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RATES OF CONVERGENCE FOR CONDITIONAL EXPECTATIONS!

By SANDY L. ZABELL

University of Chicago and Northwestern University

Let {X,:n > 1} be a sequence of ii.d. random variables with bounded
continuous density or probability mass function f(x). If E(exp(a|X,|?)) < o
forsomea > 0and 0 < B8 < Lu = _(X;), ¢, = o(n'/®~P) and h is a measur-
able function such that M = E(|h(X,)|exp(a|X;|#)) < o, then

1+
E(h(X)| X1+ - +X,=np+c,) = E(h(X)) + MO(—nchI)
uniformly in 4. It follows that
1+
IR (XiIXy + -+ + Xy = nu+6n) = R(XDllver = 0(—n'c"|).

Applications are given to the binomial-Poisson convergence theorem, spacings,
and statistical mechanics.

1. Introduction. Let X, X,,X;,--- be a sequence of independent and identi-
cally distributed random variables and A(x) a measurable function such that
E(h(X,)) exists. In this paper we consider the limiting behavior of the sequence of
conditional expectations E(h(X,)|X,;+ -+ +X,) for various classes of sample
paths; limit theorems for such conditional expectations have a variety of applica-
tions in probability, statistics, and statistical mechanics.

In terms of almost sure behavior, the limiting behavior of such conditional
expectations is extremely simple (Neveu (1963)):

ProposiTION 1.1. If { x,:n > 1} is iid. and E(Jh(X,)|) < o0, then,
PrROOF. Let S, = X, + - +X, and let ¥ denote the tail field of {S,:n>1}.
Then

hmn—»ooE(h(Xl)lsn) = limn»wE(h(Xl)lsn’Sn+l’Sn+2" o ) a.s.
= E(h(X))|9) as.
= E(h(Xl));

the first equality follows from the Markov property, the second from the reverse
martingale theorem, the third from the Hewitt-Savage 0-1 law. []

If the random variables {X,} are lattice-valued (resp. absolutely continuous),
with probability mass function (resp. continuous density) f(x), and {x,} is a
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CONVERGENCE OF CONDITIONAL EXPECTATIONS 929

sequence of numbers such that f*”(x,) > O for all » sufficiently large, then the
“local” conditional expectations

(1'2) Xn(h’xn) = E(h(Xl)|Xl+ e +Xn= xn)

are well-defined. In this case it makes sense to ask: for which sample paths {x,}
and at what rate do the conditional expectations in (1.2) converge to E(h(X)))?
Tjur (1974, Theorem 36.2) proved that if E(X?) < oo and p = E(X,), then

limn—moXn(h’np‘) = E(h(Xl))

when f,(x) is a bounded continuous density and 4 a continuous function with
compact support. Using the conditional characteristic function, Zabell (1974)
proved that in fact if E(|X;|>*°) < 00,0< §< landc,= O(n'/?), then when f,
is bounded continuous or lattice, and E(|h(X;)X 2 < oo,

(1.3) x,(hnp+c,) = E(h(X,)) + 0(;,‘(1‘}5)73) + o(lc’;").

This work had been motivated by that of Ray and Sternberg (1970) who had
proven (1.3) for § =1 and ¢, =0, ie, when the X; have three moments and
centering takes place exactly at the mean.

Two factors thus affect the rate at which convergence occurs: the number of
moments which exist and how far conditioning takes place from the mean. Of
these, it is easy to see that in general one cannot improve the rate of convergence in
(1.3) by assuming more moments exist. For example, if X;~ N(0, 1) and A(x) = x?,

E(h(X,)|8,=0) = E(h(X,) = +.

However, as we show in this paper, it is possible to extend (1.3) to sequences {c,}
which grow faster than »n!/2 but are still o(n) by assuming that E(exp(a| X, [)) and
E(|h(X,)| exp(a| X,|)) both exist for some a > 0. (This is the best that can be done
as far as (1.3) is concerned: when c, grows as fast as n, the limiting behavior of the
conditional expectations changes radically and limits other than E(A(X,)) can
occur (see Example 8 below).)

The study of rates of convergence for the conditional expectations (1.2) thus
divides rather naturally into two parts. In this paper we will make strong assump-
tions on X; and 4 in order to cover as wide a class of sequences {c,} as possible; in
a second paper, (Zabell (1980)), we will restrict ourselves to a narrower class of
sequences {c,} in order to obtain theorems for a much wider class of random
variables X; and functions A.

The organization of the paper is as follows: in Section 2 we prove that if f; is
bounded, E(exp(a|X;|#)) < oo for some a >0 and 0 < B < 1, ¢, = o(n'/@~P),
and f, = f§", then ’

(1.4)

f;l—l(np‘-'-cn—x) _ l+|cn| .
o =1+ o5
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in Section 3 this result is used to show that if A(x) is a measurable function such
that E(|(h(X,)| exp(a|X;|?)) < oo, then

(1.5) E(h(Xl)|X1+ ce 4 X, =np +cn) — E(h(Xl)) + 0(1 +n|c”|)‘

The error term in (1.5) is bounded by E(|A(X,)|exp(a|X,|?):-C-((1 + |c,|/n),
where C is a constant independent of h. Hence, if » = £(X,) (Wheref denotes the
law of distributon of a random variable),», = £(X,|S, = np +¢,), and ||-|| is the
variation norm, it follows that

1+ [,
(1.6) = i = o =)
whenever E(exp(a|X;|?)) < oo for some a >0 and 0<B8<1, and ¢,=
o(nl/(2_ﬁ))'

We close this section with a number of examples which illustrate (1.4), (1.5), and
(1.6); k, n, and r denote throughout nonnegative integers.

ExaMPLE 1. (Binomial-Poisson convergence). Let p(k;A) = e “*N*/k!, for A >
0, k > 0, and b(k; n,p) =(Z)pk(l —pykforn>0, 0<p<1, and0<k<
n. If P{X, =k} = p(k;\), then P{X,=k|S,=r} = b(k;r,1/n), E(X,) = A, and
E(exp(a| X,|)) = eM¢"~D. Hence, if r,n— oo so that r/n— A, r = nA + o(n) and
thus, (from (1.4)),

b(ksr,1/n) = p(k;A) + o(l—”—’-n—'—'i').

(This is a special case of the binomial-Poisson convergence theorem (Feller (1968),
page 59: if r - o0 and p — 0 so that rp — A, then b(k; r,p) — p(k:A).) In Corollary
3.2 below a much sharper version is proved: If A(k) > 0and Sh(k)e**p(k;A) <
then

1+ |r—nA
SEoh(R)Ib(ks 1 1/m) — p(ki ) = o =2,
ExaMmPLE 2. (Bose-Einstein—geometric convergence). If X;,X,, - are geo-

metric with parameter g, i.e., P{X,;= k} = ¢*pwith0 < g < landp = 1 — g, then

P =kIS,=r) = ("+72k=2) [y,
(“Bose-Einstein statistics™). Hence, using an obvious terminology,
1+ |r—nq/p| r,n— o
- n ) r/n—gq/p.
ExaMpLE 3. (Polya-negative binomial convergénce). If X,,X,,--- have
a negative binomial distribution with parameters a >0 and 0 < p <1, ie,

Px =k = (a Tk

Pn=kis =) = ()7 00/ ().

|Bose(r,n) — Geom(q)| = 0(

) p°q*, then
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which is a special form of the Polya distribution
A\ A - (A +Ay)
IL(k; A, A,) = 1)( 2) ( Ar+22)) A 0, > 0.
(sdih) = (TN)(7ha) /(- O 1Ay
If r,n— o0 so that r/n— aq/p, then

ITL,(a, (n — 1)a) — Neg(a,p)|| = 0(1_*'-'_’;_”_4./’;').

ExAMPLE 4. (Hypergeometric-binomial convergence). If X, ~ B(N,p), then

P = ks =) = (¥)(@ 2 0V) / (),

ie, the conditional distribution is hypergeometric. Hence if r,n— oo so that
r/nN - p,

|Hyp(N,nN,r) — B(N,p)|| = O an|)'

( 1+ |r—
n
ExAMPLE 5. (Spacings). Let Z,,Z,,- - - be exponentially distributed random
variables with density f,(x) = Ae **,x > 0. It follows from (1.4) that

1
féleZ; c+Z,=nk+c,) fA( ) + 0( + Icnl)

when ¢, = o(n). This conditional distribution arises in the theory of spacings. If
Xy, X5, ¢+, X,_, are ii.d. uniform random variables on [0,1] with correspondmg
order statistics 0 = X0 < X, < X2 <---<X_,< X = 1 and spacings U, =
Xk » (k=1,---,n), then (see, e.g., Pyke (1965)) the joint distribution of the
scaled spacings D, = nU, is given by £(Z,,- - -, Z,|27_,Z, = n).

Hence, for k fixed and A = E(Z;) = 1, it follows from Corollary 3.3 that

1
(D= D) = (Ziv-++, 201l = 0= ).
EXAMPLE 6. (Beta-gamma convergence). If X}, X,,- - - have a gamma distribu-
tion with density f, ,(x) = o’x"e ~**/T(v), x > 0 and Ju(x) =0, x <0, then
y _ I'(nv) x* Y r—x)n -l
(X,|S,=r) r(p)r((n _ I)V) prv=1

is a rescaled beta density on the interval [0,7]. Thus when r,n — 0 and r/n —»/a,

flﬂv,(n—]),,(rX) —f;x,v(x)ldx = O(I_H';—L/al).

ExampLE 7. (Equivalence of ensembles). Let : R*—) R* be a continuous
function such that e "#*Q(x) is bounded and

Z(B) = [o’e P*Q(x)dx
is finite for all 8 > 0. Consider the exponential family of densities
e P*Q(x)

ZB) x>0,8>0.

(1.7) £p(x) =
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If Q(x) is the structure function of a statistical mechanical system S (see, e.g.
Khinchin (1949)), then Z(B) is the partition function of S, and the probability
distribution of which £4(x) is the density is called the canonical ensemble. The
parameter B is the reciprocal temperature of the system, x the energy.

Let Q,=Q*"; if X,,X,,--- is a sequence of independent and identically
distributed random variables with density (1.7) for some fixed value of 8, then
£(X,|S, = E,) has density

Q(”‘:)gn—l(E‘n - x)
Qn(En)

(1.8) fi(x;B) =

If S is a system with structure function £,, then (1.8) may also be interpreted
as the conditional distribution of the energy of a component S® of S® arising
from the microcanonical ensemble. Hence if E, = nE(X,) = nZ'(B8)/Z(B), then

1
W B) = g(x) + 0[5 ):
i.e., the distribution of a fixed component of a microcanonically distributed system
with structure function 2, and energy nZ’(B)/Z(B) is asymptotically canonical.
ReMARK. Khinchin (1949) noted that because
£§5"(x) = e "*Q,(x)/Z(B)"
and hence

Q,(x) = e"P5"(x)Z(B)",

one could obtain an asymptotic expansion for £,(x) by using a density version of
the central limit theorem for £4". Khinchin used these asymptotic expansions for
2,(x) in (1.8) to prove that a small component of a microcanonically distributed
system was asymptotically canonical, but did not stress that (1.8) is a conditional
density of the type discussed in this paper; this latter viewpoint is apparently first
due to Blanc-Lapierre and Tortrat (1955).

ExaMmrLE 8. (Exponential families and conditioning on a “biased” value of S,).
Let X, have a bounded continuous density or probability mass function f(x), let

0 = {8:fe”f(x)dx < oo}
be the natural parameter space associated with f, and let
a(8) = fe?*f(x)dx
be‘ the moment generating function of f. Then © indexes an exponential family

fo(x) = e%f(x)/a(8)
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passing through f. Finally, let
0,= {0 €0:[xe®f(x)dx < o},
and
po= fxe®*f(x)a(0) ~ 'dx, 9 €0,
Suppose 8 € ©. Then the conditional densities
Sy — x)

(1.9 Fy|x) = -
? ")
_ Sy = %)
5(y)
are independent of 8; i.e., ;n is sufficient for 9. Let ®, = int® C 0, § € 0,, and
X,,X,, -+ asequence of independent and identically distributed random variables
with density fo(x).

If f,(x) is bounded, 4 is a bounded measurable function and c, = o(n), then it
follows from Theorem 3.1 and (1.9) that

E(hR(X)|X,+ -+ +X,=npg+c,) = E(h()?l)|/\71 +o+X, = npy+ cn)

(1.10) = E(h(X)) + 0( : +n|c"|)
= E(h(x) + o 1%l
where

E)(h(X,)) = fh(x)e®*f(x)a(8) ~ Vdx.

That is, when centering takes place at a “biased value of the mean”, the conditional
distributions converge to that member of the exponential family with expectation
p,- This observation is implicit in Khinchin (1949), and Blanc-Lapierre and Tortrat
(1955), and is made explicitly by Kemeny (1959, page 612), Martin-Lof (1970) and
Tjur (1974, pages 314—322). Bartfai (1974) gives an integral version of this result: if
F(x) = P{X,< x} is the cdf of X;, then

(1.11) lim,_,  P{X,< y|S,> npy} = a(8) ~ 2 e®*dF(x).

n— oo

(Bartfai’s theorem does not restrict the X; to being density or lattice.) van
Campenhout and Cover (1978) discuss both the local and integral cases and give an
elegant proof of (1.11) based on Lanford’s theory of large deviations. Jamison
(1974) gives a related result for the multinomial distribution and interprets
it in terms of the Martin boundary. For applications to asymptotic efficiency of
MVUE’s, see Portnoy (1977).

2. Ratio limit theorem. In this section we use expansions due to Petrov and
Wolf ((2.1) and (2.7) below) to prove a ratio limit theorem which in turn will be
applied in Section 3 to derive our basic result. In both sections X;, X, - - will be a
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sequence of independent and identically distributed absolutely continuous (resp.
lattice-valued) random variables with bounded continuous density (resp. probabil-
ity mass function) fi(x), and expectation p = E(X,). In the lattice case the
sequence {c,} is assumed to be such that np + ¢, is always an element of the lattice
on which X, lives. Throughout, a and B are fixed numbers.

THEOREM 2.1. Let @ >0 and 0< B < 1. If E(exp(a|X,|?) < o0, ¢, =
o(n"/@=P), and b, = [2a~og(n/(1 + |c,|)]"/?, then
Sooa(np + ¢, — x)
f(np +c,)
uniformly for x € [—b,,b,].

- (1+]c
= 1+ S olxlio F215l)

Proor. Let p,(x) be the density or mass function of the normalized sum
X+ +X,,—n,u.)/n%a and let ¢(x) be the standard normal density
(2w)~ /% ~*/2, Because E(exp(a|X;|®)) < oo, it follows that when X, has a

bounded continuous density,
[1 + o(———l +,IXI)J,
nz

3
@ Palx) = ¢(x)exp[i‘;x(%)
n? \n?
where A(z) = Ay + Az + -+ - is an analytic power series with positive radius of
convergence when B8 = 1 (Petrov (1961)), and is a polynomial when 0 < 8 < 1
(Wolf (1968), (1971)). In the lattice case, the right side of (2.1) contains an added
factor of d/n?g), where d is the maximal span of the lattice on which X, lives
(Petrov (1961), Wolf (1973)). This adds a harmless factor of 1 + O(n~!) to the
quotient in (2.2) below but does not otherwise affect the argument. Clearly
f(np + ¢,) > 0 for all n sufficiently large.
“ First assume that p = 0. Using (2.1) it follows that
@2) fyoiln+ ¢y = X)/nu + c,)

_ (@ =Di) " 'p((ca=x) /((n=D'0))
(ni0) ™ 'py(c,/ (ni0) |
X 1+o( ! l+|c":xI)J
(n—1) n—1 ,
(ol 5)
(=)

exp( ni:; )\(% ))

n— 1)%0

(1 + 0(1/n))—

Cn
o)
no

R,(x,¢,)

where

xp[
R,(x,¢c,) =
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and we have observed that (n/(n — 1))i= 1+ O(1/n).

Let
2 n 1/8
b”_[&_log(l + |c,,|)]

and consider x € [—b,, b,]. Noting that x*/n and xc, /n— 0 as n — oo, that
23) (c,—x)*/ (2n—1o?) = ¢}/ (2ns?)
= (c2 - 2nc,x + nx?)/ (2n(n — 1)o?)

of L+ 16
stolxlio 52,

and that e ™ = 1 + O(y) for y bounded, it follows that the ratio of the two normal
terms is (1 + 22_,|x|‘0((1 + |c,[)/n ")) uniformly for x € [—b,,b,].
Likewise for R,(x,c,), we compute that

ey Led(lamn)_ g a)

(n— 1726 \(n— 1o n?¢® \no

=[n2(cs —3c¢2x + 3¢, x2 - 3)%(%)

—(n- l)2c3)\( )}/ (n?(n — 126%).

Let » > 0 denote the radius of convergence of A. For |x| < b, and n sufficiently
large, (¢, — x)(n — 1)~ l6~! and ¢,n"'o~! are both < r/2, hence

IA((ey = %)/ (n = Do) = Ac, /no)|

N

M|(c,— x)/ (n = D)o = ¢, /no|
M|(c, = nx)/ (n(n = Do)

1+ |x|
o)

n

where M = max{\'(z):|z| < r/2}. Thus

A((:"_l); ) = Ac,/no) + o(.l_.*;lﬂ),

so that the right-hand side of (2.4) equals
(2.5)

[n2c30((1 + |x])/n) + 2n — 1)c2A(c, /no)
' + n*(—3cix + 3c,x*— x*)(A(¢c,/no) + O((1 + |x|)/n))]/n2(n - 1)%3

(1+|c,,|)
= ol —n
n
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for |x| < b,. Thus

1+
R, (x,c,) = 1+ 0(—#),
hence
fia(np + ¢, — x) ; (l ICI)
2.6 =1+ 3 |x|'ol —+—=
( ) f;'(n“_'_cn) zl—olxl n% n

uniformly for x € [—b,,5,].
If p % 0, x — p replaces x on the right side of (2.2), and mutatis mutandis, the
proof of (2.6) proceeds as above.
Assume now that ¢, = O(n'/?). Because E(X;') < o0,
e q.(f) + 2x)

2.7 P(x) = (27) ~ 1/2¢ -2 el o(n™1)

nz
uniformly in x, where g,(x) = 27)~"/2%¢~*'/2N(x), N(x) is a polynomial of
degree 3i, and the coefficients @, of N, depend only on the first four cumulants of
X,. (See e.g., Petrov (1975), page 207.) Hence
Pu(x) = 2m) "2 /2R (x),
where
R, (x) = (l + Ny(x)n~ 12+ Ny(x)n~ '+ e"z/zo(n")).

~ +c,—
Rn_l(‘u'_u)
(n— 1)

Thus, (see also (2.3)),

bt <[ of ) [+ o 554)

~ (,"l
&)
nio
A simple calculation shows that

~ + - ~ . l+
Rn—l(Lcn_x) Rn( cln ) =1+ 2?—0|x|'0(_;|&'l)

(n— 1)t0 nic
uniformly for x € [—b,, b,] and hence, if ¢, = O(n'/?),
fooi(np + ¢, — x) [ 1+ |c,l
2.8 " n T o1+ 35 'o(——" )
( ) f;,(nﬂr + cn) 21 lel n

uniformly for x € [—b,,b,]. Combining this with (2.6), it follows that if c,=
o(n'/@=#), (2.8) holds uniformly x € [—5,,5,]. []

COROLLARY 2.1. For k > 1 fixed,

+c,— X 1+
-f;l—k(n“ cn x) = l + Eg-olxl,o( Icnl)
Slnp +¢,) n

uniformly for x € [—b,,b,].
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PrOOF. Simply write

Sl + ¢, = x) _ foilmp ¥ 64— X) g _nkri(nB = €4) 0
f(np + c,) fokmr(np +¢,) T f (e + c,)
3. Basic convergence theorem. Equipped with Theorem 2.1 we now proceed to

prove our basic result.

TueoREM 3.1.If E(exp(a|X,|?)) and M = E(|h(X,)|exp(a|X,|?)) are both
finite for some o > 0 and 0 < B < 1, then for ¢, = o(n'/@~A),

E(h(X))|S,=np +¢c,) = E(h(X,)) + M'O( 1 +n|cn|)

uniformly in h.

PrOOF. Let
— [ foo(np + ¢, — x)
Su(np +¢,)

denote the conditional density of X, given S, = nu + ¢, and write the integral
(interpreted as a sum in the lattice case)

fh(x)dn(x’cn)dx as f|x|<b,,+ f|x|>b,,= Il+ 12;

we will show that both |I, — [h(x)f,(x)dx| and I, are O((1 + |c,[)/n).
To estimate I,, we use (2.8) to write

I = f|x|<bnh(x)f1(x){l + 2f=0|x|i0(—l—#)}dx,

hence, letting U = h( X)),

d,(x¢,)

1= SR < S A AC0) + TheoE(uxiNO( 2L ).
Since
E(lUx{|) < (j/aB)"PE(jU|e**"), ji>1,
to complete the argument, it remains to show that
(3.1 f|x|>b,,h(x)f1(x)dx

and I, are both [O((1 + |c,|) /n)IE(|U exp(a| X,|#)).
The estimate of integral (3.1) is immediate. By assumption, E(|U |exp(a| X;|?)) <
00, hence

| fipon, () fi(x)dx| < e %= | h(x)] eV (x)dx
1+ 2
- (#) E([U]e®%P).

Let a, = n'/?+ |c,|. Since a, > b, for all n sufficiently large, we can write I, as
fb,,<|x|<a,,+ f|x|>a,,= 13+ 14’ -
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The major step in the estimate of I, involves bounding d,(x, ¢,). For |x| < a,, d,
is the product of five factors: fi(x), two terms bounded by a constant, and two
exponential terms (see (2.2)). Each of these exponential terms in turn factor (see
(2.3) and (2.5)), exponential factors with bounded or negative arguments are
bounded and hence, for n sufficiently large, C an appropriate constant, and
assuming without loss of generality that p = 0,

c, X c3|x|)
4,0xe)] < Gx)exp) 2 +o(

ni

(—3c2x + 3¢, x> — x3)[)\(c,,/no) + O(I—tl—lx—l)
(n—1)%*

= Cfi(x)exp{|x|P0(1)} (since ¢, x' =B = o(n))

< Cfi(x) exp(alx|?/2), |x| < a,.

+

Thus
IIBI < Cfb,,<|x|<a,,|h(x)|exp(alxlﬁ/z)fl(x)dx

< exp(—abf/2)-C-E(|U|e**1*)
1+
(oD e

We turn to the estimate of I,. First, remark that for » sufficiently large,

fnp+¢,) > Ynto) ~ '@2m) “Fexp(—c2/no?).

Namely, recall from previous calculations that
filnp +¢,) = (l/n%o)¢(c,,/n%o)exp((c3/n203)?\(c,,/no))(l + O(Ll + lc;d ))
nz

Then, remembering that c,/n — 0, we see that |A(c,/no)| < B for some B > 0,
and 1 + O(n~'2 + |c,|/n) > 1/2 for n sufficiently large. Thus,

fi(npn +¢,) > i(nie) " '27) _%exp(—c3/2n02)exp(—B|c3|/n203)

2
= 1(nto) = '2m) Fexo| — (L M)
;(ni0) ~ '(27) exp( n02(2+ .
> Y(nie) " '(27) _%exp(—c,f/noz) '

where we choose 7 large enough so that B|c,|/no < 3.

Second, recalling that we assume f,(x) is bounded, say |f,(x)| < B, it im-
mediately follows from the convolution formula for the density of a sum of
independent random variables that | f,_,(x)| < By, for all n > 2.
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Now we are ready to estimate [,. Namely,
|I,| < e—af h(x)|e**\"f,(x)- B,-2(n*e)(27)* exp(c2/no?)dx

|x|>a,
< (2310(27r)%)n%exp(—aaf+ c2/no?)E(|U|e*X1")

< O(n'/?)exp(—a nP2)E(|U|e®X)”)  (sincec@~# = o(n))
= 0(%)E(|U|e"‘"""ﬂ). 0

Let Cy(R) be the Banach space of continuous functions vanishing at infinity,
endowed with the sup norm || ||, and let S! be the unit sphere in Cy(R). If p is a
finite signed measure on R, then L (f) = f*p defines a bounded operator L, on
Co(R), ie.,

[Z(A)](0) = (f+p)(0)
= [f(t = x)dp(x).
Given two probability measures p, and p,, their variation distance may then be

defined to be the operator norm of their difference, viewed as the operator L( =)
ie.,

[y — p2ll = supfes'{”f*”l_f*l"‘2”co}’

As an immediate consequence of Theorem 3.1 we then have

COROLLARY 3.1. Let v, = £(X,|S, = np + ¢,),» = £(X,). If E(exp(a| X,|#)) <
o for some a > 0 and 0 < B < 1, then for c, = o(n'/@~P),

1+ |c,]|
v, il = o =121).

n
Proor. Given f € Cy(R), let f,(x) = f(t — x). Then
7, = »Il = supresi{ll f22, = f*ll}
= supegi{sup,erl| [f(t — x)dv,(x) — [f(t — x)dv(x)|}}
= supsesi{sup,en{| [f(x)dr,(x) — [f(x)dv(x)|}}
supyesi{sup,ca{| E(£(X))|S, = np + ¢,) — E(£(X,))}}

(1+|c,,|)
ol————),
n

independently of f, since || £l = || fllo=1. [I

If X, is an integer-valued random variable, then
”Vn_ V” = 2kl’ln(k) - V(k)l

Simons and Johnson (1971) have shown that the convergence of the binomial
distribution to the Poisson (cf. Example 1 of Section 1) is considerably stronger
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than convergence in variation. The following corollary may be viewed as a
generalization of their result.

COROLLARY 3.2. Ifh:Z — R™ and Sh(k)exp(a|k|P)v(k) < o, then

S h(K)|p (k) — »(k)| = 0(1 +n|c,.|)'

PrOOF. Let
_ h(k),  w(k) > »(k)
(k) = { —h(k),  n(k) <w(k)
Then
Sh(k)|v(k) — v(k)| = Zeh, (k) (v, (k) — v(k))
1+ |c,|
- 0(————n ) 0

Using Corollary 2.1 one can prove a k-variate version of Theorem 3.1:

THEOREM 32. Let h:R¥— R be a measurable function. If E(exp(a|X,|?)) and

M = E(|h(X,," - -, Xp)| exp(a| X, + - - - + X, |)) are finite for some a > 0 and 0 <
B < 1, then for c, = o(n'/@=P),
1+ ¢,
B, XIS, = mi + ) = E(h(X,,--, %) + w0 L1

uniformly in h.

PrROOF. Set x = x;+ x,+ - - - +x,, apply Corollary 2.1, and proceed, mutatis
mutandis, as in the proof of Theorem 3.1. []

Corresponding to Corollary 3.1 one likewise has
COROLLARY 3.3. Let v,= (X}, , X, |S,=np+¢,), v=L(X, -, X,) If
E(exp(a| X,|#)) < oo for some a > 0 and 0 < B < 1, then for c, = o(n'/?=P),

1+ ¢,
v = vl = o —=).
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