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VECTOR VALUED SUBADDITIVE PROCESSES
AND APPLICATIONS IN PROBABILITY?

By N. GHOUSSOUB AND J. MICHAEL STEELE
University of British Columbia and Stanford University

An ergodic theorem is proved which extends the subadditive ergodic
theorem of Kingman and the Banach valued ergodic theorem of Mourier. The
theorem is applied to several problems, in particular to a problem on empirical
distribution functions.

1. Introduction. The subadditive ergodic theorem of Kingman [2, 5, 6, 16, 17,
18, 21] is a nonlinear generalization of the Birkhoff ergodic theorem which, in the
ten years of its existence, has become established as one of the most useful results
in probability theory. Fifteen years before Kingman’s result, Mourier [19] had
extended the Birkhoff theorem in an entirely different direction by proving that it
is valid in any Banach space. The main objective of this paper is to prove a result
which extends both the Kingman and Mourier theorems.

While the simple existence of such a generalization may be of interest, our
primary motivation has been the feeling that such a result should be genuinely
useful. To expedite possible applications we have outlined in the third section
several general procedures which give rise to vector valued subadditive processes.
In particular we treat a problem there on empirical distribution functions which
seems of independent interest.

A second motivation has been provided by the intimate relationship between the
subadditive ergodic theorem and the geometry of the underlying Banach lattice. It
is possible, for example, to characterize those spaces isomorphic to L' by means of
subadditive processes.

Before yielding to the details of Section 2, it seems useful to give a less technical
description of our main result. We suppose E is a Banach lattice (i.e., |x| < |y|=
lIx]] < |l»]), and we will call a sequence (S,) of Bochner integrable E-valued
functions a subadditive process provided for all natural n, kK we have

(1.1) S,k <S, + S, 00"

where 0 is a measure preserving transformation on the probability space (2, ¥, P).

Our key result is that under a mild restriction on E, one has for any positive
subadditive process that S,/n converges in norm with probability one. In particu-
lar we are content to note here that E can be L?, 1 < p < o0, ¢, or essentially any
familiar space except /* or C(K).
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2. Main results. We must first recall some facts from ergodic theory and
functional analysis. When equality is assumed to hold in (1.1), (S,) is called an
additive process, and the key result about such processes is the following.

VECTOR VALUED ERGODIC THEOREM. (Mourier [19)). If (S,,) is an additive process
valued in any Banach space E then S, /n converges a.s. in norm to E'(S,) where I is
the o-field of 0 invariant sets. (Here and subsequently E' will denote the conditional
expectation with respect to the o-field I).

REAL SUBADDITIVE ERGODIC THEOREM. (Kingman [16)). If (S,) is a real subaddi-
tive process then inf n~'E(S,) > — oo implies

2.1) lim S,/n = £as.
where
(2.2) ¢ =lim E*(S,/n).

We need to recall some notions about Banach lattices which may not be familiar
to probabilists. A Banach lattice £ is called countably order complete (COC)
provided for any nonempty countable B which is majorized by an element of E
that sup B exists. Further, E has order continuous norm (OCN) provided E is COC
and every decreasing positive sequence in E is norm convergent. Finally, E is
weakly sequentially complete (WSC) if every increasing norm bounded sequence in
E is norm convergent. (For background on these notions, one can consult Schaefer
[21], pages 54 and 92.)

A sequence (x,) in E will be called subadditive (superadditive) if x,,, < x, +
X (X, 4% 2 X%, + x;) for all natural n, k; we start by developing several elementary
facts about subadditive sequences in Banach lattices. Finally, we let E’ denote the
dual of E and let E’, denote the positive cone of E’.

LEMMA 1. In a Banach lattice E with an order continuous norm one has the
Jollowing properties:
(2.3) If0 < x, < x and x, converges weakly to x

then x, converges strongly to x.

(24) If0 < x, < y,,y, converges strongly to x
and x,, converges weakly to the same x
then x, converges strongly to x.

ProOF. This lemma has been established in Heinich [14], but we will provide an
alternate proof. By the result of Diestel and Seifert [7] which says that a weakly
compact order interval is the range of a countably additive vector measure, and the
result of Anantharaman [8], page 270 which says the extreme points of such ranges
are denting points we see that x is a denting point of [0, x]. Thus we have
established the first part of the lemma. To prove the second half we note
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0<x, <x,Vx <y,Vxhence for f € E/, we have f(x,) < f(x,V x) < f(y,V x)
and thus x, V x converges weakly to x. Since x, Vx + x, A x = x, + x we also see
x, A x converges weakly to x, which implies by (2.3) that x, A x converges strongly
to x. Since 0 < x, A x < x, < y, the strong convergence of the bounds on x,
implies (2.4).

PROPOSITION 1. For a countably order complete Banach lattice E the following

conditions are equivalent:

(2.5) E has an order continuous norm.

(2.6) For every positive subadditive sequence (x,) in E,

the sequence x,,/ n is norm convergent to inf(x, /n).

Proor. If (x,) is subadditive, (xx/ 2%) is decreasing and assuming E has an
order continuous norm this sequence is norm convergent to z = inf,xy/2* =
inf x,/n. Since applying any element of E) to x, yields a real subadditive
sequence we see that (x,/n) is weak Cauchy. Since this sequence is valued in the
weakly compact order interval [z, x,] it is weakly convergent to z. By Lemma 1 this
is enough to imply norm convergence to z.

To prove that (2.6) implies (2.5) it suffices to note that if (y,) is positive
decreasing then (x,) = (ny,) is subadditive.

PROPOSITION 2.  For a Banach lattice E, the following conditions are equivalent:

2.7 E is weakly sequentially complete.

(2.8) For every superadditive sequence (x,) in E such that sup||x,||/n <

the sequence (x, /n) is norm convergent to sup x,,/ n.

PROOF. y, = X, — x, is a positive superadditive sequence. Again, yx/2* is
increasing and norm bounded, hence it is norm convergent to z = sup,yx/2* =
sup,y,/n.y,/n is weak Cauchy and valued in [0, z], hence it is weakly convergent
to z. Lemma 1 applies and gives the norm convergence.

We can now precisely state our main result.

THEOREM 1. For a countably order complete Banach lattice E the following
properties are equivalent:

(2.9) E has an order continuous norm.

(2.10) For every positive, E-valued subadditive process (.S,) we have

strong convergence of (S, /n) with probability one.
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PrOOF. Since (2.10) immediately implies (2.9) by Proposition 1, we focus on the
more important implication of (2.10) by (2.9). If I denotes the invariant o-field of 4,
we first show
(2.11) E'[ S,/ n] converges strongly to Z = inf, E’[ S,/n] for all w.

Setting Y, = E’[S,] we have Y, > 0 and
Y or = E’[S,,+k] < E’[S,, + 80" =Y, + E’[Sk ° "] =Y, + Y,

This proves for a.e. w, (Y,(w)) is a positive subadditive sequence in E so by
Proposition 1 Y, /n is norm convergent to Z = inf Y, /n = inf E’[S,/n] a.e.

Now since (S,) is a sequence of Bochner integrable functions it is almost
separably valued, so there is no loss in assuming E is separable. For f € E/, we
apply Kingman’s theorem to the real process X, = f(S,) to obtain

(2.12) lim . A(S,) = lim B/( (5,)) = inf £(5.A(S,))

outside a set &, with P(Q) =0. By (2.11), E (S,/n) converges . strongly to
inf E’(S,/n) so by the continuity of f we have

lim j(E’(%)) = f(inf E(S,/n)).

Since bounded linear functionals commute with conditional expectation, by (2.12)
and the preceeding equality we have for w & §2; that

213)  Lmf(S,/n) = lim El(% f(s,,)),
= lim f(E'(S,/n) = f(inf E'(S,/n)) = A(Z).

We now adapt a technique used by Kingman [18] page 195, to show that S, /n is
majorized by a norm convergent sequence of random variables. For that, we fix
k > 0 and suppose n > k. Letting N = N(n) be the integral part of n/k, we see by
subadditivity that

(2.14) S, K SN (S, 00Dk 4§ h o 8N
<3N Z + Wy

Where Z, = S, c 8¢~ and W), = Z%Z|S; - §™*. Since W, has the same distribu-
tion for all N and since E || W,|| < oo, we have for all ¢ > O that

1
w1 P(IWyll > eN) = ZZP(|Wi|| > eN) < —E[[W)]| < co.

The Borel-Cantelli lemma thus implies that || W||/N converges a.e. to zero. Since
S¥_.,Z, is an additive process, we have by Mourier’s theorem that a.e.

(2.15) lim ~3Y.Z, = E'[Z,] = E'[S,].
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By inequality (2.14) we have
Z<§—vz<—(2 Z, + Wy)V Z.
So by applying any f in E, and letting n go to infinity we get for w &
F(Z) < lim inff(—i—” v Z) < lim supf(% v Z) <j(E’[%]).
Letting k tend to infinity we have
lim_/(—i—" \% Z) = f(Z) outside .

Next in view of the identity S,/nVZ + S,/n AZ = S,/n + Z and (2.13) we also
have for w & €, that

(2.16) lim 1(57 A z) - A2).

For every w € ©, (S,/n)(w) A Z(w) belongs to the weakly compact order interval
[0, Z(w)]; hence there exists a subsequence (k,) such that weak limit
Sy (w)/ k, N Z(w) exists. Let Z’(w) be such limit.

For every f € E/_, we have

. Sk,,(“’) , .
lim 2 A Z(w) ]| =AZ' () = (Z(w)) if o & Q,

n

so Z’ is weakly measurable. Since E is separable, Z’ is also strongly measurable.
Moreover, we have Z’'(«w) < Z(w) for each w € Q, so it follows that Z’ is Bochner
integrable.

Now for any fixed f € E/, we have for every 4 € ¥ that lim [, f(S,/n)A Z) =
T A2 = [,AZ). Since this last equality is valid for all f € E’ we also have
JaZ’ = [4Z and the validity of this equality for all A € ¥ implies in turn that
Z = Z’ a.s. We have thus proved that (S,/n) A Z converges weakly a.s. to Z. By
the first part of Lemma 1 we consequently have that (S,/n) A Z converges strongly
a.s. to Z. To apply this to the strong convergence of (S, / n) we note

II— - ZI < lwg (E’,"..Z + W) ———Il +11Z - (2,-12 + W)l
Sn
(2,_12 +Wy) — 2 AZ|+1Z - (2,_12 + W)l

where the last inequality follows from (2.14) and the fact that Nk < n. By the
equality (2.15) we obtain

, S, S S
lim sup|| =" — Z|| < uE’[?"} - Z|+1Z - E’[Tk]“.

We already noted in (2.11) that E’[S, / k] converges strongly a.s. to Z and this fact
completes the proof.
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As a corollary to Theorem 1 we note that the assumption of positivity can be
weakened.

CoRrOLLARY 1. If E has an order continuous norm and 8 is a Bochner integrable
Sfunction such that for all n > 1

"8 <S8,
then S,/ n converges strongly with probability one.
ProOF. The corollary is immediate from the Mourier theorem and the fact that
S, =S, — ="_48 ° 8’ is a positive subadditive process.
The next theorem is the vector-valued analogue of Kingman’s ergodic decom-

position of a real subadditive process.

THEOREM 2. If E is weakly sequentially complete and (S,) is a subadditive process
such that

(S;—Si—1°0)ll < o0

i=1

1 m

(2.17) sup ;EIIE

then there is a Bochner integrable random variable 8 such that for n > 0 we have
S, > S"=18 o ' and E(8) = inf —:;E(Sm).

ProOF. We let S; = 27238, ° §' — S, and note that by the subadditivity of S,
that S, is positive and superadditive. Also, since S; — S/_;°0=S;,_,°8 - S, +

S, we have
12721087 = S/_y 2 O)ll < NIZT21(S;—y © 0 = S)II + ml| Syl

im=]

so (2.17) yields

(S/ = S/_1°0)|l < o0.

i=1

1 m
(2.18) sup ;EHZ.

We will use S, to construct a 8’ such that
S, < 2238’ e fiforalln >0
and such that E(8’) = sup (1/n) E(S,). By the correspondence between S, and S,

the é required by the theorem is then given by § = §; — §’.
We first note by (2.18) that

1 1 n , ,
sup —|E(S;)ll = sup — I E[S5-1(S/ = Si_1 © 0)]

1
< sup ;EHELI(S/ —8_1°0) <o

so Proposition 2 implies that the superadditivity of E(S,) entails the convergence of
(1/n)E(S,) to sup(1/n)E(S,).
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As before we may assume without loss that E is separable. Consequently, E
contains a quasiinterior point # (Schaefer [20] page 97). We will use this quasiinter-
ior point to push through a truncation argument parallel to one used in the real
case in Ackoglu-Sucheston [1].

We let ¢,, = (1/m)S7_ (S — S/_, ° #) and note that the same computation as
in the real case of Kingman’s lemma will give

n—1

(2.19) sn-le o9 > (1 - )s,; for 1 < n < m.

Now for j > 0 the sequence (¢,, Aju),, is in the weakly compact interval [0, ju] of
L'[E] so by diagonalization procedure there are A€ L'[E] which are weak limits
in L[E] of (¢m, AJju) for a fixed subsequence (my) and all j. By the weak
lower-semicontinuity of the norm in L'[E] we have
(2.20) lim inf, E|$,, Ajull > E|A]l.
We also have

sup,E[IVI1] < sup,, Ellg,, | < oo

thus the () are increasing and norm bounded so by the weak sequential complete-
ness of E the (A;)) converge to their supremum §’.
By (2.19) we have

Z320(0m, Aju) © 07 = (Z120(6m, © 0°) AJu) > (21250, © 8°) A ju

> (1 - l)s,;/\ju
my
so taking weak limits with m, — oo we have
20N 0 07 > S A ju.
Now let j — oo to obtain the key relation
"a8’ 28" > S, foralln > 0.
Taking expectations further yields
1
’ > — ’
E$’ > sup p E[S,]
and to get the opposite inequality it is enough to notice that
1
E[§] = E|A\| < E = — /
[8] = sup E[N] < sup E[9,,] = sup - E[ 5]

so the proof is complete.
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COROLLARY 2. For a Banach lattice E the following are equivalent:
(2.21) E is weakly sequentially complete.
(2.22)  For every E-valued subadditive process (S,) such that
sup, 1/ || (S, = Si_y  0)]| < oo we have
S,/ n converges in norm a.e.

ProoF. That (2.21) implies (2.22) follows from the theorem above and
Corollary 1. For the converse it suffices to invoke Proposition 2.

For a real subadditive process the finiteness of the time constant inf(1/n)E(S,)
is sufficient for the a.s. convergence of S, /n. The next result shows that the spaces
for which a corresponding result holds are precisely those isomorphic to L[ u] for
some p, (i.e., A L space).

THEOREM 3. For a Banach lattice E, the following are equivalent:
(2.23) E is isomorphic (as a Banach lattice) to an A L space.
(2.24) For every E-valued subadditive process (S,) such that

inf(1/n) E(S,) exists, we have S, /n converges in norm a.s.

Proor. By the same correspondence used in Theorem 2 we can work with
positive superadditive processes (S,) such that sup,(1/n)E[S,] exists. That (2.24)
follows from (2.23) is a consequence of the fact that an A L space is weakly
sequentially complete and that there exists an f € E’, such that || x| < f(|x]) for all
x € E. To use this second fact, we note

1 1
sup ;EHE’;-I(SJ' =81 °0)| < SuPn;Elef(Si —8i_1°8)
1 1
= sup,,; E(f(Sn)) = j(sup;E(Sn)) < 0.

To show the opposite implication we use the characterization of A L which says a
space is A L if and onmly if every positive summable sequence is absolutely
summable (see Schaefer [21] page 242). To that end, suppose there is a sequence
(x,) in E such that 3, x, = x and 2, || x,|| = co. We can select an increasing
sequence of integers (my) such that Z7%+! . [lx]| > 1 and by multiplying by
coefficients less than 1, we may assume the sum equals 1.

For every k > 1 divide the interval [0, 1] into my ., — m, subintervals
(4;, )%z ., such that the length of 4, , is ||x;||. Now we can define an E-valued

process (S,) by

(2.25) S, = n3n_ Sre

TR VI
(B Bt

If we take 6 to be the identity transformation on [0, 1], one can easily check that S,
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is a superadditive process. Now

1 X,
;E(Sn) = Z-lEZTi}'.,‘HmlA,’,‘ = 212k 1% < x.
On the other hand for any w € [0, 1] we have for each k an i, such that w € 4 o ko

and, consequently,

1 X
(2.26 =S, () =122 i—=I-
) ” n ( )” ” 1 ”xik” ”
Since each of the summands is positive and of norm 1, the expression given in
(2.26) tends to infinity with n, and the proof of Theorem 3 is complete.

3. Examples and applications. The usefulness of subadditive ergodic theory is
substantially extended by a reformulation in terms of stationary processes. After
sketching this reformulation we will indicate several historically fecund sources of
subadditive processes and analyze a problem from the theory of empirical distribu-

tions.
We will call a doubly indexed family of Bochner integrable random variables

(Y,) s, t € Z, a subadditive process provided
3.1) Y, <Y,+ Y, whenevers <t <u

3.2) (Y,,) has the same joint distributions as (¥, ,4,)-

To unite this definition with the one given in Section 1 we note first that (Y,,) can
be extended to a process which satisfies (3.1) and (3.2) for all s, 7 € Z not just Z ..
Next Q can be taken to be the set of functions

x:{(s,0);s,t€Z,s<t}>E

which satisfy

x(s, u) < x(s, 1) + x(2, u), (s <t <u).
The measure P on € is the measure induced by the process satisfying (3.1) and
(3.2), and @ is defined as the shift

Ox)(s, ) =x(s + 1, ¢+ 1).
This correspondence is just the E analogue of the one introduced by Kingman, and
for further details one can consult Kingman [18] pages 181 and 186.

For unity of this section on applications we restate our main result in terms of
our second definition of subadditive processes.

THEOREM 1. For a Banach lattice E with order continuous norm, and for every
Dpositive process (Y,,) satisfying (3.1) and (3.2) we have Y, /n converges in norm with
probability one.

This reformulation makes available a number of recipes for producing subaddi-
tive processes, some of which we now consider.



92 N. GHOUSSOUB AND J. MICHAEL STEELE

Unconstrained maximization. This is perhaps the most natural source of sub-
additive processes, and the theory of random series (as studied in Kahane [15])
suggests many specific examples. To take one, suppose X; i = 1,2, - - are iid.
Bochner integrable random variables valued in a Banach lattice E. We let

Y

st o maxe,=tl|es+1Xs+l + g Xpu + 0 e X

where the maximum is taken in the sense of the lattice £ and extends over all
choices of the signs ¢,. Even in the simple case E = L0, 27] and X, = cos(x + Z,)
where Z; are i.i.d. rv’s, it is useful to be able to conclude from Theorem 1 that

n~'Y,, converges strongly with probability one.

Constrained minimization. This is a source of subadditive processes which goes
back to the pioneering work of Hammersley and Welsh [14]. Suppose for each edge
e of a connected graph G we associate a positive integrable vector valued random
variable X(e). Given vertices v, v’ of G we define

U(v, v') = infpZ,cpX(e)
where the infimum is taken over all paths P from v to v’ in G and the sum is over

all edges in P. When G is Z X Z with edge set given by joining a point to its four
neighbors, we can then define a subadditive process by

Y, , = U((s 0), (4 0)).
A particularly interesting choice of X(e) is given by taking independent realizations
of the absolute value of the Brownian bridge and where E = L'[0, 1]. In connec-
tion with this specific choice it would be interesting to determine the value of the
time constant

lim,_,wt"E( YO, r) =%
but this problem remains open.

Subadditive operators on random walks. Suppose (X;) are iid. positive E,-
valued random variables and that M is a positive subadditive operator from £ to a
Banach lattice E,. The process

Ys,t = M(Xs+] + Xs+2 +- +Xx)

will then be a subadditive process in E,. The operator M required above can be
taken to be the Hardy-Littlewood maximal operator on L” or any of the similar
operators described by Stein [24]. Although the continuity of M will often allow
one to side step Theorem 1, the use of subadditive processes retains a conceptual
value and may prove valuable in more general contexts.

Beyond general sources of subadditive processes sketched above one can gain
repeated inspiration from the examples given in Hammersley and Welsh [13],
Hammersley [12], and Kingman [16, 17, 18].

We now turn to a more detailed discussion of a problem from the theory of
empirical distributions which can be solved by means of vector valued subadditive
processes and the application of Theorem 1.
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Uniformity classes and empirical distributions. 'We now assume (X)) is a sequence
of i.i.d. random variables valued in R“ with distribution g. A well-known and much
studied problem is the following:

Under which conditions on a class C of Borel subsets of R¢ does one have

1
supAECIZZ',;,lA(X,.) — w(4)|>0as.asn— o0?

Many particular classes C have been studied and a number of these are invariant
under the group G of rigid motions of R?. For example, the class of convex sets are
studied in Rao [20], the half-spaces in Wolfowitz [27], or many of the general
classes studied in Vapnik and Chervonenkis [26], Steele [22], Dudley [9] or Dudley
and Kuelbs [10].

There are also several classes of interest which are not invariant under G. Here
one should consider the class of rectangles, class of lower layers [4, 23] or any class
containing only a countable number of elements. Now for any class € we can
define a new class C, = {B: B = gd, A € C} by translating the elements of C.
Similarly we have the translated discrepancy

1
o,(8 w) = SuPAec,"n' T=114(X;) = w(4)|-

A class C for which ¢,(e; w) — 0 a.s. for the identity e is called a uniformity class,
and the class formed by the union of all translates of C is called the closure of ©
under rigid motions (i.e.,_@ = Uzec®)

It is natural to ask if © is a uniformity class provided € is a uniformity class.
Unfortunately one can construct even a singleton class © = {4} such that C is not
a uniformity class. (To prove this one can use the construction given in Steele [24]
for a related problem.)

Even though C need not be a uniformity class, the natural measure on G (right
Haar measure) shows that @ shares some properties with C.

THEOREM 4. If C is a class of Borel subsets of the unit ball of R?, and the
Junctions

1
9,(8; w) = sup, c@g|; T=114(X;) — w(4)|

are measurable then they converge in L'(G) with probability one.
Proor. We first consider the process
Ys,t = supAE@lzti=s+llg(A)(/Yi) - (t - S)“’(g(A))l‘

To check that Y, , is valued in L'(G) we note

0< Ys,t < 2ti=s+llg(A)(X'i) + (t - s),u,(g(A)).
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Since 1,5)(x) is 0 except on a compact subset of G we have 2’,.=g+118(3)(X,.) €
L'(G). For the second term we note,

Jop(8(4)) dm(g) = [gfrelgca(x) du(x) dm(g)

= fRd[fGIg(A)(x) am( g)] du(x) = fRd[fGlg(A)(O) dm(g)] du(x) < o0
since u is a probability measure and since the last integrand does not depend on x.
The remaining properties which show Y , is an LY(G) valued, positive, subadditive
process are also easily checked. Hence by Theorem 1, we see ¢,(g) = (1/n)Y, ,
converges strongly in L'(G) with probability one (i.e., there is a ¢ € L'(L'(G))
such that [|¢,(g, w) — ¢(g, w)| dm(g) — 0 for a.e. w).

PRrOPOSITION 3. If in addition to the hypotheses of Theorem 4 we assume @g isa
uniformity class for each g € G then ¢, converges strongly to O with probability one.

PrOOF. Let ¢ be the limit of the ¢, guaranteed by Theorem 4. For any fixed g
we have a.s. that

#(g, w) = lim, ,¢,(g, @) =0,
hence

0= [[a9(g @) dP dm(g) = [q[ /(g w) dm(g)] dP.

Since ¢(g, w) is positive this identity says ¢(g, w) is the zero element of LY(G) for
a.e. w.

Theorem 4 and Proposition 3 have easy extensions to L?(G) for 1 < p < o©
which we omit. As we commented before, there is a singleton class € = {4} for
which ¢, does not converge to 0 in L%(G), even though we now see it must
converge to 0 in L?(G) for all 1 < p < oo. This example is particularly useful to
keep in mind considering the assumption of Theorem 1 on E that E have an order
continuous norm (equivalently, /® <> E).
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