The Annals of Probability
1980, Vol. 8, No. 5, 917-927

FURTHER LIMIT THEOREMS FOR THE RANGE OF A
TWO-PARAMETER RANDOM WALK IN SPACE

By NASROLLAH ETEMADI
University of Minnesota

Let {X;;:i > 1, j > 1} be a double sequence of ii.d. random variables
taking values in the d-dimensional lattice E,. Also let S, = S¥_,=/_ X, . Then
the range of random walk {S;,:k > 1, / > 1} up to time (m,n), denoted by
R,,,, is the cardinality of the set {S;,:1 < kK < m, 1 </ < n}, i.e,, the number
of distinct points visited by the random walk up to time (m, ). Let 7 be the
probability that the random walk never hits the origin on the time set {(i,/): i
> 1}. In this paper a sufficient condition in terms of the characteristic function
of X, is given so that

mn — R,

hm(m ”"“’W 27"_,(1 - r(’)) < o0 a.s.

1. Introduction. Let {X;;:i > 1,/ > 1} be a double sequence of independent
identically distributed (i.i.d.) random variables which take values in the d-
dimensional integer lattice E,. The double sequence {S,,,:m > 1, n > 1} defined
by S,.,= 2L .2 j_lX is called a two-parameter random walk or simply a random
walk when there is no danger of confusion.

Let R,,, denote the cardinality of the set {S;;:1<i<m,1<,j<n}; R,,is
called the range of the two-parameter random walk. In [1] we proved that for a
random walk with “d > 3”, R,,, /mn — 1 almost surely. In [3] a stronger result is
obtained by establishing a sufficient condition in terms of the characteristic
function of X,;. In the present work after giving some notation and preliminary
results in Section 2, we will introduce, in Section 3, a new double sequence of
" random variables T;},. We will investigate its limit behavior as (m, n) — oo and we
will use the result, in Section 4, to show that under a suitable condition on the
characteristic function of X, one has (mn — R,,,)/(m + n) > 22 ,(1 — rY) < ©
almost surely, where r? = P{S,;#0:i=1,2,--- }.

2. Notation and preliminaries. From the two-parameter random walk one can
induce one-parameter random walks, which will be of considerable interest, as
follows: let {X,;: (i,j) € I XI" }, where I" is the set of positive integers, be the
corresponding double sequence of i.i.d. random variables, defined on the probabil-
ity space (2, %, P), and

(2.1) XD =Xy + Xy +-00 +X,y, (i,1) e 1" xI* .
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918 NASROLLAH ETEMADI

Then fixing / € I , the process {S{’:m € I'* } defined by
(2.2) S =3m xD, me I,

will give us a one-parameter random walk.

Also, let RY) be the range of the one-parameter random walk {S{”:k € I'* } up
to time m, i.e., the cardinality of the set {S{”: 1 < k < m}. One of the early results
concerning the limit behavior of R is obtained in [5] page 38; it asserts that

(2.3) lim,_ RP/m = r  as.

An extensive study of the range of one-parameter random walk has been done in a
series of papers by Jain and Pruitt (for some of these see the references given in
(1D.

To achieve our objective, we will need an estimate for the variance of R{). This
will be accomplished by a slight modification of some of the ideas given in [4].

For x € E;, | € I, the notation P{){-} will be used to denote probabilities of
events related to the random walk S’ = x + =7, X”; when x = 0, we will use
P}, Thus for m € I'* , x,y € E, we let

(24) P"D(x,y) = PSP =y} = PO[S =y — x}

and note that P")(x,y) = P™®(0,y — x). T" will denote the first hitting time of
the lattice point x on the time set {(i,/):i € I* }, i.e.,

(2.5) T = min{m e I* : S = x};
if there are no integers m with S$’ = x, then T"» = c0. We also define
(26) B O(x,y) = B8, =y, T > m},

for m,l € I'" and x,y,z € E;. We will use u{? for P"")(0,0), £ for P*®(0,0),
r =32 O Note that r® = POT = o0} and L, f" = P[T{" < 0]
=1—r®. For x,y in E; we will also use G¥(x,y) = 8(x,y) + 27, P*I(x, ),
(8(x,y)=0 if x#y and one otherwise), G (x,y)= lim,_, GV(x,y) and
FO(x,y) = PTM < ). Finally we need a notation for the characteristic
function of a random walk. For convenience we will use Greek letters tc denote the
element of R“. A typical element will be 8 = (6,,6,,- - - ,8,) where each 8, is a real
number for i = 1,2,- - - ,d. Now define the characteristic function of the random
walk generated by X;, by

2.7 o(8) = EerdP{Xu = x}ei"'o,
where x-0 = 32 ,x,6;. To set up a convenient notation for integrations, let
(28) C = {0E’Rd:|0i|<qrforj=],2,...,d}.

Then for complex-valued functions g(s) which are Lebesgue measurable on C, the
integral over C is denoted by

2.9) Jg(0)d8 = [cg(8)dO = [T -7 g(8)d0,, - ,db,.
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Thus 46 always denotes the volume element. Using this notation, the inversion
formula for characteristic functions becomes

(2.10) P(S,=x} =

! dfe_i""’(<p(0))|‘4|d0, x € Ey,
(27)
where A is a finite time set in I* X" with cardinality | 4| and S, = £, /e, X,
Note that

(2.11) P(S, =

x € E,.

@ )

GENERAL REMARKS. (i) Throughout this paper ¢ stands for an unimportant

constant which may depend only on the distribution of X;, and may be different in
various places.

(ii) The inequalities 1 — s"/2 < 1 — 5" < 2(1 — s™?) and 1 — 5" > (n/2)s"?(1
—s),n €I* and s € (0, 1) will be used frequently without giving any references.
LeMMA 2.1. For s in (0, 1), there exists c in (0, o) such that
skI—x/ 1 1
(@ 272, ,-12k-x+12 I=j+1

7 log
Gy (1 o)
Sk1+lj 1

L+ k) + ) (1—s)lg1—s

.
b

(b) 21-1 j-lzk l2

Proor. Estimate the sum in (a) by an integral to obtain

@12) 52503 s gki=ij - s—ijz skG+D
2.12) 2 25 22— = 225 k=i+1
T ) O e
o - s—ij sx(j+l)
< 2:-12j-1”j T 4%
@)
1 1, s
X — = ——3Y® °° N d
(use s* = s'v) Togs 2im1%-1 ; T 1 v
J 1 i
(usezj_,"—,«;,) < —%—2? = o dv
J? (1-v) - logs i (1 - v)? (l - s'v)
use 1l — v = u?) <—-—c—2°°( ) n"( o )
logs i(1—s") 1-5
SRR
" logs (1-s)" Hi=l
(—logs~1—sasstl) . < < ~log L
' (1-s5) 1—ss
1 1
[1—-s<4(1—s‘)] < <
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To see the validity of part (b) follow Lemma 2.3 in [3] and make use of the fact that

(2.13) S kid,~ %n% logn

in order to obtain

(2.14) 2?‘;,2;°=1(ij)%s”= Se kids* < ¢ ~log i 1 R
(1-1s) -

where d,, k € I'*, is the number of divisors of k. []

LeMMA 2.2. Let ¢(8) be the characteristic function associated with the random
walk. Then for i,l,m’ minI™*

(@) Z,PO0,x)GO(u, x) + GO (x,u)] < c(if |p(8)|"d8 + [ |p(8)|"/(1 —
l9(6)]') d8), A . ,

(i) 2, P00, x)GO(u, x)GV(x,0) < c[(f|9(8)|" a5/ |9(8)]/(1 —
l9(®)]")d0 + (f|9(8)]"/(1 — |p(8)|") dB)],

(iii) 2, .G (0, )GV (4, x) + GO(x,u)] < =L, [ |9(8)]"/(1 — |p(8)]")d8,

(i) 2,050, )G (u, x)GD(x,0) < =L ([ |@(O)/(1 — |9(8)|") d6)?,

M) =2, 0G0, )PP{m' < TP < o, TP < o0} < o(f](8)|™+D2/(1 —
le(®)]')dO)ST [ |9(8)|"/(1 — |@(8)]")d6),
for some ¢ > 0 depending on d.

Proor. If [1/(1 — |@(#)|)df = oo, there is nothing left to prove. Otherwise
just follow the proofs of the Lemmas 2 to 4 in [4] and use (2.11) instead of Lemma
1 in that paper. []

Now for k,/,m in I* define the following self-explanatory events for the random
walk on the time set {(i,/):i € I*}

(.13) = 02 (SO# S0),
@16) 0= . {S0#50),1 < k <mFrO= g,
(2.17) HrP= U2, Nt {SP#SD;80=5%), 1< k< m.

Clearly F™" is the union of two disjoint sets F” and H®, 1 < k < m and using
I(+) as the indicator function we have

(2.18) RY = 22"=11(ka(1))
= 1+ Sp0I(FD) + s H(HPO)
=1+ zP+ wo.

THEOREM 2.1. Let @(0) be the characteristic function associated with the random
walk. Then for m,l in I we have

2Oy, s (  Le @) "”ﬂ

"N\ 1 - Je(e))

VarR() < em| | ; ;
1= |e(9)l

where ¢ > 0 depends on d.
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PrOOF. The theorem is trivially true if f1/(1 — |@(8)|')d8 = oo, otherw1$e
from (2.18) we obtain

(2.19) VarRY < 2(VarZ{ + Var W) < 2[VarZ{ + E(W)’].
Now follow the proof of Theorem 1 in [4] and use the previous lemma to get

(2.20) E(W<’>) < 237 'S4 EI(HPO 0 HPO)

_ 0)I(m—1+1)1/2 I‘P(o)lil
< 2™ '(fL?i——— 2,_ — 2 d.
=t 1 - |p(8)| Y1 e(8))

Also

® _le@I" ( _le(®”_ )2
(221) Varz{ < cmjl . I<z>(0)|’d0 + IS, fl —I<p(0)|’d0 .

Utilizing (2.21) and (2.20) in (2.19) will give us the result.
In order to get the result mentioned in Section 1, we need to define some new
events. Define

F(J,:) = n;ij+1{si1#sij}
n. 3 . +
Fy = n?=j+l{sil#sij}’ L<j<miel,
(222 F = Fr9 n FHI)J, 1 <i<m<j<n,
Fim™ = npoier Nimjer {Su # Sy}
1<i<ml<j<n,
E%mn = Nizh Nicju {8k # S}
2<i<ml <j<n,
Fpn = Ena B By, 1<i<m1<j<n

and we understand the above events to be @ for those i and j, 1 < i < m and
1 < j < n, where the events are not specified. Now we can write

(223) R,

S ZI(F

= 2?_]2;-11(1?}"’”) _ l=121_11[ I;*mn (Flmn N F2mn) ]
We will denote the last two sums by = and T, respectively, i.e.,
(2.24) = T~ T

Our first concern is the limit behavior of T, which we will undertake in the
following section.
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3. Limit theorems for 7.},. To study the limit behavior of T}}, we first break it
up as follows:

Tr,= S 25 I(F"n Ry
(3.1) = S ST (FrD) + 33 I(FY
+ EPIS (O U BY)S — mn.

We will identify the last three sums as Q,,,, Q%, and T,% respectively, i.e.,

(3.2) T = QOunt Q.+ TO — mn.
Note that
(3'3) an - IR(I)

and Qp,, is the “dual” of Q,,, in the sense that we interchange the role of m and n.

THEOREM 3.1. Let @(8) be the characteristic function associated with the random
walk. Then

(@) lim,, .7 = SIS (B U EY) as.
lim,  T,&) = S!S I(F"P U Fj)©  as.
(b) lim(m,n)aooT»(?n) = E?O-IE;O-II(F;'U)U FE{)) as.,

and the limits in (a) and (b) are finite almost surely provided that [1/(1 — |p(8)|) d8
and [1/(1 — |@(8)])1og1/(1 — |@(8)|)db are finite respectively.
PrOOF. Since

(3.4) I(FrO)Y 2 I(FP),  I(FY) M (E)
and I(E™ 0 i) M(ED 0 B,

as (m,n)— oo. Therefore by the monotone convergence theorem (a) and (b)
follow. To conclude the theorem, it is enough to show that the expectations of the
sums in (a) and (b) are finite. Now we have

(3.5) 2x-lP(F(z)) =272, "_Jfl(') < 3 Oo1“(1)

< 332 u® < e(n—j)————=df < o.

Similarly one can show 3%, P(F"¥)" < . Furthermore, since I(F")¢ and
I(F,))° are independent we obtain

(36) 2,_1 1-1P(F(1) U Fij)) = (21=121-1f( ))
Now

(B7) EZRER AP < B E ) < 32,22, f|e(0)|Vde

di < oo;

2 p(8)7
< Czj_lfmde < cf

completes the proof. []

L g !
1—Je(0) "1 —|e(8)
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LeMMA 3.1. Let (@) be the characteristic function associated with the random
walk. Then

@ J1/(1 = |9(O))d8 < 0 = lim,, ), ETS,/mn = 1;

®) 1/ = |p(@)Dlog1/(1 — |g(P)])df < eo L5l gy — ET3,)/(m
+n)=32,01-r")< oo.

PrOOF. First of all note that the convergence of 3% (1 — r®) is already
obtained in (3.7). Secondly for k,/in I* with 1 < k < m and by (2.18) we have

(3.8) m — ERY = Srolp(Fr®)° = Smolsm-—k()
= mEnSYO - ZrolEO,
and consequently (3.3) implies that

(39) mn — Ean = mz? l-llf(l) - 7 x-l f(l)
Similarly
(3.10) mn — EQp, = nZ[L 2[00 — T 20RO

Now if [(1 — |p(8))~'d# < oo, then by the dominated convergence theorem we
get

o 0 o 0 _le(0)[™
(3'11) mzl-lfm < mE,-lum < cmfl — |(p(0)|m d0

12O o,
< T Te0)

as m — oo. Therefore

-127:1]".ﬂu) = 27;12?-_11’7:'(1) E;n-liz?o-lf;‘(l) 2?—1’.270-1fi(l)
< + -0

m+n m n

(3.12)

as (m,n) — oo. This, the preceding theorem and an easy calculation yields the
result claimed in (b). Next observe that

(3.13) ETS) < Z7_, 2,1 = r®)(1 = r®).

Since 7™ —1 as n— oo provided that [(1 — |@(8)])"'df < oo (see (3.10) and
(3.11) in [3]), ET,®/mn — 0 as (m,n) — . Now to complete the proof consult
Theorem 3.1 in [3]. [

THEOREM 3.2. Let @(0@) be the characteristic function as:s'ociated with the random
walk. Then

(@ J

%
mn
df < oo = lim, , 00— i 1

log !
1—|o(0)|

mn — T
(b) = limn_)w'ﬁ = E;".l(l - r(’)) a.s.

1
1—|o(0)]
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mn — T*
—2 =3 (1 -r?D) a.s.

(c) = lim .

m—o0
— *
1 mn— T},

(d) Fe>0)f——————df < 0 = lim, .,
(1 - |p(8))'** mm

m+n
=32, (1-rP) < o0 as.

PrOOF. Parts (a), (b) and (c) follow immediately from Remark 3.3, Theorem 3.2
in [3] and Theorem 3.1. By using the Schwarz inequality and Theorem 2.1 we
obtain

(3.14) VarQ,, = VarZj_,RD < (Zi.,(Var R)!)’

. (L@ do)%
(’ [~ |p(O)]

2 12
9)|i/2 2]z
. ?.l(f le(8) ,do)
1— ()|

Now apply Holder’s inequality with p = 1 + € to get

< cm

7 / 1+e
e < | ( 1@(32;;') do}lm “O(J1g(O)| 7+ ag) "t * )
| e 1/ + ¢
< %(f( 1 - I(P(o)l) do) (fl(p(o)ll/ng)e/(l +e)
(3.15)

c e 3
< Z(S1e(8)] 72 a0)”" 0.

Again using Holder’s inequality with p = 2(1 + ¢€) /¢, one has

12
(e do)f
"‘(’ = o (O)]

(3.16) <c

2
< c[ ;'.ll%(f|<p(o)|’/2do)°/2“”’]

( 1 )2(1 +e)/Q2 +e)}(2 +e)/(1 + e
I=1

/(l + €)
x[ =,/ 19(8)72a8]°
< cnl/(l+e)‘

Now follow an argument similar to (3.15) and then use Holder’s inequality with
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2= +¢)/(1 — &) to obtain

1

v o [ lo@2 V1T wa 2o/ 4 o]
1-1{ i-l(.{l—_Wdo < 2L, i-nﬁ(H‘P(e)l de)

n 1 —e e m i 2e e) 13
@.17) < €S O (o) /4 a0 )

1+e/(1+e)
1 ) ¢ < em(1-9/20+e)

< cm(l —e)/2(1 +e)2;1= ](7

Hence by (3.14)
(3.18) VarQ,,, < cm(n'/0+9 4 p=0/1+9)

Now for a> 1, let m,=[a*], n,= [a.’]. Then an easy calculation shows
=1 Zi=1VarQ,, , /(mg+n )? < oo. Therefore by Chebyshev’s inequality and
the Borel-Cantelli lemma

Ekan,— Qm,‘n,

(319) .hm(k’l)ﬁw—m— =0 a.s.

Since a similar result is also true for Qy,,, from Lemma 3.1, Theorem 3.1 and (3.2)
we can conclude that

mgn, — Tr:,‘n,

(3.20) im g 5y e =32,(1-rD) < 00 as.

m; + n,;
But mn — T3, is an “increasing process” in the sense that for m, > m, and n, > n,
we have

(3.21) mn,— T* < myn,— T* .
171 mn, 272 myn;

Thus fixing w not in the exceptional set corresponding to (3.20) and using a
standard argument we obtain
- T*

(22) 13 (1-r®) < liminf e "mn
’ a“'=! m+n

mn — T*
< limsup——m—-——"'-ﬂ < aS2 (1 —r?),

+n

and since a > 1 is arbitrary, we are through. [J

If we define the genuine dimension of the two-parameter random walk
{Spn:(m,n) EI* XI*} to be the genuine dimension of the one-parameter ran-

dom walk {S$’:m € I'*}, then we have:

COROLLARY 3.1. Let d > 3 be the genuine dimension of the one-parameter random
walk. Then the results of Theorem 3.2 are true.
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PROOF. Let the random walk be generated by X;,. Consider the symmetrized
random walk generated by X, — X{,, where Xj, is independently identically
distributed as X,,. If the genuine dimension of this random walk is not d, then one
can show, see [1] page 842, that T*,= mn almost surely and we are through.
Otherwise if we let ¢(6) be the characteristic function of X. 11> then |@(8)|? is the
characteristic function of the symmetrized random walk. Now the proof follows
from Proposition 5 in [5] page 70, and the fact that

(3.23) L= le(@)] < 1 - ]e(8)I>< 2(1 - |p(8)).

4. A limit theorem for R,,,. In this section we impose a condition on the
characteristic function of the random walk so that 7,,,/(m + n), see (2.24),
converges to zero almost surely. This will make R,,, behave as T*, whose limit
behavior in this particular case is already known.

LemMA 4.1. Let @(8) be the characteristic function associated with the random
walk and
)= Eﬁ_llz;!:lll(u k=iv1U 7-;+1{Sk1 = Sz,})
Then
1 1 Tn

S/ 7 log df < o = limg,, , ,—5 =0 as.
(1-lp)): 1~ Ile(d) (mn)?

Proor. Follow Lemma 3.1 in [3] and use Lemma 2.1. []

LEMMA 4.2. Let ¢(8) be the characteristic function associated with the random
walk and

TR = Z, 2 (U U (S = S,,))-

Then
1 1
/ s log df < oo
(1= lpo): 1~ 1o
T
= lim, 0~ = a.s.
: mn)?

Proor. Follow Lemma 3.2 in [3] and use Lemma 2.1. []

THEOREM 4.1. Let @(8) be the characteristic function associated with the random
walk. Then :

L, L 40 < oo = lim,,_ """ Ko
o) o0 M, o™
Ry R PY TR m¥n

=3 -r0)  as.
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. mn—R,,,
(b) = llm,,_,wm— = 3,1 - r(’)) a.s.
(© ! ! df < o = mn(m,n)_mu

S o) E T 1) mn

=32 ,(1-r®) a.s.

ProOF. Note that m + n > (mn)é, and
(4.1) T,,< TN+ TA.

Now (a), (b) follows from Remark 3.3 in [3]. For part (c) use Theorem 3.2 and the
last two lemmas. [J

COROLLARY 4.1. Let d be the genuine dimension of the symmetrized random walk
generated by X,,. Then with d > 3 part (a) and (b) and with d > 4 part (c) of the
preceding theorem hold true.

Proor. Use Proposition 5 in [5] page 70 and (3.23) to estimate the integral. []

Further limit theorems on the range of the random walk when the dimension of
the random walk is either one or two can be obtained in the author’s thesis written
at the University of Minnesota. We also invite the reader to consult [2] for more
results concerning two-parameter random walks.
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