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COMPARISON THEOREMS FOR SAMPLE FUNCTION GROWTH

By P. W. MiLLAR!
University of California, Berkeley

The growth rate at 0 of a Lévy process is compared with the growth rate
at a local minimum, m, of the process. For the lim inf it is found that the
growth rate at m is the same as that on the set of “ladder points” following 0,
parameterized by inverse local time; this result gives a precise meaning to the
notion that a Lévy process leaves its minima “faster” than it leaves 0. A less
precise result is obtained for the lim sup.

1. Introduction. Let {X,, ¢ = 0} be a real process with stationary independent
increments. Problems of local growth at 0—namely to evaluate lim sup,.o X./f(¢) and
lim inf,_o X;/f(t) for various f and {X,}—have a long and distinguished history. By the
strong Markov property, these results give immediately the growth rates at any stopping
time T e.g., lim sup,.o X, /f(t) = lim sup..o X(¢ + T) — X(T)/f(t) a.s. More recently ([7],
[11], [12], [13]) attempts have been made to study the growth rates at random times T'
that are not stopping times. The problem here is much more difficult and so far there are
results only for the case of stable processes and a selected few T. Moreover, these results
have been obtained via intricate and painful calculation, which, while providing concrete
and interesting results, nevertheless leave general structural questions unanswered. For
example, such methods seem incapable of answering the general question whether an
arbitrary process leaves T “faster” (or “slower”) than it leaves 0; indeed, even exact rates
at 0 are known for only relatively few processes. In an effort to get results that apply to a
wide assortment of processes, one could attempt to evaluate the growth rate at a random
time 7 in terms of functionals that concern only the behavior of the process near 0. By this
kind of comparison, one avoids the very difficult problem of providing exact growth rates
for every process, but yet should obtain a fairly good idea of the sample function behavior
in question. In the case where T is the time of a local minimum, such an approach can
actually be carried through. The main result of this paper can then be described as follows:

Restricting attention to processes whose local minima do not occur at optional times,
let m be the time of a local minimum, let X7 = sup,=; X; and T be the right continuous
inverse of a local time at O for the process {X: — X.}. The main result is an exact
comparison theorem for the lower envelope at m: for any increasing positive f:

(L.1) lim infi o X (m + t) — X(m)/f(¢) = lim inf,o X" (T2)/f(T}).

Since the distribution of (X*(T,), T}) is known, this result leads in sufficiently nice cases
to integral tests for f. In the general case it gives the precise sense in which processes leave
their minima “faster” than they leave 0. Evidently (1.1) implies

(1.2) lim inf, .o X (m + t) — X(m)/f(¢) = lim inf. .0 X (¢)/f(¢).

In fact strict inequality typically occurs in (1.2), and it can be argued that processes
typically leave m an order of magnitude faster than they leave 0. Similar methods also
establish a weaker comparison for the upper envelope:

(1.3) lim sup,_o X (m + t) — X (m)/f(¢) = lim sup.o X" (¢)/f(¢).
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Throughout this paper, notations of general Markov theory follow those of Reference
[1].

2. Sample function growth at a local minimum. Throughout this paper, {X,, ¢
= 0} will be a real Lévy process, i.e., a process with stationary independent increments
constructed so as to have right continuous paths with left limits. The process then has the
strong Markov property. Let P* denote the measures on an appropriate probability space
for the process starting at x; if x = 0, the superscript will usually be omitted. The transition
functions of {X,} are P;(x, dy) = w(dy — x) where u(dy) is the P° distribution of X,.
Assume throughout that

(2.1) 0 is regular for (0, ©) and for (—o, 0).

This means that if A is a Borel set and T4 = inf{t > 0: X; € A} then P{T(—wo = 0} =
P{T@w~ = 0} = 1. As indicated in Section 1, we intend to study the sample function
behavior of X to the right of its local minima; if (2.1) were violated, then all local minima
occur at optional times (see [8], Section 2) so the behavior at a local minimum is exactly
the same as that at time 0. So assumption (2.1) merely restricts attention to the problem
of real interest.

Define

(2.2) X; =inf X;, X! = sups< X;.
The following proposition is known, under assumption (2.1)(cf. [8]).
(2.3) ProrosiTION. (a) X is continuous at its local minima.

(b) If t > 0, X{ has a continuous distribution.

(c) On any fixed interval [0, a] there is exactly one time point M, at which X(M,) =
X*(a); moreover, 0 < M, < a.

(d) If T is any optional time, M, # T with probability 1.

For {X.} a real Lévy process, it is well known and easy to prove that the processes
(2‘4) Ht_=Xt_Xt_

Hf=X!-X,

are Hunt processes. Indeed, a simple calculation ([10]) shows the vector process (X;, X7)
is a Hunt process with transitions @.((x, a), f) = E*f(X., X; A a) (this much is true for
any real Hunt process X;); a simple application of the scale change theorem ([3], page 325)
with y((x, y)) = y — x yields the result immediately. Under assumption (2.1), 0 is regular
for {0} for the processes (2.4). Let

(2.5) T, be the right continuous inverse of a local time at 0 for { H; }
Fristedt ([4]) has shown that the vector process
(26) (XH(T), T
is a truncated Lévy process with strictly increasing paths (co-ordinate wise).

Even more is true. Define
2.7 M, =sup{s=tX,=X7or X, =X7}.
Then ([4], Chapter 9),
(2.8) the random sets in R*{(X*(T.), T:), t = 0} and {(X*(M.), M,), t = 0}

are the same and are traced out in the same order as¢ moves from 0 too.

Fix a > 0. Let
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(2.9) m=m®*=sup{t< a: X, = X3}
so m is the time point in [0, a] at which {X;, 0 < ¢ =< a} achieves its ultimate minimum.
Since a will be fixed henceforth, it will be deleted from the notation.
(2.10) THEOREM. Let f be a nonnegative increasing function, f(0) = 0. Then
lim inf, o (X(m + t) — X(m))/f(¢) = lim inf,,o X*(T}) /f(T}).

REMARK. By the Blumenthal zero one law, the quantity on the right in (2.10) is
constant; by the zero one law of [8], the left side will be also. By changing the interval [0,
a] to [a, b], this result gives the lower envelope at any local minimum.

ProoF. Define
(2.11) I=inf{(X(m + s); t=s=<a—m}
so in particular I, = X(m). Define also
(2.12) m,=sup{s:t=s<a-—m, X(m + s) = 1,}.

The random set U, {m + m.} C [m, a] gives the points at which occur the “last minima” of
the process {X(s), 0 = s =< a}. '
Let us establish first that

(213)  lim inf,o(X(m + t) — X(m))/f(¢) = lim info.o(X(m + me) — X(m))/f(m.).

It is obvious that the right side of (2.13) is at least as big as the left side, since the limit on
the right is computed over fewer values. On the other hand, by the definition of m, and the
continuity of X at m + m,:

X(m +¢t) — X(m) = X(m + m,) — X(m).
Since f is increasing
f@t) = f(me)
)
(X(m + t) — X(m))/f(t) = (X(m + m) — X(m))/f(m.),

proving (2.13).

Next, notice that for each w, the points of the random set U,{m(w) + m:(w)} are the
points of “new maxima” for the process {X(a) — X(a — t), 0 < ¢t < a}, but listed in reverse
order. More succinctly, if Z(-) is any real function on [0, a] with left and right limits at
each point, define for 0 < ¢ < a:

(2.14) M (Z)=sup{s<t:Z(s+) =Z*(t) or Z(s—)=2Z*(t)}

where, as usual, Z*(t) = sup{Z(s), 0 = s < t}. Clearly M,(Z) = M.(Z) for M.(Z) =t = a.
If

Y(t) = X(a) — X(a —t)
then
(2.15) s=m+m, ifand only if @ —s=Mar—m(Y).

Since Y, is a Lévy process, results given in [4], Chapter 9 and summarized above guarantee
the existence of a subordinator {S;} and a random time ¢ such that

(2.16) (M(Y):0=t=a}={S:0=t<{);

i.e., the set of new maxima of Y is the range of a subordinator S;. Here { = inf{¢#: S, > a}.
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Of course

(2.17) Si—=a—-m
and
{m:} = {Se- — S-¢}

(up to closure). Hence
@18) ((X(m+m)—X(m), m)} = {(X(a—S) - X(a - 8), Se- — Si-))
= {(Y(S;-) — Y(S¢t), S¢- — S¢-2)}.

By time reversal, the process {( Y(S;-) — Y(S;—), S¢— — S¢-¢)} has the same distribution
as {(Y(S,), S), t < ¢}. But Y(¢) = X (a) — X (a — ¢) has the same distribution as {X(¢), 0
< t < a}, so again by time reversal {( Y(S.), S:), ¢ < ¢} has the same distribution as
((X(T), Ty), t < ¢} = {(X*(T), T.), t < {}, where T, has the definition (2.5). Accordingly

(2.19) lim inf.o (X(m + m,) — X(m))/f(m,) = lim inf,.o X (T%)/f(T:)
and this, together with (2.13) gives the result. [
REMARK 1. The random sets { X*(T%), t =0} and {X*(¢), ¢ = 0} are the same; moreover
X*(w) is constant on T;,- < u < T} and continuous at T,_. It follows that
(2.20) lim inf X*(¢)/f(t) = lim inf X* (T-)/f(T).

The quantity X*(T.-)/f(T.) will be small when T, makes a big jump compared to the size
of T,—, and this happens often by [8], Section 5. Consequently it seems likely that typically

lim inf X*(¢)/f(¢) << lim inf X*(T.)/f(T).

This phenomenon can be checked explicitly in the stable case.

REMARK 2. If X, has no upward jumps, then
XH(T) = ct,
¢ a positive constant. In this case
lim inf X*(T%)/f(T.) = ¢ lim inf ¢t/f(T:)
and, since the Laplace transform of T is known, the results of [5] can be applied to produce
the best f’s for this case.

REMARK 3. In general the joint distribution of (X*(T), T:) is ‘known’ ([4], Chapter 9),
and in certain cases it is possible to apply this information to study lim inf X*(T%)/f(T:).
In particular, it should be possible in the stable case.

(2.21) COROLLARY.
lim sup,_o (X(m + t) — X(m))/f(t) = lim sup..o X*(2)/f(t).

Proor. From the definitions it is obvious that
lim sup (X(m + t) — X(m))/f(t) = lim sup (X(m + m,) — X(m))/f(m.).
Hence by (2.18), et seq.
(2.22) lim sup (X(m + t) — X(m))/f(¢) = lim sup X*(T.)/f(T.).
If T, =u<T, then
X*(w) = X*(Tw-).
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Therefore
(2.23) lim sup X*(u)/f(u) < lim sup X(T.-)/f(T.-)

since fis increasing. Since the process X*(T.-)/f(T.-) is separable (it is left continuous on
(0, =0)), there exists a sequence ¢;, | 0 such that

lim sup X*(T;, ,-)/f(T%,,-) = lim sup X(T.-)/f(T.-)
(see [2] page 555, Theorem 2.3); for the same reason there exists ¢, | 0 so that
lim sup X*(T%,,)/f(T,,) = lim sup X(T.)/f(T).

Let t. be the sequence obtained by combining the ¢;, into a single decreasing sequence.
Then

lim sup X*(T,,-)/f(T.,-) = lim sup X(T'.-)/f(T.-)
and
lim sup X*(T%,)/f(T.,) = lim sup X(T0)/f(T.).
However, T,, = T\, a.s., so
lim sup X(T%)/f(T) = lim sup X(T,-)/f(T-).
This with (2.22), (2.23) proves the corollary.

REMARK. If X, is Brownian motion, then the ideas in the proof of (2.21) together with
a bit of excursion theory show, without calculation that

lim sup(X(m + ¢) — X(m))/f(t) = lim sup(2X*(¢) — X(¢))/f(¢).

The argument depends critically on symmetry and continuity of path, so this exact
comparison does not extend to other processes.
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