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MULTIPARAMETER GROUPS OF MEASURE-PRESERVING
TRANSFORMATIONS:
A SIMPLE PROOF OF WIENER’S ERGODIC THEOREM

By M. E. BECKER

University of Buenos Aires

A simple proof of Wiener’s multiparameter ergodic theorem is given in
this paper. At the same time it is shown that two of the hypotheses of an
existing proof can be dispensed with.

1. Introduction. Norbert Wiener’s ergodic theorem (1939) has found its foremost
applications in the foundations of Random Geometry. R. E. Miles (1961, 1964) and R.
Cowan (1978) have made extensive use of the theorem in that field. In those papers,
however, reference is made to the original source where the proof, as it often happens with
pioneering work, is rather involved. The purpose of this note is twofold: in the first place
we wish to offer a very simple proof of Wiener’s theorem along the lines of Calderén (1968)
and Fava (1973) which lends itself to fruitful generalizations; secondly, we show that two
of the hypotheses used in the last paper can be dispensed with.

Let (X, 4, ) be a o-finite measure space. By an n-parameter group of measure-
preserving transformations we mean a system of mappings (6, t € R") of X into itself
having the following properties:

(i) 0.(0:x) = 0,+.x; Box = x for every t and s in R” and every x in X.

(ii) For every measurable subset E of X, §,(E) is measurable and its measure equals the
measure of E, for any ¢ in R". .

(iii) For any function f measurable on X, the function f(f;x) is measurable on the
product space R" X X, where the euclidean space R" is endowed with Lebesgue measure.
In what follows we give sufficient conditions for the almost everywhere convergence of the
averages

(1) Auf(x) = | Ua| ™ J' f(0x) dt asa— o,
Ua

where f is any function in L'(u), (U,, a > 0) is an increasing family of open sets in R"
containing the origin and depending on the positive real parameter «, and vertical bars
denote Lebesgue measure. The most important example of such a family (U.) is obtained
by taking U, to be the ball of radius a with center at the origin. More precisely, we prove
that the averages (1) converge almost everywhere to a finite limit f*(x) provided that the
following conditions are satisfied:

(A) The Hardy-Littlewood maximal operator associated with the family (U.), namely

mg(t) = supa>o | Ua| ™ J’ |g(¢ + sy|ds

U,

a

is of weak type (1, 1), which means the existence of a constant C independent of g and of
-A > 0, such that
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| {t € R":mg(t) >} | < (C/N)- || glluian-
(B) For each tin R™
limeseo (| (¢ + Ud)A Ua|/| Ua|) =0,
where A denotes the symmetric difference.

The fact that (A) is satisfied when U, is the ball of radius «, is the content of the now
classical Hardy-Littlewood maximal theorem and its proof can be found, for example, in
the textbook by Wheeden and Zygmund (1977). For more general conditions which
guarantee the validity of (A) see Riviére (1971).

For a general ergodic theorem concerning discrete groups of measure-preserving trans-
formations, we refer to Nguyen and Zessin (1979) and to Nguyen (1979).

2. Statements and proofs. We start with the following theorem.
THEOREM 1. (Maximal ergodic theorem). Let (U,, a > 0) be an increasing family of

open sets in R" containing the origin, depending on the positive real parameter a and
subject to Condition (A). If we denote by M the maximal ergodic operator

Mf (x) = supaso| Ua| ™" j | f(0:x) | dt
UC(

then there is a positive number C such that, for each positive A,

p({x:Mf(x) > A}) < (C/A) - || fll 1w

Proor. For any function g(¢) integrable over R", and for each positive integer &, we
write

mig(t) = supswy<k | Ua| ™} J’ |g(t+s)|ds
Ua

if | t| < k, mwg(t) = O otherwise, where §(U.) denotes the diameter of U.,, while as before

mg(t) = supuso | Ua| ™! f |g(t + s)| ds,
Ua

so that mg(t) < mg(t) and lim_. m,g(t) = mg(t).
From (A) we derive the inequalities

| (t:meg(t) > N} | = | {(E:mg(®) > A} | < (C/N) J' lg(®)| dt.
Rn

Let us define the function F(t, x) = f (6:x) if | ¢| < 2&, F (¢, x) = 0 otherwise. It follows from
Fubini’s theorem that F(¢, x) is an integrable function of ¢ for almost all x. For a given
A > 0 consider the set E of all pairs (¢, x) such that m.F(¢; x) > A and its sections E, =
{x:(t, x) € E}; E* = {t:(t, x) € E}. We observe that for | ¢| < k, miF (¢, x) = mpF (0, 0.x),
and therefore E, = 6;'(E,) for |¢|.< k, while E, = @ if |¢| > k. If we denote by p the
product of Lebesgue measure with the measure p, then

p(E) = f w(E,) dt = f w(Ey) dt = w.k"u(Eo),
Rn =

where w, is the measure of the unit ball in R".
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On the other hand

p(E) = f |E*| dp < f du(C/A) [f(0x) | dt
X X

|t|=2k
= (C/A) dt J [f(0ex) | dp = (C/N)wn(2R)™ || fl|L1q0)-
|t|=2k X
Therefore
(Eo) = (C/MN)2" || fllrew

and Theorem 1 follows from the last inequality by letting 2 — . The operator M also
satisfies an inequality, whose verification is immediate:

1 Mfllw =[] =

which allows us to prove the following result.

CoROLLARY 1. (Wiener’s inequality). There exists a positive constant C, such that for
eachA>0and fin LP(u), 1 <p < o,

p({Mf > A}) = (C/N) |f| dp,
71>M/2

with C independent of f and \.

PrOOF. Let fbe an element of L?(u). For each A > 0 we write
= Ff-xaren; A= f-xan=n
where xz stands for the characteristic function of the set E. Then
Mf < Mf* + Mfy < Mf* + \;
hence,
{Mf> 2} C {Mf*>A}.
Noting that f» € L'(u), from Theorem 1 we conclude
w((MF > 21)) < p({MF* > \}) < (C/A) f 1P ldu= (/N | 1l da,

X |FI>A

and Corollary 1 follows by replacing A by A/2 in the last inequalities.

COROLLARY 2. For each p > 1, there exists a finite constant C, such that
| M£\| oy < Co | fll Loty lI<p<w

with C, depending only on p and on the dimension n.

PROOF. Assuming that fis in L”(u), by virtue of Cofollary 1 and Fubini’s theorem

f | Mf|” dp =pJ' p({Mf > N})N"HdA
X 0

o

| £l dH=P'Cj dM”_zf | f1 xar=22 Ay
X

0

=p J dMPHC/N
0

| FI>A/2
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w 21|
=p-Cj dulflj A”‘zdk=(C-p-2”“/p—l)f |£1? dp. a
() 1) X
The following theorem represents a generalization of Wiener’s multiparameter ergodic
theorem.

THEOREM 2. If the family of regions U, satisfies conditions (A) and (B), then for any
fin L*(u) the averages

Auf(x) =| Ual_lj f(0ex) dt
Uﬂ

converge almost everywhere in X as o — .

ProoF. Let us consider the set of all functions 2 which can be represented in the form
h(x) = f(x) — f(Osx),
where fis a bounded function having support of finite measure and s is any point in R".

For any function 4 of this form, we have

Ahx) = U™ f h(@.x) dt = | U |} j (f(6:x) — f(0.—sx)) dt
Uﬂ

Ul!
= U™ (f £(6x) dt—f f(0,x)d).
U, s+U,
Therefore
| Aah(x) | SIUaI“f | f(Bex) | dt.
U,A(s+U,)

Since f (6.x) is a bounded function of ¢ for almost all x, and the family (U,) satisfies (B), we
see at once that A h(x) tends to zero for almost all x as a — .

We will say that a function 1(x) in L?(u) is invariant if for every ¢, 1(d:x) = 1(x) for
almost all x. If 1 is an invariant function, for almost all x, we have 1(6.x) = 1(x) for almost
all ¢. Therefore

| U, | f 1(0x) dt = 1(x)
U

a

for all «, almost everywhere in X.

We conclude that the averages A,f(x) converge almost everywhere if fis in the linear
span S of the functions 4 and 1. Our second step in the proof is to show that S is dense in
L*(u). For this purpose, let us assume that a certain function £ in L?(u) is orthogonal to all
functions of S. Therefore

0= J’ h(x)g(x) du = J’ (f(x) — f(0:x))&(x) dp
X X

= f f(x)(&(x) — &(6-sx)) du,
X

for any bounded function f with support of finite measure and for any s in R". This implies
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that the function £ is invariant. Since g is orthogonal to all invariant functions, we deduce
that g = 0 a.e., which proves that the linear span S is dense in L?(u).
If for any g in L?(u), 1 < p < o, we write

Mg(x) = lim sup, . A,g(x) — lim inf, . A.g(x),

then it easily follows that

(i) M_(g1 + &) < Mg, + Mg,

(i) Mg = 2Mg,

(iii) Mg =0 a.e. for gin S.

Let us now choose any g in L*(u). By virtue of the preceding, there exists a sequence
(gn) of functions in S, such that || g —g,| L2 — 0 as n — . Since

Mg=M(g—g)+Mg.=Mg—g,) ae,
it follows that
1 Mg || 20 < | M(& = £a) || 124w =< 2|| M(& — &) || 20 < 2C2|| & — &n | L21s

so that letting n — o, we get Mg = 0 a.e., for any function g in L().
To end the proof of Theorem 2, given f in L'(u), we select a sequence (f,) in L3(u) N
L'(w), such that || f. — || L1w — 0 as n — . Since

Mf<M(f-f,) < 2M(f- f.),
for every A > 0, we have
p(Mf >N} < p({M(f = £) > N/2}) = QC/N|If - full'w

and Theorem 2 follows from the last inequality by letting n — oo.
If in the last theorem we take for U, the ball of radius a with center at the origin, we
obtain Wiener’s theorem as a particular case.

3. Invariance properties of the limit function f*. A measurable subset E of X will
be called invariant if its indicator function is invariant. The invariant subsets of X form a
o-field that we shall denote by .%. In addition to the preceding, we have the following useful

THEOREM 3. The limit function f* satisfies the following properties:

@ NF* e = N Flzrn -

(ii) f* is invariant.

(ili) If p(X) < oo, then A.f converge to f* in L*(u) and for every E € S we have

ff*dn=f f dy.
E E

Proor. We only prove (ii) since the proof of the other assertions is standard in ergodic
theory. Let us show in the first place that f* is invariant whenever fis an element of L*(u).
For this purpose, we select a sequence (f.) of elements of S, converging to f in the norm of
L*(w). Since each f, is invariant, for every t in R", we have

1F* () = £*(80) |20 =< IIF*(x) = £ @) L2200
+ 17 6:x) = f*O0x) | 200 < 2| M(f = f) || 2200
=2C:||f = foll L2

and the invariance of f* becomes evident by letting n — . Now, (ii) follows from (i) and
the fact that L*(u) N L(u) is dense in L (u).
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