special one as seen from Theorem 3.1 below, which implies
that X is @y (4,; s € S)-insensitive if and only if it is @, (4,; s € S)-insensitive for
every s, €S,

Decisive for the proof of this theorem are certain properties exhibited by a
Dy (4,; s € S)-insensitive GSMS or the augmented (see [15]) GSMP’s based upon
such a GSMS. One of these, the property of $’-disconnectedness, is the topic
of Section 2. The other one, the so-called product property, has already been
important in [15] and will exhibit its scope more fully in Section 3.

The second part of the present paper is devoted to an important extension of
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UIn [15], we spoke of @, -insensitivity instead. However, the collection of maps ¢ under
consideration depends on the means 2,71; s€.S. We may have @, -insensitivity for one choice
of these means but not for other choices. The notation of the present paper is designed to avoid
possible confusion in this respect.
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the search for insensitivity. In a GSMP based upon some irreducible ¥ =
(G, S, p) the successive lifetimes of an element s ¢ S can be viewed as the succes-
sive intervals between points of a renewal point process which, when stationary,
has intensity 4,. If Zis ®, (4,; s € S)-insensitive, we may thus state: the stationary
distribution {p,; g € G} of a GSMP based upon X is insensitive towards the choice
of the renewal point process generating the lifetimes of s,, as long as this process
has intensity ,2,0 and the means 4,7 of the exponential lifetime distributions
¢, 5 € S/{s,}, remain fixed. Analogously ®g(4,; s € S)-insensitivity can be des-
cribed. It has now been shown in [11] and [12] that, if the notion of a GSMP is
generalized such as to allow the successive lifetimes of an element se S to be
viewed as the successive intervals between points of an arbitrary random point
process on the real line, then (I),O(X,; s € S)-insensitivity implies that {p ; g € G}
is insensitive even towards the choice of the arbitrary random point process
generating the lifetimes of s,, as long as the latter, when stationary, possesses
intensity 4,. Thus the insensitivity phenomenon extends considerably beyond
the framework of the ordinary GSMP.

The proof in [11] and [12] for this fact can only be understood by a reader
who possesses a certain background in the theory of random point processes. It
is, of course, necessary to use this theory for defining the adequate extension of
the notion of a GSMP. We found it, however, possible to demonstrate the
existence of this extended phenomenon in such a manner that the theory of ran-
dom point processes enters the argument only in a last step of a weak convergence
nature, whereas the essence emerges entirely within the framework of ordinary
GSMP’s. The latter is shown in Section 4, the weak convergence step being
carried out elsewhere and in a more general setting.

We conclude this paper in Section 5 with some comments on related work.

2. The property of S’-disconnectedness. An irreducible GSMS Z = (G, S, p)
is said to be §'-disconnected, where §’ is a given nonempty subset of S, if
p(g, s, 9') =0 for all triples (g,s, ¢’) such that either se$, seg’, and
(9 n§))(gnS) =1lorsegS and |(¢ N §)/(g N §) = 2. In words: at most
one element of §’ can be activated at a time. We now prove

THEOREM 2.1. If X is D (4,; s € S)-insensitive for every se S, then X is S'-dis-
connected. '

Proor. The proofcan be found in [11] and hence is sketched here only because
[11] is hard to obtain. We shall carry out the proof for the case that §’ contains
just two elements, the generalization following obvious lines. Let then §' =
{5, 5,}, and define

G,=1{9:9€G,s, ¢4},
G, ={9:9€G, s,e9,5¢9},
G,={9:9€G,s,¢9,s,€g}, and

G=G/(G, UG, UG,.
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Denote by {p,} the (insensitive) stationary distribution under consideration.
Then, for g € G,, the equations (4.1) of [15] may be written as
Aapa =c¢ + U + 9, + lslal,a + Zszaz,a
+ Za’ean Py Za#sl,sz;ae oos P95 85 9)4,

where
ca = Za’eﬁ Pa’ Zseg'ﬂS P(g,’ 5 g)l, + Za’eGl pg’P(g” sl’g)ls,
+ Zgrea, Po P95 52 9)As, s
ua = Za’eG] pa’ Zsa&sl;sEa’ﬂS p(g” 5y g)'ls ’
Vy = 2iyre, Py Ziswsgsegras P(975 S, 9)Aqs
and

¥y = Dyreoy, Po P 505 9) 5 i=12.
The assumptions of @, (4,; s € S)-insensitivity and @, (4,; s € S)-insensitivity
imply, respectively, the equations
Z,lpg =, + Uy + a4,
and
APy = ¢+ + a4, ,
for g € G,,. These are just the equations (4.6) of [15]. Hence, for g€ G,,,

(Aa - '231 - '282)])9 - Zy’eG,z Py Zs#sl,sz;seg'ﬂs P(g,’ S, g)la = —C,.
Summing up these equations for all g € G,, yields

0= —Zaeancg .

But ¢, > 0 and hence ¢, = 0 for all g € G,,. This implies immediately the state-
ment of our theorem.

3. The product property. Theorem 2.1 and the results obtained in [15] for
®,(4,; s € S)-insensitivity put us now in a position to prove

THEOREM 3.1. In an irreducible GSMS X = (G, S, p) is ®(4,; s € S)-insensitive
foreveryse S, where S’ is a nonempty subset of S, then X is g, (4,; s € S)-insensitive.

Proor (sketch). We start, letting

(3.1) F(f) = XK 2, Eiu (1), ses
(see [15], relation (5.2), for this notation).

We adopt the point of view, suggested by the form of (3.1), that the life of an
element s € " always consists, with probability =,**’, of i consecutive independent
exponentially distributed time phases of mean length 1/2®, starting with phase
i. Accordingly we construct a process which, at any time, reports the state
g, g € G, of the system along with the number of the phase in which every ele-
ment s€ g N S’ is found. This process is an irreducible Markov chain with finite
state space and stationary transition probabilities.

Denoting the state of the chain by (g; (i,), s€ g N §'), where i, is the number of
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the phase s is found in, and by (g9) if g N §' = @, we write down the familiar sys-
tem of linear equations for the (unique) stationary distribution (p,, P(s;cip),eegns)
of our chain. Denoting by (p,) the stationary distribution of the GSMP based
upon X by means of the exponential family in ®g, we then verify that a proba-
bility solution of the above system of linear equations is given by

2 (8)
— ) () s
(3.2.1) Pigsigsegnsy = Py Ilsegns —2(%) L T T 1))
and

(322) P(a) :pg *

The verification is direct, using the relations (4.6) of [15] for (p,) and all s S,
and using the $’-disconnectedness of X as derived in Section 2. Both of these
facts are consequences of the assumed @,(4,; s € S)-insensitivity for all s € §’. Ob-
serving then that (3.2.1) implies

ity Puastigsegnsy = Py

we conclude that our theorem is proved under the restriction (3.1). We then
drop this restriction by means of the weak convergence argument following the
proof of Theorem 5.2 in [15].

The proof just sketched parallels the one given for Theorem 5.2 of [15],
whence we skip the details.

If at a given time (3.2.1) and (3.2.2) represent the distribution of the chain
constructed above, then, for the corresponding augmented GSMP, it follows
that the probability that the state at this time is g, g € G, and the residual life-
times of the elements s g N S’ do not exceed x* is given by

(33) Py HsevnS’ 28 ng(l - Fs(t)) dt’

where F,(t), se€ S, is given by (3.1), and where g N " % (7 is assumed.

The corresponding statement for the case of a single-element S’ has been made
in [15], and the corresponding property of this distribution has been called there
the product property. Thus we have shown that ®g(4,; s € S)-insensitivity im-
plies the product property (3.3) for the stationary distribution of any augmented
GSMP based upon X by means of a family ¢ € @y,.

Now assume the latter and choose, for every fixed s € §’, a ¢ such that all life-
time distributions are exponential except ¢,. By the remark following Theorem
5.3 of [15] X is thus seen to be ®,(4,; s € S)-insensitive for every se §’. In view
of Theorem 3.1 we have therefore

THEOREM 3.2. Let X = (G, S, p) be irreducible and S’ a nonempty subset of S.
Then X is ©g,(4,; s € S)-insensitive if and only if the stationary distribution of every
augmented GSMP based upon % by means of a family ¢ € @y, possesses the product
property.

Our proof of this theorem contains a test for @ (4,; s € S)-insensitivity: for
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every fixed s € S’ choose a ¢ € @ (4,; s€ S) such that ¢, is nonexponential and
all other lifetime distributions are exponential. If the stationary distributions
of the resulting augmented GSMP’s possess the product property, then X is
Dy (4,; s € S)-insensitive. Another test, amounting to checking only one GSMP,
is given by

THEOREM 3.3. Let X = (G, S, p) be irreducible and S’ a nonempty subset of S.
Let ¢ € Qg (4,; s€S) be a family such that ¢, is nonexponential for every se S'. If
the stationary distribution of the augmented GSMP based upon X by means of ¢
possesses the product property, then X is Qg (4,; s € S)-insensitive.

The corresponding statement for the case of a single-element S’ is that of
Theorem 5.1 in [15]. Our methods seem to allow proofs of these statements only
under the restriction that the nonexponential lifetime distributions in ¢ are of type
(3.1). The proof of Theorem 3.3 is then sketched as follows: construct a phase
process just as the one considered in the proof of Theorem 3.1; write down the
linear system for its stationary probabilities; by assumption, the unique proba-
bility solution of this system is of the form (3.2), where (p,) is a probability
distribution on G; inserting this solution into the given system of linear equations
shows that (p,) statisfies the equations (4.6) of [15] for every s e §’; hence, by
Theorem 5.3 (iii) of [15], Z is @,(4,; s € S)-insensitive for every s e §’; the rest
follows by Theorem 3.1.

A complete proof of Theorem 3.3 is found in [12].

4. An extension. We start out with an irreducible GSMS X = (G, S, p), for
which some element s, € S has been singled out, and an irreducible stochastic
matrix R = (r;;),X, K < oo, with stationary law (g,),X. Moreover, we need a
set S, = {8, -, Sox} satisfying SN S, = @ and g N §, = @ for every ge G
and a set M = {m,, - .., my} satisfying M n (SU S,)) = @ and g N M = @ for
every ge G, where G,={g:geG,s,cg9}. We now define a GSMS Z* =
(G*, §*, p*) by letting (i) G* be the collection of the sets g U {m,} for g € G/G,
i=1,...,K and the sets (g/{s,}) U {s;} for geG,, i=1, ..., K; (ii) $* =
(S/{so}) U S,; and (iii) (using the shorter symbolic notation (g, ) for g U {m,} or
(9/{s0}) U {50:}) by setting

P*((g’ i)’ s*’(g”j):p(g’s*’g’) ! g$g,eGo, S*GS*/SO’ j=i, or
9,9 €G|G,, j=i
:p(g, Sos gl)ria‘ 9,9 €G,, s* =5,

= p(9, 50 9') . 9€eG,, ¢e€G|G,, s*=5, j;i
= p(g, 5%, 9')ri; 9€G/G,, ¢ €G,
=0 all other choices.

It is easily seen that Z* is again irreducible. This GSMS allows us to modify a
GSMP based upon Z as follows: the successive lifetimes of s, are taken to be the
successive holding times of the states of a semi-Markov process with state space
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{1, .-+, K}, jump matrix R and holding time distributions which do not depend
on the state to be jumped to next; the states g ¢ G are marked; the mark m, of a
state g € G/G, represents the fact that the most recent lifetime of 5, was of type i,
i.e., corresponded to a holding time, of the state i of the semi-Markov process; the
mark s, of a state g € G, signalizes that the current lifetime of s, is of type i; the
mark m; is added as a passive component to the states g € G/G,; the mark s,
however, is an active component of the marked state, replacing the former com-
ponent s, it might be interpreted as being the old s, in type-i manifestation.
We now have

TaeorEM 4.1. If X is @, (4,; s € S)-insensitive with stationary distribution {p;;
g € G}, then % is @g (p,; s € S*)-insensitive for every choice of {y1,; s € S*} satisfying
Uty = 4,, € S*/S,, and Pagy = X,M, i=1, ..., K, with

1 gk, = A0

204
The stationary distribution {p¥ ,; g€ G,i = 1, ..., K} of the states of G* is given
by

A,
(*) Py = Py l—" 9 9¢€G,
804

= P.9: 9€G/G,.

REMARK 4.1. We note that X, p¥ . = p,, g€ G. Thus the theorem implies
the following statement: suppose X is @, (4,; s € S)-insensitive with stationary
distribution {p,; g € G}. Then this distribution remains unchanged, if the renewal
process generating the lifetimes of s, is replaced by a semi-Markov generated
point process of the same intensity 4,. Once this fact has been established, one
would expect that an arbitrary point process of intensity 2,0 in place of the
original renewal point process would not affect {p ; g € G} either. For, as has
been shown by Herrmann in [4], every stationary point process on the real line
of finite intensity can be obtained as the weak limit of semi-Markov generated
stationary point processes of the same intensities. Hence, a weak convergence
argument will supply the desired extension of Theorem 4.1. Our point is that,
in view of Herrmann’s theorem, the extended insensitivity phenomenon is essen-
tially established by Theorem 4.1.

REMARK 4.2. Theorem 4.1 exhibits insensitivity with respect to the various
manifestations s,, of 5,. This fact has been proved in [11] and [12], too.

REMARK 4.3. We restrict ourselves in Theorem 4.1 to the case of @, (4,; s € §)-
insensitivity for a set §’ containing just-one element, s,. The general case leads
to a statement analogous to that of Theorem 4.1. In particular, if the renewal
processes generating the lifetimes of the elements s¢ S’ are replaced by semi-
Markov generated point processes of intensities 4,, s € §’, then {p ; g € G} remains
again unaffected. The construction of the corresponding extension X* of X is
obvious and the rest of the argument follows that of the proof of Theorem 4.1.
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For instance, if &' = {s,, 5,}, we have to use two marks for each state g € G and
obtain the stationary distribution

X _ 8 89
Pro.il,iz) =Py — ‘h,i, — ‘h,iz ’ S, S, €9

2sl,il 2“2,1'2
Ay
zpa'f‘—ql,ilqmz’ €9, ¢4
1,4y
4,
:xpoql,ilf‘l‘qz,iz’ S €9, S$€Q9
52,4y
= Po91i,92.4, 0 S1s 5, € 9 5

where the notation will be understood. The details are omitted.

ProoF oF THEOREM 4.1. In view of Theorem 3.1 we just have to show that
Z*is @, (p,; s € S*)-insensitive for every i,i =1, ..., K, with p; as stated.
By Theorem 5.3 (iii) of [15] this, in turn, is true if the distribution (p¥ ;; g € G,
i =1, ..., K} statisfies the two equilibrium conditions (4.1) and (4.6) of [15].
ForgeG,andi =1, ..., K, (4.1) of [15] is satisfied if

(ug; + Ny — 2 )PYty = Dorea Lia Pl iy Do PX(9'5 )5 5%5 (95 1)) Aee
where
An = Zaenns l, .

Inserting (*), we have to show that

4 A )
('280,; + Av - lso);pv “l—o'qi = Zn’iGopa’ __o_qi Zs‘eS'/SOP(g s 5%, g)l,,.

%04 2”oi

A, ,
+ Doea, P 25 }_(L q; (9> S0 Drsihey;

%03
+ Doewo Po i1 9s Lo P95 5% O Aalyi -
Here, the last two terms on the right-hand side can be written as

qi(Za’iG/GoPa’ Zsea’nSP(g,’ S, g)ls + Zv’€00pa’;p(g" So» g)'zso) 4

which equals ¢,4, p, on account of (4.6) of [15], since Z is @, (4,; s € §)-insensi-
tive. Thus it remains to show that

(Ay - zso)pa = Za’iGo Py Zsea’nS;a*so P(gl’ S g)’zs
which, again on account of the @, (4,; s € S)-insensitivity of Z, follows directly
from (4.1) and (4.6) of [15]. It is similarly easy to check that the p¥ , asgiven
by (*) satisfy (4.1) of [15] for ge G/G, and i = 1, .-, K. Finally, the p¥ ,
satisfy (4.6) of [15], if
Awi Plaiy = Lgreciay 2ii=r Ploriy 20 P(G'5 85 9)A, 1
+ Za’EGO 2ivi Plor,iy P(9's Sos g)lsnjrji
+ Dgreay Pl P(9's Sor 9y, Tii
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for every g € G, and every i, i =1, ..., K (note that the first two terms (last
term) on the right-hand side above correspond to the first term (last term) on the
right-hand side of (4.6) in [15]). Again, using (4.1) and (4.6) of [15] for {p,;
g € G}, it is easily checked that the above relation holds. This finishes the proof.

5. Conclusion. The present report together with [15] contain new proofs of
essential results on @,(4,; s € S)-insensitivity. We believe that these proofs are
considerably simpler than those of [11] and [12] and hence will enable the reader
to penetrate quickly into a most interesting area of research. We also believe
that our methods might prove useful for discovering further insensitivity pheno-
mena. Furthermore, in Section 4 of Part II, we have indicated how the widely
known and well understood methods of analysis based upon renewal or, more
generally, semi-Markov renewal processes, may be used to derive results which
might then readily be extended, using Herrman’s theorem, to hold for models
involving arbitrary point processes. This idea, although not new (see, e.g., [4]
and [3]), has, to the best of our knowledge, not been fully applied to any par-
ticular model and should also prove useful for discovering new phenomena and
relations for many models of applied probability.

We are now going to conclude this paper by pointing out some further results
on @ (4,; s € S)-insensitivity.

It is shown in [12] (by simple means) that, if some X is ¢.(4,; s € S)-insensitive,
then its stationary distribution is given by the formula

Pg :aqg Hseyr\S’ 23—1’ gGG,

where a is a norming constant and ¢, does not depend in any way on the distri-
butions ¢,, s € §’. Furthermore, it is shown in [12], also by simple means, that
D, (4,; s € S-)-insensitivity implies @, (x,; s € S)-insensitivity for any collection
{us; s € S} with g, = 4,, s€ §/S’. For a wealth of important examples exhibiting
D (4,; s € S)-insensitivity, such as the Erlang and Engset schemes from teletraffic
theory and certain reliability schemes, we also refer to [11] and [12]. More
recently, Koenig, Jansen and co-workers have investigated further model classes
with respect to insensitivity and have also generalized the theory to allow for
the lifetimes of active components to be realized with nonnegative speeds de-
pending on the states g € G (see [6], [8], [9], and [10]). Brumelle [2], Kelly [7],
Barbour [1], Oakes [14], and the author.[16], [17], have also made contributions
in this direction.

There are, of course, many further types of insensitivity which deserve study.
We have already mentioned in Part I the paper of Jacobi ([5]) who gave an
example of a GSMS for which @ (4,; s € S)-insensitivity holds only under the
additional condition that the distributions ¢,, s €S’ are all the same. This ex-
ample does not possess the product property. Wolff and Wrightson ([18]) have
recently found another such example.
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