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BROWNIAN MOTIONS ON THE HOMEOMORPHISMS OF THE
PLANE!

BY THEODORE E. HARRIS

University of Southern California

Let z denote a point of R;. We study random flows Z,(2) E R;,0 <s =<
t< o,z € Ry, Z1u(Zs+(2)) = Z.u(2) for s < ¢ < u. Such flows are called Brownian
if Z is continuous in (s, ¢, 2) and has appropriate spatial and temporal
homogeneity properties and if Z,, Z,., . . . are independent homeomorphisms
of R; onto R; whens<t<u=v=....ForaBrownian flow the coordinates
of any k points are a 2k-dimensional continuous Markov process, k£ = 1, 2,
.... If these processes are diffusions whose diffusion matrices have bounded
continuous derivatives of order < 2 (i.e., are C2-bounded), then the diffusion
matrices are necessarily obtained in a certain way from the covariance tensor
of the field of infinitesimal displacements. A converse is given in the incom-
pressible isotropic case: given a C>-bounded covariance tensor of an isotropic
solenoidal R,-valued field in R;, there exists a corresponding incompressible
isotropic Brownian flow. .

1. Introduction. Let H be the space of homeomorphisms of R, with itself, with the
topology of uniform convergence on compact sets. We shall find and study H-valued
stochastic processes Z,; = Zs, 0 < s = t < » having the following properties. (a) Z is
continuousin (s, ¢); (b) Zy c Zy=Zy,0<=s<t=u<ow;(c)ifsi=ti=<s<t;=<...,then
Zsy,, Zsy,, - . . are independent. We call Z a Brownian motion on H. The reason for the
name is evident if we consider a Wiener process X;, put X,: = X; — X;, and then compare
Z,; with X, and ° with +. Thus we have a homogeneous “additive” or “infinitely divisible”
process, which may be called “Brownian” because the sample functions are continuous.
For a discussion of homogeneous processes on groups or semigroups see, e.g., Grenander
[7a]. The recent work of Bucan [1a] on random semigroups of linear operators may also be
cited, although its methods and results are quite different from those of the present paper.

If z € R., we write z = (x*, x%) or (x, y). Letting Z,(z) be the value of Z; at z, we write
Zu(2) = (X4(2), X%(2)) = (Xu(2), Ye(2)) in coordinate form. We also put Zo, = Z,, X8, =
X1, etc. From (b) we see that Z is a flow in R;; that is, Z,,(Zx(2)) = Zsu(z), where we think
of Z.,(z) as the position at time ¢ of the point that was at z at time s. The flow Z derived
from a Brownian motion on H is called a Brownian flow; this term is defined in its own
right in Section 2. Note that (a) implies Z(2) is continuous jointly in (s, ¢, 2).

NoteE. The word “flow” applied to a process (Zs(z)) does not by itself imply that Z;,
is surjective.

We shall consider only homogeneous flows, without always saying so; that is, the
processes (Zsine+n(z + 20) — 20,0 = s <t < o, z € Ry) have the same law for every 2~ = 0
and zo € R;. This implies in particular that Z,(z) — z is stationary, considered as a function
of z.

Let Z be a Brownian flow, let z1, ..., zx be points of R,, and fix s = 0. The process
(Zo(21), . .., Za(2k), t = s), which has continuous paths in R2, is called a finite-set process
(more specifically a k-point process) of Z. We shall see that each finite-set process is
Markovian.
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Leaving unanswered the question whether there are Brownian flows whose finite-set
processes are not diffusions, we treat only the case where they are diffusions, with diffusion
coefficients that are C?-bounded (i.e., have bounded continuous partial derivatives of order
= 2.) In this case, because of spatial homogeneity, we may as well assume zero drift.

The law of a k-point process is then determined by a 2k x 2k diffusion matrix B*. The
matrix B* determines a law for % points whose marginal law for any subset of £ — 1 points
must be that determined by B*™"; in other words, the sequence (B*) has the property that
we shall call consistency. It is easy to determine all possible consistent sequences with C>-
bounded elements. Each such sequence is determined, though (2.3) and (2.5) in terms of
a matrix function (b,4(2)), p, ¢ = 1, 2 where

(1.1) bpq(2) = lim,yo &(X8:(0))(X8:(2) — x9)/¢, z=(x', x%).

The class of functions (b,,) is exactly the class of C*-bounded covariance tensors of
homogeneous R.-valued fields in R..

Conversely, suppose (bp,) is @ C*-bounded convariance tensor of a homogeneous R;-
valued field in R.. Then (2.3) and (2.5) define a consistent sequence of diffusion matrices,
and the question is whether the sequence determines a Brownian flow. One can at least
begin the construction (Section 2). However, complete results have been obtained only in
case the flow is isotropic and incompressible (i.e., preserves Lebesgue measure.) The main
result, contained in Theorem 16.6 is as follows.

Let (b,,) be a C>-bounded covariance tensor as above. Suppose also that (b,,) is
solenoidal, meaning it satisfies the divergence condition (3.5), and is isotropic (see Section
4). Then there is a unique law for an incompressible isotropic Brownian flow whose finite-
set processes are determined by (2.3) and (2.5). Every incompressible isotropic Brownian
flow corresponds to such a covariance (b,,).

In the incompressible isotropic case, the one-point paths are just 2-dimensional Brown-
ian motion, and the distance between two points is a diffusion, which helps simplify the
analysis.

The proof of the existence of a continuous flow Z,, with independent “increments” is
simple. The main technical problem is then to establish the homeomorphic property. For
this we approximate our flow Z by a sequence of homeomorphic flows Z", where, for fixed
s and ¢, the sequence of inverse functions (Z%)™" is tight. From Lemma 13.1, we then
deduce that Z is homeomorphic. (It is easy to show that two given points have probability
zero of meeting.)

The approximation is carried out in stages. We first prove the homeomorphic property
for a special class of Brownian flows (the “stream-function case”) using a sequence (Z") of
“stirring processes” as the approximating sequence. We then extend the results to Theorem
16.6.

The stirring processes used here are similar to the stirring processes in R; introduced by
W. Lee [13] as analogues of the symmetric case of F. Spitzer’s “simple exclusion” in Z;; see
[15]. The use of stirring processes gives a picture of a Brownian flow as a limiting case of
a vortex model for homogeneous turbulence, where the vortices come and go very rapidly
instead of remaining stable for some time. For a vortex model of turbulence see Chorin [2]
, especially page 113. The field of short-time displacements of a Brownian flow plays a role
like the velocity field in models of homogeneous turbulence. An example is condition (3.5)
for incompressibility.

In the latter part of the paper it is shown that the length of a rectifiable curve is a
submartingale under an incompressible isotropic Brownian flow. The paper concludes with
a remark about duality.

Notation. 2(S) is the family of Borel sets in the topological space S. The measurable
sets in a Euclidean space or an interval of R; are always the Borel sets.C} is the set of real
functions on an indicated Euclidean space that have bounded continuous partial derivatives
of order < n; functions in C% are called C?-bounded. C3 are the functions in C3 with
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compact support. C% (often called &) are the functions in C§, which, with all derivatives,
go to zero at « more rapidly than any rational function. C§(R,) indicates that the domain
is Rn. C® is the class of infinitely differentiable functions.

If (Ui(2), Us(z), z € R;) is a homogeneous random field, U; and U; real, then the
covariance tensor (bp,) is given by bpe(2) = & U,(2")Uy(2' + 2),p, ¢ =1, 2.

The symbol | S| will denote the cardinality of the set S, the Lebesgue measure of the
Borel set S in a Euclidean space, or the length of the curve S, depending on the context.

C(A, B) is the set of continuous mappings from A into B. Cq is the space of continuous
mappings R; — R with the topology of uniform convergence on compact sets.

0 denotes a quantity < 1 in modulus. ¢ denotes a constant not depending on the
parameters of the formula in which it appears.

2. Brownian flows; consistent sets of diffusions. By a Brownian flow in R; is
meant a measurable mapping
(2.1) (s, t, 2, w) = Zu(z2, w), 0=s=<t<o,z2ER;, weER

with values in R;; w is from a probability space (2, % P). It is assumed that Z is
homogeneous (see Section 1) and that the following properties hold.

(2.2)(a) Fora.e. w: Zp(Zy(z2, w), w) =Zu(z,w) forallzand all0 = st =< u < oo.
(2.2)(b) For a.e. w: Zy(2, w) is continuous in (s, ¢, 2), and Zy (-, w)
is a homeomorphism of R, onto itself for all0 < s < ¢ < co.

(2.2)(c) For s < tlet I be the o-field generated by Z,.(2), s=u=<v

=<t 2 € R;. Then I3, Zu, ... are independent if s<t<su=<v=....

A Brownian flow Z determines a Brownian motion on H in the sense of Section 1 and
conversely.

Let Z, = Zo, = (X}, X3 = (X,, Y)). If (2.2)(a-c) are true and if px(t; 21, ..., 2x; B:1 X

<+ X Bp) = P{Z(21) € By, ..., Zi(2;) € Bi} then
P{Zin(z1) €E By, ..., Zn(2r) € Bi| Jor}
= P{Z1sn(Z(2))) EBi, 1= i< k| T}
= pr(h; Z(21), ..., Z(2z); B1 X - -+ X By),

whence the k-point process (Z,(z1), . .., Zi(z), t = 0) is Markov.

Let us find the most general possible Brownian flow whose finite set processes are
diffusions with C2-bounded diffusion coefficients. The drift must be the same at all points
of R, and we may take it to be 0.

Let B* be the diffusion matnx for the motion of % points. Then B* is 2k X 2k and has
the form (with the ordering xix3 ... x}x}

B%Y ... B*
23 k= 11 1%
@3 B (le B’,:k)

where B is a 2 X 2 matrix (B% (p, 9)), p, ¢ = 1, 2, with (putting 2z; = &}, x))
(X2 (2:) — x0)(X7(2)) — xf )

(2.4) B:e](p’ (I) = lil'ntl() & t

Note that the right side of (2.4) is the same for all £ = 2 (since one flow governs all points),
and depends on z; — z;. Hence we have

(2.5) B{ej _ (bn(zj — 2;) bia(z; — zi))

ba1(2j — 2i) baa(zj— 2)) )’
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The condition of nonnegative definiteness for the B* is

(2.6) Yra=1 Tmn=1 bpg(Zm — 2n)ched* = 0

for complex c%,. This is also the condition that (b,,) is the correlation tensor of an R.-
valued homogeneous random field in R;. (See Section 1, Notation.) Note b, (2) = bgy(—2).

Hence every Brownian flow with C*-bounded diffusion matrices is based on a C2-
bounded covariance tensor through (2.5).

We need the notion of a consistent sequence of diffusion matrices. For each k = 1, 2,
... let B* (not yet the above matrix) be a 2k X 2k C%-bounded diffusion matrix for the
coordinates of % points diffusing in R, with zero drift. We call the B* consistent if, having
used B**” to determine the law of paths of points initially at z1, . . . , 24+, the law of any k-
point subset, say the points initially at 21, ..., 2, is the same as that determined by B*.
Assuming that the motion is spatially and temporally homogeneous and that the motion
of k points does not depend on the order of labeling, we see that B* must have the form
given by (2.3) and (2.5).

For each k-tuple 2, . . ., 2z, the matrix B* determines the law of % continuous trajectories
(Z.(21), ..., Z.(24)). Considering a trajectory as a point in the Polish space E of continuous
mappings from [0, «) into R;, with the topology of uniform convergence on compact sets,
we see that consistency, as defined above, is exactly the consistency condition for the
Kolmogorov extension theorem. Hence an E-valued random field (Z.(z), z € R») is defined
and hence a random field (Z,(z), t > 0, z € R,).

Let (&,q) be a C*-bounded covariance tensor and let matrices B* be defined by (2.3) and
(2.5). From Stroock and Varadhan [16], B* is the matrix of a diffusion with zero drift. Let
< be the generator corresponding to B*. If f(z1, ..., 2k, Zke1, « .., Zher) = fo(z1, ..., zw),
where f; is in C3, then &, f = Zfy. Since .+, and <% both have unique solutions to the
martingale problem from [16], the distribution determined by B**" for the paths starting
at zi, ..., 2; solves the martingale problem for <, and therefore the B* are consistent.
Hence a random field (Z;(z), t = 0, z € R») is determined.

Let us suppose this field has a version that is continuous in z. Then for each ¢, Z, =
Z,(-) is arandom point in Cs2, the space of continuous mappings R, — R, with the topology
of uniform convergence on compacta. Let @; be the distribution of Z,.

(2.7). DEFINITION. Let @ and @” be Borel probability measures in Cz.. Then @ * @”
denotes the distribution of £ o n where §{ and 7 are independent points of Cz, with the
respective distributions @ and @”.

Note. @ * @” is continuous in the pair (@', @”) (weak convergence).
(2.8). LEMMA. Assume the field (Z,(z)), constructed as above from a consistent set of

diffusions, is continuous in z. Let @, be the distribution of Z; in Cz;. Then Qs = Q: * Q,
s, t=0.

Proor. Let ¢(z1, ..., z:) be bounded and Borel measurable. Let pi(t; z1, .. ., 2;.) be
the distribution of Z,(zy), ..., Z;(zz)). Then
(2.9) Q: (d)o((z1), ..., (=) = ka(t; 21, ..., 2 d21 .. d2R)e (2, ..., ZR).
$E€Cy

Fixing 21, ..., 2x and putting f({) = ¢({(21), . .., {(2:)), we have, using (2.9)

J' Qs (AOF(S) = jpk(t + s 21,..., 2 d20 ... d2h)@(2h, ..., 2})

= ka(t; 21,0 .., 2 d27 ...dzﬁ)j Qs (Ao ((2Y), ..., L((=k))
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= j Qs (df) j Q: (A" (1)), ..., §'(2)))

= J Qs (df) J Q: (dEV (e () =f Qs * Q:(d)f (D).
Cy2

The lemma follows from this. 0O

(2.10). LEMMA. Under the conditions of Lemma (2.8) there exists a Cy-valued random
fieldZy,0<s<t<osuchthats<t<u=<v<...impliesZy,Z,, ...areindependent.
Zg has the distribution Q,—s. For fixed s <t=<u,Z,, > Zy = Zy, a.s.

REMARK. The continuity stipulated in Lemma 2.8 will be proved only for incompres-
sible isotropic flows, but probably holds much more generally.

Proor. The proof is essentially the same as in the construction of real additive
processes.

First we construct a set of finite-dimensional distributions for a Cj-valued random
function Z, such that Z,, c Z, = Z,, as. if 0 =s<t=<u < o. For example if s< t <= u <y,
the joint distribution of Z,, and Z,, is that of Z,, - Z; and Z,, © Z.,, where Z, Z,,, Z., are
independent. From Lemma 2.8 we see that the finite-dimensional distributions are uniquely
determined and consistent. Since the Kolmogorov extension theorem is valid for processes
with values in C;; (a Polish space), the lemma follows. 0O

We define the field Z,(z) in the obvious way from Z;,. We shall later show continuity in
(s, ¢, z) for the incompressible isotropic case.

REMARK. Homogeneity in space and time of the flow Z of Lemma 2.10 follows from
the spatial and temporal homogeneity properties of the finite-set processes.

I am indebted to J.C. Octoby (private communication) for an example of a continuous
incompressible map of R onto itself that is not a homeomorphism.

3. Incompressibility and reversibility. We consider the relation between incom-
pressibility (preservation of Lebesgue measure) of the flow of Lemma 2.10 and reversibility
of the k-point processes with respect to 2k-dimensional Lebesgue measure. We always
assume zero drift. As before let Z, = Z,,. Let ¢: R; — R; be in C%. From the moment
inequalities in Friedman [7], page 107, the integral [r, ¢ (Z;(2)) dz exists and has a finite
second moment. From translation invariance we have

(3.1) gj qJ°Z¢dz=f<pdz.
R, R,

Then, letting ¢ @ ¢ (2, 2’) = ¢p(2) p(2'),

2
(3.2) é”(J (poZ,—9) dZ) =IJ (TP 9® ¢ —9®¢) dz d7,
R, RyxR,

where (T') is the semigroup operator for the motion of % points. We let <, be the
generator of (T').

We say that (Z,) is incompressible if (3.2) is 0 for each ¢ = 0 and each ¢ € C%. This
implies, for fixed s and ¢, that the mapping Z; a.s. preserves Lebesgue measure. If (3.2) is
0 for each ¢ then, again using [7], page 107, we find, letting ¢ | 0, that

(3.3) Jj oty 9 ® @ dz d2’ =0,
RyXR,
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where

1 R
(3.4) A(21, ..., 2) = 3 Yii=1 Xha=1 bpe(2; — 2:) SxTox? (21, ..., 22).
It can be shown from (3.3) that (b,,) satisfies

3bpe(x’, x%)
axP =2

dbyq(x', 2%)
. =

0.
ax?

(3.5) Xp

This is not surprising because the same condition is satisfied by the correlation tensor of
velocities in the usual models for incompressible turbulent flow; see Monin and Yaglom
[14], vol. 2, page 26. If (3.5) holds, necessarily b, (2) = bgp(2).

From (3.5) we deduce further that (1, Y2) = (Y1, Lrs) for Y1, Y2 € CF (R2:), where
(f, 8 = [r,, fg dz1 - -+ dz,. From this we can show that if R¥ and T are the resolvent and
semigroup operators for .«7; then (R f, g) = (f, Rk g) and (T%f,g) = (f, T¢ g) for f, g € C§.
That is, each k-point process is reversible with respect to Lebesgue measure. From
reversibility we get, taking limits, [g,, Tifdzy ++- dzi = [ Ry, f dz1 + -+ dz; for bounded
measurable f= 0.

Conversely, assuming reversibility for the two point process, we find from (3.2) that we
have incompressibility and hence (3.5). To summarize: )

(3.6). THEOREM. Let Z, be as in Lemma (2.10). Suppose the 2-point diffusion matrix is
C*-bounded and assume zero drift. Then the following conditions are equivalent.
(3.6.1). The flow is incompressible.

(3.6.2). Condition (3.5) holds.

(3.6.3) The k-point Markov processes are reversible with respect to Lebesgue measure for
eachk=1,2,....

(3.7). CorOLLARY. If (3.6.1)-(3.6.3) hold and if Z, is a.s. a homeomorphism, then for each
s and t, s < t, the random homeomorphisms Z,; and (Z)™ have the same distribution.

PRrROOF. Let fand g € C§(R2:). Then

f dPJ f fZ7 (1), ..., Z7 ()81, ..., 22) d21 -+ dz
Q Ry

=f dPJ Jf(z'l,...,zie)g(Zt(zi), vy Ze(2k)) d2Zy -+ d2h,
Q

because the random transformation z{ = Z;'(z;), 1 =i < & preserves Lebesgue measure in
R;;. Since the symbols f and g can be interchanged in the last integral, the corollary
follows. O

4. Spectral formulas: incompressible and isotropic case. For an R;-valued field
(U1(2), Us(2)), putting bye(2) = U, (21) Uy (21 + 2), we have

(4.1) bpq(z) = j eiz‘)\ deq(A), A = (Aly A2))
R,

2

where the spectral matrix (dF,,) is finite and Hermitian nonnegative definite. We assume
byq is C*-bounded, which is true iff the F,, have finite second moments.

We assume that (b,,) is solenoidal (i.e., satisfies (3.5)) and isotropic. (Note: because of
the solenoidal property, rotational isotropy also implies invariance under reflection.) Then
(dFp,) has the following form in polar coordinates (r, ¢).
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. d
dFy, = sin g 2—:’ dM(r),
. dop
4.2) dF1; = —sin ¢ cos ¢ o dM(r) = dF,
T

d
dF2 = cos’ ¢ 2—: dM(r),

where M is a finite measure in [0, ®), and where [§ r? dM(r) < o because of C%-
boundedness. The covariance properties can be expressed in terms of f1. (p) = b11(p, 0) and
fn(p) = ba2(p, 0), using (4.7) below. We have

ﬁ@)=—j To0) anp(r)
0

rp

(4.3)
-1 dM—p—2 r? dM + o(p?)
2 16 P
fn(p) = — J J§ (ro) dM (r)
(4.4) 0

1
T2

From (4.3) and (4.4) we find fx(p) = d(pfr(p))/dp. Here <, is the Bessel function of order
0; see [17], Chapter 17, 17.1, 17.11, and 17.23.

The relations (4.2) can be derived from (3.5), the assumption that the b,, are twice
continuously differentiable, and the assumption of rotational invariance. They can also be
derived from Theorem 12 of Yaglom [18], using the statement following (4.42) of [18]
about the solenoidal case. In our case invariance under rotations implies invariance under
reflections, which is not true for nonsolenoidal R;-valued fields. See Remark 3 of Section
4 of [18].

In the special case where M is concentrated at 0, we have fi, = fy = bi; = bs; = constant,
and b12 =0.

Since for all complex z we have | % + J5(2)/z| <c1|z|% | % + JE(2) | < e1 | z|% we find

2
fdM—%fﬁdM+o(p2).

00

(4.5) [f2(0) = fr(p) | = c1p® J r* dM,

0

0

(4.6) | iv(0) — fu(p) | = c1p? f r* dM,

0

where ¢ does not depend on p or M. Unless M is concentrated at 0, | fz(p) | and | fv(p) | are
< % [ dM if p > 0. Note the formulas (p* = x2 + y?)

2 2
bll(x: y) = ad fL (P) :zy fN(p) ’

4.7 biz(x, y) = xy(fi(p) — fu(0))/p%,
baa(x, ¥) = bui(y, x).

Compare (12.29), page 39 of [14] for 3 dimensions.

In an important special case there is a stream function y: R, = R,, circularly symmetric
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about (0, 0), such that
dM (r) = r®n(r) dr/2m, r=0,

(4.8) R(A]) = (§(\))?
YA = f e N (2) dz (real).
Ry

¢ will be in either C§ or C% in our applications. Then

1 00
fulp) = —5— j r*h(r)Jo(rp) dr,
4.9) P Jo

fa(p) = _§l—j r3h(r)J§ (rp) dr, 0>0.
u 0

Letting * denote convolution, put

BG) =1 j NG (N))? dA

(4.10)
1 00
={Yxf(2) = o f Jo(r|z|)rh(r) dr.
m 0
Then
’B 3’B
4.11) bula) = =557, bul@) = 557,
’B
bzz(z) = - W .

Normalization. Since f1,(0) = fn(0) = % [§ dM, we shall often take

(4.12) 1/2J dM =1
o

to simplify the formulas. In case there is a stream function v, (4.12) becomes
1 2 2 T\2 1 ” 3
(4.13) — | AT+A)DW)?dA=1=— | r°h()dr.
87 R, 47 b

5. Diffusion of two points. Consider the 4 dimensional diffusion of the coordinates
of 2 points in R, determined by the matrix B? given by (2.3)-(2.5) with 2 = 2 for the
incompressible isotropic case, where b,, is as in Section 4.

Let o7, be the corresponding generator. Let p; be the distance betwen the two points at
time ¢. The formal generator for p;, determined by the action of .«/; on functions of (x! —
x%)? + (y' — %)% = p?, is, assuming (4.12),

(5.1) Ho(p) = (1 —fr(p))e”(p) + 9’(p), p=0.

1—fn(p)
P

We extend to —o < p < o, putting f.(p) = fL(|p|), fv(p) = fn(]p])- 1 — fL(p) has bounded

continuous first and second derivatives in R; and hence (Friedman [7], page 129) V1 — f;,

, satisfies a uniform Lipschitz condition. Likewise (1 — fx(p))/p satisfies a uniform Lipschitz

condition. Hence, using the martingale result of Stroock and Varadhan [16], Theorem 2.3,
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pe is a diffusion in (— oo, ®) with generator (5.1) if p € C§. Since 1 — f1(p) and 1 — fi(p) are
O(p®) near p = 0, 0 is inaccessible and p: on (0, x) satisfies the stochastic differential
equation

(5.2) dp = 22(1 — f1(p))"2 dW + 1—_?’(—“ dt, p>0

where W is Wiener. The corresponding equation for p?, y > 0 is
(6.3)  dp" =22 yp" (1 — fu(p))2 dW + yo' [1 — fv(p) + (v — 1)1 — fo(p))] dt.
Taking expectations in the integrated form of (5.3) and using (4.5) and (4.6) we get

t

ol = ol + Yf gy LN () + (y = DA = filp)

2
o Ps
t 00
=pd+yQ+|y-— 1|)c1f é"p}dsj r?dM
0 (1]
whence
(5.4) &pl < plexp(tC,c; f r*dM),
0

y > 0 where C, depends only on y and ¢; appears in (4.5) and (4.6).

We also record that if the vector difference between two points in our flow is denoted
by (u:, v.), then (u., v;) is a diffusion with the operator =/":
a%p
dudv

e g
(5.5) Ao, v) =1 - buly,v) P (u, v) + (1 — b2 (u, v))a—v2 (u, v) — 2b12 (1, V)

6. Continuity properties of Z,(2), incompressible isotropic case. In this section
we assume that (8,,) is C*>-bounded, solenoidal, and isotropic and, hence, given by (4.1)~
(4.2). Let B* be given by (2.3) and (2.5) and let Z,(z) be a version of the random field
constructed from the B* in Section 2.

(6.1). LEMMA. For fixed t the random field (Z,(2)) has a continuous version.
Proor. Take any y > 2 in (5.4) and use Corollary 1 to Theorem 1 of [11].

(6.2). LEMMA. Let (Zy) be the Cy-valued random field of Lemma (2.10). Then the
corresponding field (Z,(2),0 < s <t < o, z € R;) has a continuous version that is a flow.

(Recall that a flow need not be subjective.)

Proor. From Lemma 2.10, it is sufficient to prove continuity. Suppose 0 < s, ¢t < 1.
From (5.4)

(6.3) 81 Zu(2') — Zu(2) |"®<s c|z — 2’|
Next, if s<s’'<t< ¢,

81 Z2u(2) = Zaw (2) | = (8| Zut(2) — Zon(2) | + &|Zy1(2) — Zov (2) |"°).
Now

lest(z) - Zs’t(z) '16 = d’&{lZ,,/,(Z,,,,(z)) - Zs‘t(z) |16 Zss’ (2)}

= (from (5.4)) ¢8| Zy (2) — 2| = c(s' — 5)8,
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since Zg,-(z) is Wiener for fixed z. Also

E|Zst(2) = Zye (2)|'° = 8 8{| Zs4(2) = Zu (Z51(2)) |"° | Zoe(2)} < (¢’ — ¢)°.
Hence we have
64) &|Zu(2) = Zsw(2) | =c((s’ = )2+ (¢’ — t)® + |2 — 2|"), s<sg<t<t.

Similar arguments show that (6.4) holds in all cases. Applying Theorem 1 of [11], with a
=16,0(s5,t, %,y) =L+ 2+ (A + %)% eV = €2 =(81)", €2 = €Y = (82)*, where 27V <
81 <1,27% < §; <1, and s, t, x, y correspond respectively to ¢, ¢z, £, and ¢, in [11], we find
that Z(z) has a continuous version. It follows that Cy-valued process (Z;, 0 < s =t <
) has a version that is a.s. continuous in (s, ¢); 0

From now on (Z(2)) will denote a continuous version.

Remark on isotropy. Choose a Cartesian coordinate system in R;. Let b(2) = (bpq(2))
be the covariance matrix defined in Section 4, and let g be a matrix representing a
reflection or rotation in R,. Let g’ be the transpose of g. A calculation shows that gbg’(z)
= b(gz). It follows that the It6 system of stochastic differential equations for % points with
diffusion matrix B* and zero drift is invariant under reflections and rotations, k& = 1, 2,
... . Hence the flow Z defined by Lemma 2.10 is isotropic if (b,,) has the form of Section
4,

7. Stream functions. This section has some estimates connected with the determin-
istic flow corresponding to a stream function Y (x, y), which will determine the “stirring
processes” of Section 8. Let Y1 (x, y) = (8y/dx), ¥5(x, y) = (3y/dy), Yz = (8%/axdy), etc.

A smooth steady incompressible flow in the plane can be constructed from a stream
function y(x, y) by taking —dy/dy and dy/dx as the velocity components in the x and y
directions respectively; see [12], Chapter 4. For such a flow let (£ (x, y), n.(x, y)) be the
position at time 7 of the point initially at (x, y). Then (¢;, 5.) is the solution of

(7-1) dg‘r/dT = _‘Pé(g‘n 777)) dn‘r/dT = \l’i (gf) 7’7)1 £O(x1 y) =X, nO(xy y) =).

Let Wi, (x, y) = (&.(x, ), n-(x, ¥)), 7 € R,. It is a familiar fact that ( W,), 1 € R;) is a group
of homeomorphisms of R, preserving Lebesgue measure, provided ¥ is smooth, in particular
if Y is as in (7.2).

(7.2). Assumptions and notation. Let y: R; => R; be in C§, and assume that the support
of { is interior to a circle with radius K centered at (0, 0). Let MPH mean “Lebesgue-
measure preserving homeomorphism(s) of R, with itself.”

From (7.1) we have the estimate

(7.3) £(x, ) = x — Pi1 + (B)[Whdia — Yivsh]r® + cb.1°, T €Ry,
where the derivatives of ¢ are evaluated at (x, y).
Note. Here and throughout, c is a constant, not necessarily the same in each formula,

and not depending on the variables in the formula; 6 is a function whose absolute value is
=<1. Similarly

(7.4) Ne(x, ¥) =y + it + Ce)Wivty — Ysgiilr® + cd.r°.

By similar calculations, using the fact that ¢, and n, have continuous first partial
derivatives with respect to x and y (see [4], pages 22ff, especially Theorem 7.2, page 25) we
find, on any bounded 7-interval,

(g'r(x) y) - g'r(o,y 0))2 + (’n‘l’(x9 y) - "l‘r(oy 0))2
=x® + y? + 7{=2x(Y5(x, y) — ¥5(0, 0))
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+ 2y(Y1(x, y) — ¥1(0, 0))}

+ 72{(Yh(x, y) — ¥5(0, 0))* + (¥i(x, ¥) —¥1(0,0)*
(7.5) + x[Ya(x, Y)Yia(x, y) — Yilx, )i (x, ¥)

— (¥4(0, 0)¥12(0, 0) — ¥1(0, 0)¥2(0, 0))]

+y[ix, y)ia(x, y) — dilx, y)¥in(x, y)

— (1(0, 0y 12(0, 0) — ¥3(0, 0)¢11(0, 0))]}

+ cOr%0*p

=x%+ y? 4+ 7F + 712G + c8-7°p*p,

where p% = x% + y%, p* = min(l, p). Note that
(7.6) |F|=cp*p, |G| = cp*p.

(7.7) Circular symmetry. We henceforth assume
(7'8) ‘P(x) .‘)’) =g1(P)) p= “x2+y2: pZO.
Since y has continuous derivatives of order 4 at (0, 0), necessarily

(7.9) gi(p) = co + c2p® + cap* + 0(p*), plo0.

Then the Fourier transform J(\) = [ e“*{y(z) dz is a real function of |A| for A € R..
Put

(7.10) R(IA]) = GA)

Our assumptions imply A(s) = O(s™®) as s — =.

8. The stirring processes. Let y**(x, y) = ¢(x — a, y — B), (a, B) € R; and let
(£28, 1) be the solution of (7.1) that is initially (x, y), if ¢ is replaced by ¥**. Let W 3* be
the MPH (x, y) — (£1£m(x, ¥),m%/va(x, ¥)). Note that

8.1) EPxy) —x=&(x—a,y—B) — (x—a),
128 x,y) —y=n.(x—a,y—B) — (y — B).

We may think of W2f as an instantaneous vortex centered at («, 8). The nth stirring
process Z" is constructed by applying such vortices repeatedly at random times and at
random points (a, 8) of R;. The rigorous construction will be by means of a space-time
Poisson point process. Roughly speaking, for the nth stirring process there is a probability
nda dB dt that a vortex is applied in any time period of length dt, with («, 8) in any
rectangle of dimensions da X df. As we let n = o, the vortices become more and more
frequent in each region, while the vortex W3* moves any point distant <K (see (7.2)) from
(a, B) a distance of the order at most1/ Vn.,

Let ©’ be the set of denumerable subsets w of (0, ®) X R, having finitely many points
(¢, x, ¥) in each bounded region, no two points with the same first coordinate, and having
infinitely many points in each cylinder with an open base in R;. Let &' be the smallest
o-field in Q' containing the sets {w: |w n B| =k}, k=0, 1, .-, B a bounded Borel set in
(0, ®) X R; and let P" be the probability measure on &’ corresponding to a Poisson point
process in (0, ©) X R, with intensity n. Let £" be the expectation symbol corresponding to
P". However we may write & instead of &" if the meaning is clear.

For convenience we shall later replace 2’ by a certain set @ € &', where P*(Q'\Q) =0,

=12 ---.

Define Z%(z, @) = (X5(x, ¥, w), Yo%, 3, @), 0Ss<t<, (x,y) ERp,n=1,2, -,
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w € Q' as follows. (The definition is actually the same for each n; it is the probability
measure P” that changes, rather than the random function.) The construction is similar to
that in [13].

Let K be asin (7.2). Given 20 E R, w € 2/, s =0, let t; = inf{t’: ¢’ > s, 3 (a, B) € R,
dist((a, B8), 20) < K, (¢, a, B) € w}. Let (1, a1, B1) be the indicated point of w. Put Z% (2o,
w) = 20, s =t <t and Z5, (20, w) = Wkizg = 2, say. (21 = 2o is possible.) Letting ¢, =
inf{¢':t' > t1, 3 (a, B) € R,, dist((a, B), 21) <K, (¢, a, 8) € w}, and letting (£, az, B2) be
the indicated point of w, we take Z%(20, w) = 21, h =t <, Z5, (20, ) = W*#2z, and so on.
In this way we construct Z3(z) for 0 = s < ¢, z € R,. Roughly speaking a point (u, a, 8)
€ w corresponds to an application of W to R; at time u, and Z%(z) is the position at time
t of the point which was at z at time s.

If there are infinitely many jumps before ¢, we put Z%(z, w) = 0. It is routine to show
that Z%(z, w) is measurable in the quadruple (s, ¢, z, w).

The statement that Z” is a flow (Z” is MPH) means there exists " € #’, P*(Q") =1
such that Z7,(Z%(2, w), w) =Z%(2, w),0=s=t=u<x,zE€ Rz, w € Q" (Z%(-, w) is MPH
for0=s=t<o,w€eE").

(8.2). LEMMA. Z" is a flow and is a MPH. Moreover for each s; > 0, the random
variables Z3(z2), s1i = s=<t, 2 € R, are independent of Z5:(2),0 =<s <t =< s, 2€ R,.

ProoF.! Let R; be divided into closed squares oriented along the axes with vertices at
the points (3iK, 3jK), i, j = 0, £1, ..., where K was defined in (7.2). Enumerate these
squares as Si, Sz, - - -, where S; has its lower left-hand corner at 0. The neighbors of S; are
the 8 other squares sharing a side or a vertex with S;.

Let w,, be the projection on R of the set of points (u, a, 8) of w having 0 < u < ¢,,, where
we pick ¢, < 1/(144K°n). Let Ty, T}, - - - be random unions of squares defined as follows.
If w, N S; =, then Ty = &. Otherwise Ty = S;.

If T,, = O for some m, then Tps1 = D. If T, # &, Tyt is the set of squares S; & T U

-+ U T, such that S; is a neighbor of some S; € T, and w, N S; # &. We see that
E{| Trms1||Toy -+, T} <|Twm|-8(3K)2n/(144K’n) = (})| T |, where | T, | is the number
of squares in T, so that, a.s. (P"), UT,, is a finite set of squares. Starting with each S; we
construct a finite union in the same manner. Two such unions, if nonempty, either coincide
or are at a distance =3 K from each other. We enumerate the distinct nonempty unions as
Ty, Teay, .. .. Let TG = {(x, y): dist(T, (%, ¥)) < K)}. It can be seen that there is a set
Qn1 € F, P*"(Rn1) =0, such that if w & Qn1, (a, 8) € w, implies W2f leaves invariant each
set T, and each point (x, y) € U T%,. Hence if w & 2,1, then the points (a, 8) of w, such
that W&* moves any point of T, are a finite set and hence Z%, 0 < s < ¢ < c,, restricted
to T;), is a finite composition of MPH, each leaving T';) invariant. Hence for w & .1, Z%
isaMPHfor0<=s=t=<c,and Z;,(Z%(z, w), w) =Z3(z,w) for0<s<t=<u=<c, We
make a similar construction of Z3, for kc, = s <t =< (k+ 1)c,, k=1, 2, ... By piecing
together, we then construct Z%, for 0 < s < ¢ < o in such a manner that the flow properties
are clear. The independence property is also clear. [0

(8.3). DEFINITIONS. We now take £ to be the subset of 2’ on which we can construct Z%
as aboveforkc,=s=st=(k+1)cs, R=0,n=1. Put F = F'n Q. Then (2, & P") will
be our probability space for Z". Put Z5; = Z¢, Xt: = Xt, Y. = Y?.

(8.4). LEMMA. (Z%(2), t = 0) is for fixed z a random walk in R, with jump intensity
7K*n. If the position just before a jump® is z, the position just after a jump is Witz,
where (a, B) is uniformly distributed in the disk of radius K, center z. Moreover §Z7(z)
=2

! For a detailed proof in a similar case, see Sections 3-5 of [8].
2 We say there is a “jump” at z at time « if (4, a, 8) € w and dist(z, (a, 8)) < K although W%z
might be equal to 2.
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Proor. The random walk property is clear from the construction of the process and
the nature of Poisson point processes. To show that £X7(0, 0) = 0, recall the definition of
£28 from Section 7 and the beginning of Section 8. Let Sk be the open disk, center (0, 0),
radius K. The expectation of the first jump of (X7(0, 0), ¢ = 0) is

1
% f f £i/n (0, 0) da dB =
T ¢

Since (a, B) = (£1/vn(—a, —B), N1/va(—a, —B)) is a measure preserving transformation of
Sk into itself, we have [ [ £1/vn(—a, —B) da dB = [ [ a da dB = 0. Since X% (0, 0) is the sum
of a Poisson number of such jumps, £X7(0, 0) = 0 and similarly & Y?(0, 0) = 0, whence
87 (2) = 2.

L 3 f J {&1/vn(—a, —=B) + a} da dB.
K e

It can be seen that (Z7(z1), ..., Z(2:)) is a jump-type Feller-Markov process. We
denote its transition function by
8.5 Pi(t; 21, -+ o, 215 T).

9. Correlation and spectral functions; small displacements. Recalling that
lpll(x’ .‘)’) = 6‘1’(% y)/ax) lpé(xy y) = a‘l’(x’ y)/ay) put N

bu(x, y) = f J’ Vi(a, B)Y2(x + a,y + B) da dB,
Ry
(9.1) bia(x, y) = ba(x, y) = —j f Vile, BWi(x + a,y + B) da dB,
Ry

bas(x, y) = J J Yila, BWi(x + a,y + B) da dB.
Ry

(Integration by parts shows that b, is unchanged if we exchange the subscripts of ¥} and
¥5.) Since ¥ and ¢ are functions of p = |z| and | A| respectively, we get the following
spectral formulas by taking Fourier transforms twice in (9.1), putting A = (A4, Az).

1 . R
bu(z) = 4—‘”2] e'}"z(}\z)zlpz dA
R2

2 00
=— 2i {y_f s*h(s)J{ (sp) ds
™ o

2
9.2) P
x (7
+—3f s*h(s)J4(sp) ds} ,
P Jo
1 (7,
b11(0,0) =— | s%h(s) ds.
49 o
Similarly
1 . ”
bi2(2) = — —; J’ e A ()2 dA
47
el 3 ” 2 ’
©.3) _xy {s h(s){o (sp) s h(S){o(SP)} ds,
27 J, P P
b12(0, 0) = 0;
(9.4) by (x, y) = bu(y, x).

Formulas (9.2)-(9.4) correspond to (4.1), (4.2), and (4.8) with R(A]) = (J (A\))% Hence
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we see that (b,,), defined by (9.2)-(9.4), is a C*-bounded isotropic solenoidal correlation
tensor. (See the statement below (7.10).) We define f;. and fy by (4.9) as before.

Normalization. Henceforth we shall assume (see (4.13))

(9.5) if sh(s) ds = 1.
47 R

Then from (9.2)-(9.4)
fr(p) =1—Bp* + 0(p®),
fn(p) =1 —3Bp% + 0(p?),

0

1 5
,3—52—17 i s°h(s) ds.

(9.6). LEMMA. We have

9.7 EXH0, 0) (X7 (x, y) — x) = thu(x, y) + 0c<-j= + n4/3t5/3) ,
n

(9.8) EX2(0,0)(Y?(x, y) —y) = thia(x, ) + oc(-j: + n‘/3t5/3) ,
n

9.9) EYH0, 0)(Y7(x, y) — y) = thas(x, y) + 00(% + n4/3t5/3),
n

provided t lies in a compact interval. £Y7(0, 0)(X7(x, ¥y) — x) also has the estimate given
on the right side of (9.8).

Proor. From (7.3) and (8.1)
(9.10) £5(0, 0) (635 (x, y) — %) = Yh(—a, —BWh(x — a, y — B)r? + cO+3,

where | 8| < 1, if 7 is confined to a compact interval.

Let K be as in (7.2). Let S’ be the set of points of R, at a distance < 3K from either o,
0) or (x, y). Let N, = |w n ((0, t] X S’)|, L the indicator of the event {N. = 2}. Using
Holder’s and then Schwarz’s inequality,

©.11) | ELXT(0, 0(X2(x, y) — x)| < (£(LYV2)"*(£] X7 0, 0) (X7 (x, y) — x) ')
=< (P(N: = 2))%(8(X7(0, 0))9),

Now X7(0, 0) is distributed as a sum of i.i.d. variables, say A; + ... + A, where &A;=0and
v is Poisson, mean A = #K’nt, independent of the A;. Hence

E(X7(0,0))* =1 &(A),
9.12) E(X7(0,0)* =A&(A)* + 3AH(£(A1)??
E(X?2(0,0))° = A&(A1)® + 15)\%8(A1)%6(A)*
+ 10A%(&(A1)°)? + 1503 (&(A1)%)°.

Since | A;| =c¢/vn, we have &(X7(0,0))® < c(t/n® + £?) if ¢ is confined to a compact interval.
Moreover
PN, z2) =1-¢e'91"(1 + | 8’| nt) = |§’|’n%?,

where | S| is the Lebesgue measure of S’. Hence the last expression in (9.11) is bounded
by c(nt%)¥3(ct)'/® < cn?3t%.
Next note that N, (w) = 0 implies X7 (0, 0) = 0 while N,(w) = 1 implies X7 (0, 0) (X% (x, y)
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— x) = £58/n (0, 0)(¢5%/n(x, y) — x), where (i, a, B) is the point of w in (0, ] X S".
From (9.10) and the bound just obtained for (9.11),

X7 (0, 0)(X7 (x, y) — x)

=P*(N;=1) { —J' j Yo(—a, —B)Yo(x — a,y — B) da df + c0/n3/2} + cOn*/3t%3

|S]
= tbi1(x, y) + fct/n'* + Gcn**t>,

Note that P*(N; = 1) = |S’| nt — c6(| S’ | nt)®. Similar arguments apply to (9.8) and (9.9).

O

10. The limiting diffusion for k points. To find the generator 2/} of the jump-type
Markov process (X7 (x1, y1), Y7 (x1, y1), « -+, X7 (xr, Y2), Y7 (xr, Y&)), suppose ¢(x1, y1, +« -
, X, ¥x) and its partial derivatives of order < 3 are bounded and continuous. From the
usual calculations, Lemma 8.4, (9.12), and (9.7)-(9.9) we find, using | UVW | < (6UH"?
(V18 W*4 to estimate the third order terms,

(10.1) HEP(X1, Y1, * oy Xky Vo) = ZeP(X1, Y1, + 20y Xk, Jo) + 0(1/‘/71)
where | O(1/ «/;] =<c/ Vn, c depends on % and ¢ but not the x; and y; and -

2
(102) g = 2 (a"’ ‘p>

dx? ay,
& 1 9 92
2: R e hid + = ba ? + bz hid H
%) ax,-axj 2 ay:dy; 0x:9y;
in (10.2), ¢ and @ and its derivatives are evaluated at (x1, y1, *+ -, Xz, ¥&), and b,, in the

(i, J) term is evaluated at (x; — x;, y; — ¥;). Note b:2(0, 0) = 0 from (9.3). We see that </ is
forma].ly the generator of a diffusion with 0 drift and diffusion matrix B* of order 2k of the
type given by (2.3) and (2.5), with B% now

(53)

The functions b,, are those given by (9.2)-(9.4). B* is nonnegative definite and is strictly
positive definite iff the z; appearing in it are all distinct; this can be shown from (9.2)-(9.4).

Since the elements of B* and their partial derivatives of order < 2 are bounded and
continuous, it follows from Theorem 1.2, page 129 of Friedman [7] that the elements of
«/_ the unique nonnegative definite square root, satisfy a uniform Lipschitz condition in
Ry

Let D (with the Skorohod topology) be the right-continuous functions with left-hand
limits from [0, 1] into R;; let C be the continuous functions on that interval. Let ;, 0 < ¢
= 1 be the usual o-fields generated by the functions in D. Let D%, C?*, and J. be the 2&-
fold Cartesian products. For given initial points z1, - - -, 2, the process (Z7 (z1), « - -, Z?(22))
induces a probability measure P%....... ., in D%,

According to a result of Stroock and Varadhan [16], Theorem 2.3, which applies to
singular diffusions, there is a unique solution Py, ... ., for the martingale problem for
operating on the functions C§ (Rs.), with initial points z1, - - -, 2; this is a diffusion process
with diffusion matrix B* and zero drift, and we consider it here as a probability measure
in D?* which puts all its weight on C**. (Evidently it is sufficient to consider 0 < ¢ < 1.)

(10.3). THEOREM. P73, ... ., converges weakly to Pi..,,... ,,asn— o, k=1,2, ...

Proor. Fixzy, .., z;and drop them from the notation. We first show the compactness
of P, n=1,2, ..., with & fixed. For this it is sufficient to show that a sequence of
coordinate processes, say X7(0,0),0 <¢ =<1, n =1 is tight.

From Billingsley [1], Theorem 15.5, pages 127-128, including the remark referring to
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page 56, it is sufficient to show that for each € > 0 and 1 > 0 there exist 8 € (0, 1) and n,
such that

1
< P" {supo=.=s| X2(0, 0)| = €} = 9,

(104) ) n=n,.

Furthermore the same theorem of [1] says that each weak limit of (X2(0,0),0<s=<1) is
concentrated in C. The left side of (10.4), by arguments familiar for Markov processes, is

1
(10.5) =3 P™{| X3(0,0)| = €/2} /[1 — supo=s=<s P"{| X3 (0, 0)| = €/2].
Using the fourth moment in (9.12), putting A = #K*nt and using | A;| =c/ Vn, we have
8
P™{| X2(0,0)| = €/2} sé(-c;—wga?), 0<s=<$

which, with (10.5), proves (10.4). Hence (P}, n = 1) is tight and each weak limit is
concentrated in C?*,

If p € C5(R2:) let ¢f and ¢7" be ¢ and o7} p respectively, evaluated at X7 (x1, y1), Y7 (x1,
Y1), <+, XP(xr, Y2), Yi(xr, ye). Now @f — [§ ¢i"ds is a P}-martingale adapted to 3, and
is, for fixed ¢, bounded on D** and continuous in the topology of D** at each point of C%*.
If @ is a weak limit of a subsequence of ( P}), we have shown above that Q.(C%*) = 1. It
is readily shown from this and (10.1) and (10.2) that @, solves the martingale problem for
&y, in D?*, and hence the restriction of @, to C?* solves it for 7, in C?*, with o-fields J5x
n C?* Then Q; must be the unique diffusion corresponding to 2. O

(10.6). REMARK. It can be verified that & points (2 = 2) whose diffusion is governed by
(10.2) cannot have a joint Gaussian distribution. Hence our processes are not Gaussian,
even though single-point motions are Wiener.

(10.7). DEFINITION. Let pi(t; 21, ---, 2z; T'), I' € Bz, be the transition law for the
diffusion just defined.

11. Weak convergence of the fields (Z%:(2), z € R:), s and ¢ fixed. In this section
we show that the sequence just named converges weakly to the field (Z.(z), z € R,)
corresponding to (b,,) given by (9.2)-(9.4). Any such Z, will be designated as a stream
function case, corresponding to the stream function y. Recall that €, is the distribution of
Z, = Zy:. Let @7 be the distribution of Z?.

(11.1). LEMMA. Let p? be the distance at time t, under the stirring Z", between two

points whose initial distance is po. Then & (p?)* < pé .

Proor. For convenience suppose the points are initially at (0, 0) and (x, y). Let S’ be
the subset of R defined in the proof of Lemma 9.6. Let o; be the smallest s such that some
(s, @, B) € w with (a, 8) € S’, and let s, = (p5)° Then s, is given by the expression after
the first equality sign in (7.5) with 7 = 1/Vn, p = po, p* = min(l, po), (a, 8) uniformly
distributed in S’, and derivatives 8y (x, y) /dx, 8*(x, y) /dxdy, etc., replaced by dy(x — a, y
— B)/dx, *(x — a, y — B)/3xdy, etc. From (7.5) and (7.6) we have

81=p§ + Fop/Vn + Gug/n + cOp3po/n®?, | Fup|,| Gas| = cpé po.
We easily verify §"F,p = 0, whence
cd
&"st = ps + w (08203 + p&pd) = pd(1 + c/n).

Continuing, if s,, is the squared distance after m jumps,
(11.2) EM(She1| 81, + o+, 8m) < s%(1 + ¢/n).
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Hence 6"(s»)’> = p4(1 + ¢/n)™. Since the number of jumps in [0, ¢] is dominated by a
Poisson random variable J with mean cnt, £(p?)* < p§£(1 + ¢/n)? < p§e*. 0

(11.3). THEOREM. For s < t fixed, the distribution of Z%, considered as a random point
in Cy, converges weakly to Q,-,, where Q. is defined above (2.7) and the functions b,, are
given in (9.2)-(9.4).

ProoF. It is sufficient to consider s = 0. If zy, - -+, 2x € R,, the joint distribution of
Zi(z1), +--, Zt(2x) converges to that of Z,(z1), «--, Z.(zz) by Theorem 10.3. Weak
convergence follows if we can show relative compactness, which holds (see Fahrmeir [6])
if

(11.4) limyo sup, Q7 {£ € Coo: ws(h, £) > €} =0
for each compact S C R, and € > 0, where
ws(h, §) = sup;,-es,|z-2|=h | £(2) — £(2')].

For convenience take ¢ = 1 and S the unit square. From Lemma 11.1, Q7{| £(z1) — £(22) |
> b} = c|z1 — 22|*/b*. Using this and amplifying somewhat the proof of Theorem 1 of
[11], we find that if e >0 and 0 < § < 1 are given, we can find m, depending on € and § but
not n such that

Qr{|¢(x",y') — &(x, y)| = € V dyadic x, y, x’, ¥ € [0, 1] such that |x — x/|
=2™and|y—y|=2"™}=1-4.

Since ¢ is continuous, this implies (11.4). 0

12. The inverse process (stream function case). If the stream function ¢ of
Section 7 is replaced by —y, each mapping W2# (see Section 8) is replaced by its inverse,
which we call W%, Since the operators .2/ of (10.2) depend on ¢ only through|y|? the
limiting flow has the same law for —y as for y.

Fix T > 0. Let Q be as in (8.3). For each w € @ let w’ be the set of all points (T — u, x,
y) such that (u, x,y) Ewand 0<u < T.If0 = s <t =< T, define

Z;?(z) w) = IZ:t(z) w,))

where 1Z%, is the same function as Z%; except that — replaces y. Then the process Z%, 0
=< s =t = T has the same law as Z%,, 0 < s < ¢t < T, except that —y replaces y. Let Z* =
VAR

(12.1). LEMMA. For w € Q,Z"1(-, w) is the inverse mapping of Z% (-, w).
The proof follows readily from the construction in Section 8.

13. Homeomorphic property; incompressibility (stream function case). Let H
be the subspace of functions in C, that are homeomorphisms of R, with itself. Routine
arguments show that H is a Borel set in Cs;.

Let @ be the mapping of H onto H defined by ¢¢ = ¢7%. It can be seen that ¢ is a
homeomorphism. If P is any probability measure on #(Cz) with P(H) = 1, let Pp™!
denote the distribution of @£ in Cj; if ¢ has the distribution P. Then Pg¢™ is also
concentrated on H.

The following lemma can evidently be extended to a wider setting than the present one.
It is basic for our results.

(13.1). LEMMA. Let q1, q2, - - - be a tight sequence of Borel probability measures in Cs,
such that g.(H) =1,n =1, 2, .. .. Suppose also that the sequence ( g,p™") is tight. Then
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each weak limit of a subsequence of either sequence is concentrated on H.

PRrOOF. Let m, be the distribution in Cs; X Ca2: under g, of the pair (£, ¢£), £ € H. Then
m(HX H)=1Letf(2,£¢') =£(£'(2),8(2, 6 &) =£§(£(2)), §, ¢ € C2, zE R». Then fand
g are continuous. Since (g,) and (g.¢™") are tight, so is (). Let = be the weak limit of a
subsequence of (m,). Let do(z, 2’) = min(1, d(z, 2’)), where d is the Euclidean metric. Then
for each z € R,

f do(z, f(2, £, §')) d'rr=limJ’ do dm, =0,
Cc22x 22

and similarly if f is replaced by g. Hence, if A = {(, £'): £, &' € Ca, £(8'(2)) = ¢/ (£(2)) =
z V rational z € R,}, then m(A) = 1. Since A C H X H, the lemma is proved. 0

(13.2). THEOREM. Suppose (Z.) is constructed from a stream function ¢ € C§ with
circular symmetry about the origin. Then almost surely Z is a homeomorphism of R,
onto R, for every 0 < s < t < . That is, considering (Zs) as a Cx-valued process, the
values are in H.

Proor. We first show from Lemma 13.1 that Z,, ¢ fixed, is a.s. a homeomorphism of R,
onto R;. The rest of the argument is general for continuous nonrandom flows in R, and
may well be known.

Fix T > 0. The random mgppings Z% and Z7 (see Section 12) are a.s. inverses. From
Theorem 11.3 and the fact that Z7 is distributed like Z7 except —y replaces y, the
sequences (Z7) and (Z7) are both tight. Hence, from Lemma 13.1, Zr is a.s. a homeo-
morphism.

For each 0 = s = t < w let (f«(2), 2 € R:) be a continuous nonrandom mapping of R,
into R, such that fu.(f«(2)) = fw(2), 0 = s =t = u < o, z € R, and suppose for is a
homeomorphism of R, onto R.. We show that f;, 0 = s < ¢t < T, are all homeomorphisms
of R, onto R,. Taking T =1,2, 3, ..., is clear that the theorem will follow. The argument
for T = 1 is now given.

Suppose fo; is a homeomorphism of R, onto R..

(a) fo: is injective for 0 < ¢ < 1 since fy:1(2) = fi1(for(2)) and fy; is 8 homeomorphism.

(b) Let H; = fo,(R:). Then f;; is injective from H, onto R, since for z € H, we have
fo(2) = fu(for(f3i (2))) = for(foi (2)).

(c) H;, with the relative topology of R., is homeomorphic with R,. For let S C R; be
closed. Then fy:(S) is closed. Since f;; is continuous, the set {z: z € H,, f:1(2) € fu(S)} =
fo:(S) is relatively closed in H;, proving (c).

(d) H;= R,. According to Brouwer’s domain invariance theorem (see [5], page 358), H,
is an open subset of R,. If H, # R,, let @ € R,\ H, be a boundary point of H,. Let 2z, = @,
2, € H;. Let S = u{z,}; this set is closed in H;. Then f;;(S) is a bounded subset of R,. But
£:1(S) = fu (foe(f6£(S))) = for(f52(8S)). The closed set f57(S) cannot be compact, since then
S = for( for (S)) would be compact. Since fy; is a homeomorphism of R, with Rs, fo1 (for (S))
is not bounded, a contradiction.

Hence fo; is a homeomorphism of R, with itself for 0 < ¢ < 1. Since f..(2) = fo:(fo:'(2))
for 0 = s <t =< 1, we see that f,; is a homeomorphism of R, with itself for0 =s=¢t=<1. O

From Lemma 6.2 and Theorem 13.2 we may consider (Zs) as an H-valued process,
where H is the set of homeomorphisms in C,;. Noting that the map ¢ = £7' is continuous
on H we have:

(13.3). LEMMA. (Stream-function case.) (Zs) and (Zy4)™" a.s. have continuous sample
functions.

(13.4). THEOREM. (Stream-function case.) Almost surely, a continuous version of (Z)
is incompressible simultaneously for all0 = s =t < .
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Proor. For fixed s and ¢, the a.s. incompressibility of Z, follows from Theorem 3.6,
since (b,,) satisfies (3.5). Now let ¢ € Co: R, — R;. If S is the support of ¢, Lemma (13.3)
implies that Uoss=s=s, Z'(S) is bounded for each # > 0 and hence [r,g°Zu(2) dz is as.
continuous in s and ¢, proving the result. 0

(I am indebted to T. Liggett for the shortened form of the last step.)

14. Extension lemma. Let .# be the set of finite Borel measures M in [0, ») with
f§ r* dM < «. To any such M there corresponds a covariance (b,,) via (4.1) and (4.2). Let
Z be the flow constructed from (b,,) as in Section 2 and let @,[M] be the corresponding
distribution of Z,.

Let .#, be the set of M € .# corresponding to a stream function ¢ as in Section 7 (in
particular satisfying (7.8)), and let .#5 be the set of M € .# such that @, = @,[M] has
Q:(H) =1 for each t = 0. We have seen that .#, C .#5. We shall see later that .#5 = .

(14.1). LEMMA. Suppose My, My, --- € M. Suppose M, —» M weakly and sup [§ r*
dM, < . Then M € Mg, and if t = 0 is fixed, @.[M,] converges weakly to Q.[M].

Proor. Fix t. There is no harm in assuming % [§ dM = 1, and also % [¢ dM, = 1,
since only a sequence of multipliers C, — 1 is involved. From (5.4) (&, corresponds to M)

(14.2) Enpt < ple

where c¢; does not depend on n. The same arguments as those used in Theorem (11.3) show
that (@.[M,.]) is tight. Let Z7 correspond to @[ M, ] and let Z;" be the inverse function of
Z?. (Note that the meaning of Z7 is not the same as in Section 8.) From Corollary 3.7, Z;"
has the same distribution at Z7. Hence, from Lemma 13.1, every weak limit of a subsequ-
ence of @;[M,] is concentrated on H.

In what follows, a superscript or subscript n will indicate that M is replaced by M, in
formulas such as (4.1), (4.2), or (10.2); it will not refer to the stirring processes.

Let (bp,) correspond to M,,, with the generator .« }, for k-point diffusions; similarly (b,,)
and &7, for M. From (4.1)-(4.2), bp,(2) converges to b,,(z) uniformly on compact sets.
Because /7 and </, have unique solutions to the martingale problem (see [16]), the k-
point diffusions for /%, starting at zi, - - -, 2z, converge weakly to the diffusion for «7,.
(We have tightness because the marginal one-point diffusions of each <} are Brownian.)
Hence, for fixed t, the finite-dimensional distributions of the fields {Z?(z), z € R;}
converge to those of {Z,(z)}. Thus @;[M,] converges weakly to ,[M]. O

15. Extension to ¢ € Cg. Given ¢ € C%, define A and M by (4.8), assuming (4.11),
and define B by (4.10), so that b;; = —8?B/dy?, by, = —82B/ax?, b1z = 8°B/axdy. Let o(u),
— < u < o, be a monotone C*-function such that ¢(u) = 1for u <0, 0(u) =0foru=1
and put 6,(x, y) = o((x*+ y*)*—n),n=1,2, - ... Then each 6, € C§ and the kth order
partial derivatives of 8, are bounded by a constant c% not depending on n.

Put ,, = yb,; let ¥, be the Fourier transform of y»; A., M., and B, are defined
correspondingly by (4.8) and (4.10). Then M, € # from Theorem 13.2, since ¥, € Cs.
Also B, = yn*y{, and the corresponding covariance tensor (bj,) is given by

8B, 8B, 8B,
(15.1) == ay2 bl = axdy s b = — oxZ

(15.2). LEMMA. The partial derivatives of B, of each fixed order converge to the
corresponding derivatives of B uniformly on compact subsets of R;.
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ProOF. The proof is sufficiently well illustrated by considering 82B,/8x%. We have

B,,(x, y) = J’ 4‘(“’ B)on(a’ B)‘P(x -,y - B)on(x -,y — B) da dB’

(e, B)ER,

2 2 2 —_ —
-t [ v mna v - ey - py TeEZ 8B
W(x—a,y—pB) d0.(x —a,y — B)
+ 20,.(a, B)
(15.3) 8 ax 9%
2 — —
+ (e, p VI =B) gy =)

ax>

%Y

-&—g(x—a,y—ﬁ)} da dp
=IUT) + I3(T),

where IT(T) = [s2+p2<12, I5(T) = [a2+p*>72. Given € > 0, we can pick T so that | I3(T)| <

€ uniformly in x and y. Next, pick an arbitrary D > 0 and keep | z| = D. We can then find

no depending only on T and D such that IT(T) = 0 for n = n,. This finishes the proof. 0

(15.4). LEmMmA. Ify € Ck and M is defined by (4.8), then M € /s as defined in Section
14.

PROOF. Assume (4.12). Define , = 6, as above. We have b (x, y) = —(32/3y®) Ba(x,
¥) = bu(x, y) uniformly on compact sets. Hence f7(0) = 1, f%(0) = 1 from (4.12). Since
b1 is the characteristic function of F1;, Lemma (15.2) implies that F7; converges weakly
to Fu, where dFy;, = sin®p(dg/27) dM(r) from (4.2). Hence M,, converges weakly to M.

Moreover,

Jrz dM,(r) = %J roh.(r) dr
0
- f (A2 + A2 (N)? dA
Ry

2 .
SFJ’ AL + A3 ()2 dA
T R,

8*B.,(0, ‘B,
=2( B((: 0)+aB(0,0)

F P ) (see (4.10)),

which is bounded by Lemma 15.2. The result follows from Lemma 14.1. [0
16. Main result.
(16.1). LEMMA. Each M € # is in M5.

Proor. Let M € 4. Let G be the measure in R, given by dG = (dg/27) dM(r). Let
v be the circular normal distribution in R; where each component has mean 0 and variance
1/n. Let G} = G'*v,, with corresponding density g*. Then g} € C* and is a function of x2
+ y% Also \/g_,‘t € C” because g7 > 0. Let 6, and o be as in Section 15. Let a, | 0 be such
that fixj<a, 8%(A) dA < 1/n. Let 5,(A\) = 1 — o((2/an)(|A| — an/2)). Then s, € C* and
vanishes for |A| = @,/2,0=<s, =<1, and s,(A) = 1if |[\| = a,. Let
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47°g X (N) (6.(N)*(s-(N))?

(16.2) PnlA) = e

Since Vo, € C%, so does

—x O.5,Vgx\"
n=i ®n S .
47* 2'rr TIAl

According to Lemma 15.4, if we put
(16.3) dM,,(r) = r®h,(r) dr/2m,
where

Ba(IA]) = @) = (V)

then each M, € .#5. By Lemma 14.1 we need only show that M, — M and sup [ r* dM,
< w0, Let dGn()\) be the measure (dp/27) dM,,. From (16.2) and (16.3) if f(A) = fo(|A]) is
bounded and continuous,

J’ f(A) dG.(N) = f fo(r)r®h.(r) dr/2x
Ry

(16.4) ( ) f f(A)lMs'pl"ﬁ)

= J’ F)&%(N) (6:(X))*(sn(N))? dA.
R,

We must show that the last integral in (16.4) converges to [ fo(r) dM(r) = [r, f(N) dG(N).
Multiplying by a constant if necessary, consider G as a probability measure corresponding
to an R,-valued random variable Z; then g/ corresponds to Z + Z, where Z,, is independent
of Z and circular normal, mean 0, variance 1/n for each component. Then Prob{|Z + Z, |
> n} — 0, whence [|x=x g%(A) dA — 0. From the definition of @, we have [|x|<a, g%(\) dA
< 1/n. Since dG.r(A) = g3 () dA for a, < |A| < n (see (16.4)), we have

(16.5) mJ'fdGn=mjfg: d>\=J’fdG=J’ f(r) dM(7).
0

Moreover,
f r* dM,(r) =J [A 12 g5 (N)(6:.(N)s.(N))? dAsJ’ IN2gX(A\) dA = &|Z + Z,|?
0 R. R,

where Z and Z, are as above. Since sup,&| Z + Z,|* < «, the theorem follows from Lemma
14.1.0

(16.6). THEOREM. The incompressible isotropic Brownian flows in R, are in one-to-one
correspondence with the isotropic solenoidal covariance tensors (by,) of (4.1)-(4.2). The
relation is through the diffusion matrices given by (2.3) and (2.5) for the finite-set
processes.

Proor. Let (b,,) be given by (4.1)-(4.2), with [3 r2 dM(r) < . Construct (Z) as in
Section 2, using B* given by (2.3) and (2.5). From Lemmas 2.8, 2.10, and 16.1, Z has a
version that is a continuous flow with independent increments and is homeomorphic. From
the remarks at the end of Sections 2 and 6, Z is homogeneous in space and time and
isotropic. From Theorem 3.6 Z,; is a.s. incompressible for fixed s and ¢, and the same
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argument as in Theorem 13.4 shows that Z is a.s. incompressible simultaneously for all s
< t. Conversely, given an incompressible isotropic Brownian flow, we have seen in Section
2 that the construction is based on a C%-bounded covariance tensor which, because of
Theorem 3.6 and isotropy, must be given by (4.1) and (4.2). O

17. Lengths of curves and an application. Let (Z,) be a Brownian flow corre-
sponding to M € . Let S be a continuous curve of length | S| < , and let S; = Z«(S) =
Zo(S).

(17.1). THEOREM. S, has a finite length|S.|; theprocess (| S:|) is a lower semicontinuous
(LSC) submartingale and &|S;| < |S|e®.

(17.2) COROLLARY. P {supo<ir |S:|= b} =<|S|e’"/b, b>0.

The corollary follows from (17.1) and a familiar submartingale inequality, since the
supremum of an LSC function on an interval is the same as its supremum on the rational
points in the interval.

Proor oF (17.1). Parameterize Sasz,,0<u<1Forn=1,2,...let
prit = | Zd2oy2n) — Zl2 4120 |,
Pni = Pnio, 1=0,1,...,2"—1,
Ln = Zl_o Dnit.

Then almost surely: Ly, 1 | S¢| for each ¢ = 0.

From (5.4) &pni: < pnie” and &L, < 22 ~1 p,;e”. Letting n | « we have, from monotone
convergence, &|S;| < e®|S|. Let & be the o-field generated by Z,(2), 0 = s < t, 2 € R,.
From the integrated form of (5.3) we see that &p} = p{ if y = 1. It follows that (pn:, %) is
a submartingale and hence (L., %) is a submartingale. Since L, 1 |S:| and (L) is
continuous, the theorem is proved. 0

We can apply (17.2) to get a bound on the spread of the interior of a simple closed
curve during a finite interval of time. Let S be a rectifiable simple closed curve, let S* be
the union of S with its interior, S§ = Z,(S™). Assume (0, 0) € S. Let Dr, be the disk, radius
R, center (0, 0). Then

P{S; CDp,0=<t=T)=P{S.CDg,0=t=T)
=1 — P(supost<r|S:| > R) — P(maxoe<i<r| Z:(0, 0)| > R/2)
=1—|S|e"/R — P(maxo==r| Z:(0, 0)| > R/2),

which can be estimated since Z,(0, 0) is Brownian.

18. Duality (association). Let (Z;) be an incompressible Brownian flow, so that Z,
and Z! have the same distribution. Fix ¢ and consider Z, as a random point of H C Cs,.

Let Sap = {w:w € Cx, w(A) N B # B}, A, BC R;. Then Sz is closed if A is compact
and B is closed; S45 is open if B is open and A is arbitrary. Since Sap =US4 s or USup, if
A = UA, or B = UB; respectively, it follows that Ssp € %#(C2) if A and B are countable
unions of compact (in fact of closed) sets. Then P{Z,A) N B % @} = P{A N Z;'(B) #
3, whence

(18.1) P{Z(A) N B# 3} = P{AN Z(B) # 3}

if A and B are countable unions of closed sets. If B is a small finite set (in particular a
single point), the right side of (18.1) is a computationally feasible expression for the left
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side. Such duality (or association) relations have been studied for interactive systems on
lattices (see, e.g., [9] and [10]). For nonlattice systems see Cocozza, Galves, and Roussignol
[3]. These relations go back to the self-dual simple exclusion process of F. Spitzer [15].
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general setting of this problem. I also am much indebted to the referee for his helpful
suggestions.
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