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CHARACTERIZING THE RATE OF CONVERGENCE IN THE CENTRAL
LIMIT THEOREM

By PETER HALL

The Australian National University

Asymptotic upper and lower bounds are obtained for the uniform measure
of the rate of convergence in the central limit theorem using a variety of norming
constants. For many distributions the upper and lower bounds are of the same
order of magnitude. As easy corollaries we deduce extensive generalizations of
the classical characterizations of the rate of convergence in terms of series and
order of magnitude conditions.

1. Introduction. Let X, X1, X;, - -- be independent and identically distributed variables
with distribution function F, and set S, = ¥7 X;. If ¢ > 0 and d are constants, the uniform
distance between the probability law of (S, — d)/c and the standard normal law is defined by

An(c, d) = sups | P(Sp < cx + d) — ®(x)],

where ®(x) = 27) 2 [*, e™*/? du. When F is in the domain of attraction of the normal law
(designated here by F € DN) we have A,(cx, d,) — O for suitable constants ¢, and d,, and
when F is in the domain of partial attraction (designated by F € DPN),

lim inf,.. An(cn, dn) = 0.

In this paper we obtain explicit measures of the rate of convergence for a variety of norming
constants ¢, and d,. Our results are in the spirit of Osipov (1968), who showed that when
E|X|®= o, E(X*) =1 and E(X) =0,

An(n'?,0) < 8,

M
= E[X2I(|X| > nl/?)] + n—lE[X4I(|X| < nl/Z)] + n—l/ZIE[X31(|X| < nl/Z)]l

if X has an absolutely continuous distribution, and A,(n"/?, 0) = 8, + n~"? if X is lattice. (The
relation A, = 9§, asserts that A,/J, is bounded away from zero and infinity as n — .) Indeed,
it follows easily from our Theorem 2 that (1) holds whenever E(X %=1, E(X) =0 and

lim inf,_ x*P(| X| > x) > 0,
and from Theorem 1 that
inf.q An(c, d) < nP(| X| > n*?) + n 'E[X*I(| X| = n*?)] + v 2| E[X’I(| X| = n/?)]|

under the same conditions.

Our aim is to provide measures of the rate of convergence which are sufficiently general to
imply the well known characterizations in terms of series and orders of magnitude; for these
and related results see Friedman, Katz and Koopmans (1966), Ibragimov (1966, 1967), Heyde
(1967, 1969, 1970, 1973, 1975), Heyde and Leslie (1972), Davis (1968), Galstyan (1971a, b),
Egorov (1973), Lifshits (1976) and Maejima (1978). Therefore we state our results a little
differently from Osipov. Section 2 considers the case of finite variance, and some results for
variables without finite variance are presented in Section 3. Our result there implies a rate of
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1038 PETER HALL

convergence for distributions in DPN. The proofs of our main results are deferred until
Section 4.

By way of notation we set H(x) = P(| X| < x) and let I(E) denote the indicator function of
the event E. The symbols C, C: and C; denote generic positive constants, not necessarily the
same at each appearance.

2. The case of finite variance. Suppose E(X”) = 1 and E(X) = 0, and set u, = E[XI(| X |
= n"?] and o} = E[X’I(| X| < n"/})]. Our first result characterizes the rate of convergence
using optimal norming constants.

THEOREM 1. We have

lim Supn—e An(n %05, np)/{nP(| X| > n'/%)
@)
+n E[X*I(| X| = n®] + n 2| E[XPI(| X| = D] + 17V < oo,
and for any Ay, A2, Az > 0,

lim inf,_. {infoq An(c, d) + 1™}/ {nP(| X| > Mn'?)

©)
+n ' E[X*I(| X| = An"))] + 072 | E[X°I(| X| < Asn'/?)]|} > 0.

The most commonly used norming constants are ¢, = n'/? and d, = 0, which generally
provide a slightly inferior rate of convergence.

THEOREM 2. We have

lim supn—« An(n?, 0)/{E[X*I(] X| > n'/?)]
@
+n ' E[XMI(| X| = nVB)] + a2 E[XPI(| X| = nVD]] + n7Y2) < o,
and for any Ay, Az, As > 0,

lim infy_,.. {An(n72 0) + n™}/{E[X?I(| X| > Min'/?)]

)
+ n T E[XI(| X| = Aen'®)] + n7 V2| E[XI(| X| < AanD)]|} > 0.

From Theorems 1 and 2 follow some important generalizations of the familiar characteri-
zations of the rate of convergence in the central limit theorem, using either series or order of
magnitude conditions. Let & denote the class of nonincreasing functions f:[0, ) — (0, )
such that xf(x?) is eventually nondecreasing, and let % denote the class of measurable
functions g:[0, ©) — (0, ®) such that x "'g(x) is eventually nonincreasing and

(6) f x2g(x) dx < o,
0
With each g € ¢ we associate an absolutely continuous, nondecreasing function G defined by
©) G(x) = J u”'g(w) du, x=1
1
COROLLARY 1. Suppose f € F. The following three conditions are equivalent.
® An(n'0r, 0) = O(f(m));
® infeqaln(c, d) = O(f(m));
(10)() P(|X|>x)=0(x"(x%) and

(i) E[X°I(| X| = x)] = O(f(x*) as x — o.
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The following two conditions are equivalent.

an Bn(n'’?, 0) = O(f(n);
(12)@®) E[X*I(| X| >x)] = O(f(x"))  and
(ii) E[X°I(| X < x)] = O(xf(x?)) asx — o,

Note that (12)(i) implies (10)(i), and that if x 1"sf(x“’) is eventually nondecreasing for some
8 > 0 then (10)(i) implies (10)(ii), since

X

E[|X’I(|X =x)]=3 f

0

¥’[1 — Hu)l du=<C J f@®) du
0

= Cux'*f(x%) J u* ™ du = O(xf(x?)).
0
See Ibragimov (1966, 1967) for results related to Corollary 1.

Proor. Condition (8) obviously implies (9), and (10) follows from (9) via (3). Condition
(10) implies that
(13) An(nl/zan, n,) = O(f(n))
by (2), since xf(x) is eventually nondecreasing and, integrating by parts,

nl/2

n 'E[X'I(|X|=n")]< Cn? f xf(x?) dx = C.f(n).

0

From (13) follows (8), since
| An(n"?0,, 1) = An(0n, 0) | < sup. | D(x + 1"%un/0,) — B(x) |

< Cn2|pa| = CR2E[| X| I(| X| > V)] = C[nP(| X| > n") + n2 | [l — H@w)] du]

nl/2

= 0(f(n))
under (10). The equivalence of (11) and (12) is proved similarly.

COROLLARY 2. Suppose g € ¥ and define G as in (7). The following three conditions are
equivalent.

14) 2n ' G(n?)An(nV %6, 0) < o;
15) S G {inf.aAn(c, d)} < o
(16)()) E[X’G(|X|)]<o  and
(i) J u 2G(u) J x*dF(x) | du < oo.
1 (1x|=u)
The following two conditions are equivalent.
amn Sn~'g(n/AAn(n"?, 0) < oo;
(18)(i) E[X*G(|X|)]<~ and
(ii) f u g (u) f x3dF(x)| du < .
1 ' {lx|=u}
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If x*'g(x) is eventually nonincreasing for some 8 > 0 then (16)(i) implies (16)(ii) and
(18)(ii). Note that 2G eventually dominates g, since if x ~'g(x) is nonincreasing for x > x, then

(19) G(x) = j ulg(u) du = x 7' g(x)(x — xo) ~ g(x).

0
Therefore (14) implies that
Zn”' g %) An(n %0n, 0) < 0,

and (16)(ii) implies (18)(ii). See Lifshits (1976) and the references therein for results related to
Corollary 2.

Proor. If (15) holds it follows from (3) that

0

©>Y7 GMH)P(| X| > n?) = C J’ G(uM?) du J’ dH(x)

1/2

= 2CJ’ dH(x) J’ uG(u) du.

Now, (19) implies that with a(x) = x "2G(x) we have
a'(x) =x""*(g(x) —3G(x)/2)=< 0

for large x, so that x *?G(x) is eventually nonincreasing. Therefore

© > J dH(x) j uS[u=2G(u)] du = CJ x%G(x) dH(x),

proving (16)(i). Condition (16)(ii) is proved similarly. Conversely from (16) we deduce that

SGnHP(| X| > n"H = Cj dH(x) J uG(u) du < Cf x2G(x) dH(x) < oo,

1

Sn G AEX (| X| = n'?)] = cf x* dH(x)J u™G(u) du
1 x
=G f x*2G(x) dH(x) f w2 du
1 x
=G f x2G(x) dH(x) <,  and
1

=n~2G(n'%) = CJ u™*G(u) du=< C J ug(u) du < oo,
1 1

on integrating by parts and using (6). The result (2) now implies that
En_lG(nl/2)An(n1/20n, nl"‘n) < wy

and as before this implies (14). The equivalence of (17) and (18) is proved similarly.
Egorov (1973) and Heyde (1973) characterized the condition of finite variance by showing
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that if F is any distribution in DN, then E(X®) < » if and only if
Zn  {inf.q An(c, d)} < .

(A new proof of this result is presented in Section 3. We should point out that the result
proved by Heyde is actually rather stronger, in that he did not assume that ¥ € DN.) This
leads us to ask whether there exists a sequence €, — 0 such that whenever E(X) = 0 and E(X 2)
= 1, 3n 'e,Ay(n"% 0) < o although =n"'e, = ®. Cohn (1974) has obtained such a rate of
convergence for the law of the iterated logarithm. We show next that no such rate can exist for
the central limit theorem. This negative answer spotlights the faster rate of convergence

obtained using the norming constants n'/?a, instead of n'/%.

COROLLARY 3. Suppose g € G and that for all absolutely continuous, symmetric X with
E(X?) =1, =n"'g(n"/®)Ax(n", 0) < ®. Then =n” 'g(n"/?) < o,

Proor. If false then

©

o=y, J n g du= CYns J u 'g(u?) du = 2CJ u 'g(u) du.
n—1 n—1 1

Therefore we may choose an absolutely continuous, symmetric X with E(X?) = 1 but
E[X*G(| X|)] = . For such a distribution we have by Corollary 2 that Zn~'g(n"/*)A.(n"/?, 0)

= 00,
3. Characterizations without the assumption of finite variance. In this section we remove
the restriction E(X?) < o and obtain characterizations of the rate of convergence of the form

An(cn, dn) = nP(| X| > ca).

Thus the rate is expressed as an explicit function of tail behaviour. In the case E(X?) < o, all
the results here may be obtained from Section 2.

Let V(x) = [(u=xt’ dF(u) and a(x) = sup{a|a *V(a) = x'}. For all distributions, x *¥(x)
— 0 as x — %, and so a(x) is well defined for large x. For such values of x

(20 xa(x) *W(a(x)) = 1,
even for continuous distributions. Let
a, = a(n), v, = E[XI(| X| = a.)] and b2 = n(Way,) — v2).

Our first result provides an upper bound on the rate of convergence. To obtain (22) it is not
necessary to assume that F € DPN.

THEOREM 3. If
@1 A’ lim inf, ... P(| X| > Ax)/P(| X| > x) = »
as A — « then
(22) lim SUpp—ew An(br, nv,)/nP(| X| > a,) < .
If F € DN then nP(| X| > a,) = 0, and if F € DPN then
(23) lim inf, , nP(| X| > a,) = 0.
Condition (21) implies that E | X|® = . To see this, observe that we may choose A > 1 and
x so large that for all x = x,,

P(| X| > Ax) > A°P(| X| > x).
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Then for x = x,,

Ju2P(|X|>u)du=}\3j uzP(|X|>}\u)du>j WP(| X| > u) du,

Ax

which is impossible unless E| X|* = .

Condition (21) holds for many common distributions with E| X|* = co. For example, if
P(| X| > x) = x"*L(x) where L is slowly varying at infinity then (21) holds if and only if
a<3.

If E(X?) = o (or if E| X| <  and E(X) = 0) then »2/ ¥(a,) — 0 (see page 80 of Ibragimov
and Linnik (1971)) and so b2 ~ n¥(a,) = ai. Condition (21) now implies that P(| X| > a,)/
P(| X| > by,) is bounded as n — o, and it follows from (22) that

lim SUpn e An(br, nv,)/nP(| X| > by) < .
Next we obtain a lower bound of the same order of magnitude as the upper bound in
Theorem 3. In this case it is necessary to restrict our attention to F € DN.
THEOREM 4. If F € DN then for any constants c, such that An(cy, dn) — O for suitable d,,
24) lim inf, . {inf.q Ax(c, d) + n "} /nP(| X| > Ac,) > 0
forallA>0.

As a corollary we easily deduce the characterization of E(X”) < oo first obtained by Egorov
(1973) and Heyde (1973). (Heyde’s result is actually rather stronger than that proved here.)

COROLLARY 4. Suppose F € DN. Then ¥ n”* {inf.a Au(c, d)} < ® if and only if E(X”)
< 0o,

Proor. Sufficiency follows from Corollary 2. To prove necessity, we may assume that
(24) holds for an increasing sequence {c,}. Then
25 ® > ¥T P(| X| > en) = ¥ie1 Lien Pl < | X| = cja)
=X jP(e; < | X| = ¢jr)) = T jPejn < | X| = ¢) = 2,
where ¢, = 0. Now,
V(cn) = Y31 f X dF(x) = Y31 ¢ P(cim < | X| = ¢)).
{e,1<lxl=c)
But ¢;2V(c,) ~ n”* and so
(26) Vien) = C Y31 jWc)P(c;-1 < | X| = ¢)).
If E(X®) = o then V(x) — o, and the inequalities (25) and Kronecker’s lemma imply that
V(en) ' $h1 jV(c))P(c,1 < | X| = ¢,))— 0,
contradicting (26). Therefore E(X”) < .

4. The proofs.

PrOOF OF THEOREM 1. First we demonstrate (2). Let X, = XI(| X| < n"?), X, = X.I(| X. |
=n"%) and S, = Y% Xr. Then
An(n"*0,, ) < sup: | P(Sh < n%0.x + nu,) — ®(x) | + nP(| X| > n'/?)

= A, + nP(| X| > n'/?),
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say. Therefore it suffices to prove (2) with A, replacing A.(n'/%0,, np,). Let
an(t) = exp[—%t202(1 + Ya(t)) + itwn]

denote the characteristic function of X;,. Writing log an(f) = an(t) — 1 + ra(f) where | ru(2) |
= |an(t) = 1|*/[1 = | an(t) — 1|] for | an(t) — 1] < 1, we see that

%t®0% | ya(t) | = |log an(t) + %t20% — ity |
@7
=< | E[cos(tX7) — 1 + %(tX0)*]| + | E[sin(tX7) — tXn]| + | ma(2)].

For t > 0 we have the estimates
E|cos(tXy) — 1 + %(tX2)?| < E[|tXn|*I(| Xu| < ] + E[| X0 |2I(| X0 | > t7H)];
E|sin(tX7) — tXn| < E[|tX0|°I(| Xn| < 7)) + 2E[|tX0 | 1| X7 | > t7Y)]
and
| an(t) — 1| = | E[cos(tX7) — 11| + | E[sin(tX7) — tX7]| + ¢ | pn |
= W%tlon + CE[| X|’I(| X| < )] + 2E[| X|I(| X| > )] + | pn].

Therefore | ax(f) — 1| may be made small uniformly in n by choosing ¢ sufficiently small, and
by (27) we have for all » and all small ¢,

lva(t)| = C(PE[X'I(| X| = ] + E[X(| X| > )] + tE[| X’I(| X| = 7)]
+ CE[| X| I X| > )] + 2 + (CE[| X’I(| X| < O] + (E[| X|I(| X| > )] + p).

Hence we may suppose that there is an € > 0 such that for all | 7| < en'/* and all sufficiently
large n,

| yn(t/n'%00) | < Y.
The variable (S, — nu,)/n"’?0, has characteristic function

Ba(t) = ot/ n oY exp(=itn"*un ),
and

I ,Bn(t) - e—1/212 | = I CXP[—I/ztzyn(t/nl/Zon)] -1 | e_l/ztz
(28)
= W | yalt/n70,) | expl=e" + ot | yalt/n70,) |1 Y4t® | yalt/m o) | &%

if | t | < en'?. We also have the estimates

| an(t) = 1| <| E[1 = cos tX}]| + | E[sin tX,]| < %1% + 0. | 1 |;
| an(t) = 1| = Yer®or + | ¢ |"E[| X |°I(| X| = 0] + | ¢ P |ELX°I(| X| < 0/)]| + | tpa |5
and
pa = P(| X| > n'/"%),

the last by Holder’s inequality. Combining these we deduce that for large n, small e
(independent of n) and | 7 | < en'/?,

n | ra(t/n?e,)| < nC(n~%* + n*(E[| X|°I(| X| = n"/%)]}?"°
+n 3 E[X°I(| X| < n/H)]|%° + P(| X| > n'/*)?)
= C(n7't* + n'E[X*I(| X| = D) + 0~ V2| E[X°I(| X| = n'/?)]| ¢¢
+ nP(| X| > n'/%?).
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Next we estimate
Yor® | ya(t/n'%a,)| = | nlog an(t/n'?0,) + Yat® — itn', /o, |
= | n{an(t/n'0,) = 1} + %t® — itn" . /0, | + n | ra(t/n"%6,) |
= | nE[cos(tXn/n"%0,) — 1 + Y%(tX},/n'%0,)*] + inE[sin(tX,/n"%,)
29) —(tXwn"%0,) + Yo (tXn/n0,)°]
— Y%in" 2o PP E[XPI(| X| < n'D)]| + n | ra(t/n%6,)|
= C(n™'E[X*I(| X| = n*/?](t* + 1)
+ 17 | ELXCI(| X| < n/)]|(|¢]° + 1)
+ nP(| X| > n'®)t + n~'t%).

Finally we note that the smoothing inequality,

enl/2

A,=C <J' | 7 Bu(t) — e™2]| dt + n“/"’)
—enl/2

(see e.g., Petrov (1975), Theorem 2, page 109), and the estimates (28) and (29). combine to
prove that (2) holds with A}, replacing A.(n'"%0,, np.,).

In proving (3) we choose ¢, and d, so that inf.4A.(c, d) = % A,(c,, d,) and ¢, > 0. The
techniques used to prove the inequality (3.20) of Ibragimov (1966) imply that for fixed z > 0,

f (1 = On(t2)e™ ™ = 1) di| = Chu(cn, d0),

Y being the characteristic function of (S, — d,)/c.. (The result holds for all z > 0; see Heyde
(1973).) Let ¢(f) = exp(—%t3(1 + y(¢))] denote the characteristic function of X. Then

Yn(t2)e D2 — 1 = exp{%(t2)’[1 — ncx®(1 + y(tz/cn))] — itzdy/cn} — 1
= Y(t2)’[1 — ncx(1 + y(tz/cn))] — itzdn/cn
+ ka(t, 2) | Ya(12)’[1 — ncx®(1 + y(tz/c))] — itzdp /|2,
where
| ka(t, 2) | = exp{| %(t2)’[1 — ncx®(1 + y(tz/cn))] — itzdn/ca |}

and so is bounded uniformly in ¢ € (0, 1] as n — o. Therefore

1 = 0){(t2)[1 — nc:*(1 + y(tz/cn))] — 2itzd,/cn)} dt

(30)

2

+1 - (tz)2[1 — e’ (1 + y(tz/ca))] — itzdn/cn | dt | < CAn(Cns, dr),

where | I.(z) | is bounded as n — . But

(|

2

= (21 = nc2(1 + y(tz/cn))] — itzdn/cn

= (1 + o(1)) |\L(tz)e‘t2)2/2 1|2dt=C f 172 | Yalt) — €72 |2 dt
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= J | Fu(x) — @(x) |? dx = CiAn(Cns d,,)J | Fu(x) — ®(x) | dx

= CzAn(Cn s dn)y

using Parseval’s equality, where Fn.(x) = P(S. < cxx + dy). It now follows from (30) that

31 f 1 (1 = ){2)[1 = ncX(1 + y(tz/c))] — 2itzd,/ca} dt | < CAn(cn, d,),
o
and so
f 1 (1 = {2’ ncz®[yQuz/en) = Y(t2/ )] = itzdn/ 2} dt | < Chu(cn, o).
0
Now,

—Wa(tz/cn)’(1 + y(tz/ ) = log ¢(tz/cr)
=¢(tz/cn) — 1 + mu(t, 2) | $(tz/c,) — 1 |2 )

where | m,(t, z) | is bounded uniformly in 7 € (0, 1] as n — o, and also

f | ¢(tz/cn) = 1]* dt = O(n™?)

since ¢, ~ n'/?. Consequently

J (1 = D{nloQtz/cn) — 1 — 4(p(tz/cn) — 1)] + 2itzd,/c,} dt
0

(32)
< C[An(cn, dn) + n71].

Taking real parts we see that
1
C[An(cn, dn) + 0] = nE[f (1 =13 — 4 cos(tzX/cn) + cos(2tzX/c,)) dt]
0

= 2nE[f (1 = D = cos(tzX/cn))? dt].
()

The function a(8) = [§ (1 — £)(1 — cos 6t)° dt is positive for § > 0, and a(§) — % as § — .
Also a(f) = C8* for | 8| < 1. From these observations we deduce that for any A >0,

(33) Cl[Ax(cn dn) + n7']1 = nE[a(X/c)I(| X| > % Acn)] = CinP(| X| > An'/?),
and
(34) C[An(cn, dn) + n_l] > n—lE[X4I(| Xl = Anl/2)]'

(Let z = 1/2A for the last result.)
Returning to (31) and using an argument exactly analogous to that used to obtain (32), we
see that

J (1- t){% t2)* + n[o(tz/cn) — 1] — itzd,,/c,,} dt | = C[An(cn, dn) + n7'].
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Taking imaginary parts we obtain

nE[j (1 = Dsin(tzX/cy) dt:l — zd,/6cn

=< C[Au(cn, &) + n71].
Now,

E[f (1 = p)sin(tzX/cn) dt] = E[{j (1 — psin(tzX/cz) dt} I X| >)\n1/2)]
0 0

+ E[{ f (1 = 1)(sin(tzX/cn) — (1zX/ca) + % (tzX/ cn)® dt} I(1X] =< )\n‘/z)]
[

- é (z/c)E[X°I(| X | < An'/?)] J: t’(1 = £) dt + zup/6cr = An + B, + Cy + zpl,/6cn,
say, where pn = E[XI(| X| = An'/?)]. Since | A, | < P(| X| > An'/?) and | B, | = Cn2E[X*I(| X |
= An'/?)] then in view of (33) and (34) we have

ClAn(cn, dn) + 112 | n(z/ ) E[X°I(| X| < An"/2)] + 202(d — nps)/cn | = bu(2),
say. By considering b,(2) — 2b,(1) we deduce that
ClAn(cn, dp) + n~']= n™* | E[X°I(| X| < Ma2)] |,
and (3) follows from this, (33) and (34).

PrOOF OF THEOREM 2. The result (4) may be proved directly from (2), and so we
concentrate on (5). In view of (3) it suffices to prove that

E[X*I(| X| > An})] < C[An(n"?, 0) + n™'] = C[A} + n™1],

say. Following the argument above we obtain successively

1
f (1 = D(d(t/n2)e™? — 1) dt | = CAX;
0

f a- t)B 2 + n(p(t/n?) — 1)] dt| = ClAX +n7"];
0

and

ClAY +n7']= f (1- t){—;— 12 + nE[cos(tX/n"2) — 1]} dt | = nE[b(X/n"2)],
0

where the function 5(0) = [§ (1 — #)(cos 0t — 1 + %(81)® dt is positive for § > 0, and b(#)/6*
— %4 as § — oo, Therefore for any A > 0,

C[A* + n7'] = nE[b(X/n"*)I(| X| > An"?)] = GE[X*I(| X| > AnV?)].

Proor oF THEOREM 3. Let X = XI(| X| < a»), X7i = X I(| Xi| < an), Sx =31 X
and

Ay = sups | P(S7 = nvp < bax) — ®(x)|.
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Then
An(bn, nvy) < A + nP(| X| > ay).

The Berry-Esseén theorem implies that

X < 3nE| X7 = v |*/[n(V(an) — v2)]¥*

=< CnE | X2 |*/[nV(@)]? = CnE | X1 |*/a,
using (20). Theorem 1 of Maller (1977) asserts that if (21) holds (and E | X |* = ©) then
lim sup.. E[| X|’I(| X| = x)]/x*P(| X| > x) < .
Condition (22) follows from this and the estimates above.
Lévy’s characterizations of DN and DPN are that F € DN if and only if
p(x) = x*P(| X| > x)/ V(x) > 0

as x — o, and F € DPN if and only if lim inf, .., p(x) = 0. In the first case xP(| X| > a(x))
= p(a(x)) — 0. In the second we may choose y» — o such that p(y:,) — 0. Let x =
%/ V(yx). Then xz — ®, y, < a(x) and

pla(xr)) = xxP(| X| > a(xx)) = xP(| X| > yr) = p( ) = 0.
If ny is the integer part of x; + 1 then
p(a(ew) = x:P(| X| > () = (1 = niYp(an,).

This proves that p(a»,) — 0, and implies (23).

Theorem 4 is established using the techniques leading to (33) in the proof of Theorem 1. By
employing the usual symmetrization procedures it is only necessary to consider a symmetric
distribution. Note that a symmetric X has characteristic function

é(r) = exp[— %" V(t™")(1 + o(1))]

as ¢ | 0, and that V is slowly varying at infinity (see pages 83, 91 of Ibragimov and Linnik
(1971)). Bearing in mind the properties of slowly varying functions (see Seneta (1976)) only
minor modifications to the proof of Theorem 1 are necessary.
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