BOCHNER'S THEOREM ON MEASURABLE LINEAR FUNCTIONALS OF A GAUSSIAN MEASURE

By Yoshiaki Okazaki

Kyushu University, Fukuoka

Bochner's theorem formulated by Xia Dao-Xing is established for an abstract Wiener space. Let (ι, H, E) be an abstract Wiener space. Then for every continuous cylinder set measure ν on E', the image $\iota'(\nu)$ is a Radon measure on H'.

1. Introduction. Let E be a locally convex space and μ be a Radon measure on E. The measurable linear functionals on (E, μ) are the elements of $H_0(\mu)$ = the closure of E' in $L^0(E, \mu)$. The Bochner problem, formulated by Xia [6] as follows, is investigated.

Bochner Problem. For every continuous cylinder set measure ν on E', is the image $R(\nu)$ a Radon measure on $H_0(\mu)$?

Here $R: E' \to H_0(\mu)$ is the natural mapping defined by $R(x') = \langle \cdot, x' \rangle$ and the continuity of the cylinder set measure ν means the continuity of the Fourier transform $\hat{\nu}(x) = \int_{E'} \exp i\langle x, x' \rangle) \ d\nu(x')$ on E.

In this paper we shall restrict ourselves to the case μ is a centered Gaussian Radon measure and show the Bochner problem is valid in this case.

2. Bochner problem for Gaussian case. In case μ is a centered Gaussian Radon measure, the Bochner problem can be reduced to the following form (see Sato and Okazaki [5]). Let (ι, H, E) be a triple such that H is a separable Hilbert space, E is a locally convex space and $\iota: H \to E$ is a one-to-one continuous linear mapping with dense range satisfying that the image $\mu = \iota(\gamma_H)$ is a Radon measure on E, where γ_H is the canonical Gaussian cylinder set measure on E with the Fourier transform $\hat{\gamma}_H = \exp(-\|h\|_H^2)$.

Bochner Problem for measurable linear functionals of a Gaussian measure. For every continuous cylinder set measure ν on E', is the image $\iota'(\nu)$ a Radon measure on H'? $(\iota': E' \to H')$ is the transpose of ι).

The answer to this problem is "Yes" as we shall prove in the next theorem.

Theorem. The Bochner Problem for a Gaussian measure is affirmative.

PROOF. Let ν be a continuous cylinder set measure on E'. By the manner similar to Maurey [3], Théorème 4, it can be assumed $\int_{E'} |\langle x, x' \rangle|^{1/2} d\nu(x') < +\infty$ for every $x \in E$. That is, ν corresponds to a continuous random linear functional $\phi = \phi_{\nu} : E \to L^{1/2}(\Omega_{\phi}, \mathfrak{A}_{\phi}, P_{\phi})$, see Dudley [1].

The mapping $\phi \circ \iota : H \to L^{1/2}(\Omega_{\phi})$ is 2-summing. To see this let $\{g_i\}$ be identically distributed independent random variables on a probability space $(\Omega, \mathfrak{A}, P)$ with the characteristic function $\exp(-|u|^2)$. Then it holds

Received May 29, 1979; revised April 2, 1980.

AMS 1970 subject classifications. Primary 28A40; secondary 60B05.

Key words and phrases. Bochner's theorem, measurable linear functional, Gaussian measure, random linear functional, cotype 2, 2-summing operator.

$$(\sum_{i=1}^{n} \| \phi \circ \iota(x_i) \|_{L^{1/2}}^2)^{1/2} \leq C \int_{\Omega} \| \sum_{i=1}^{n} \phi \circ \iota(x_i) g_i(\omega) \|_{L^{1/2}} d\mathbf{P}(\omega)$$

for every n and $x_1, x_2, \dots, x_n \in H$, since $L^{1/2}(\Omega_{\phi})$ is of cotype 2 (see Maurey [2], Proposition 3). By the continuity of ϕ , there exists a continuous seminorm p on E so that $\|\phi(z)\|_{L^{1/2}} \le p(z)$ for every $z \in E$, so it holds

$$\begin{split} (\sum_{i=1}^{n} \| \phi \circ \iota(x_i) \|_{L^{1/2}}^2)^{1/2} &\leq C \int_{\Omega} p(\sum_{i=1}^{n} \iota(x_i) g_i(\omega)) \ d\mathbf{P}(\omega) \\ &= C \int_{E} p(z) \ d\iota(\Gamma_2)(z) \end{split}$$

where Γ_2 is the Gaussian measure on H with $\hat{\Gamma}_2 = \exp(-\sum_{i=1}^n |\langle x_i, h \rangle|^2)$. By Maurey [2], Théorème 1, it holds

$$(\sum_{i=1}^{n} \| \phi \circ \iota(x_i) \|_{L^{1/2}}^2)^{1/2} \leq C \int_{E} p(z) \ d\iota(\gamma_H)(z) \cdot (\| \gamma_H \|_{1}^{*})^{-1} \cdot \| \Gamma_2 \|_{1}^{*},$$

where $\|\sigma\|_1^* = \sup_{\|h\| \le 1} \int_H |\langle x, h \rangle| d\sigma(x)$ for a cylinder set measure σ on H. We have $\|\Gamma_2\|_1^* = \|\gamma_H\|_1^* \cdot \sup_{\|h\| \le 1} (\sum_{i=1}^n |\langle x_i, h \rangle|^2)^{1/2}$, so it holds

$$(\sum_{i=1}^{n} \| \phi \circ \iota(x_i) \|_{L^{1/2}}^2)^{1/2} \le C \int_{\mathbb{R}} p(z) \ d\iota(\gamma_H)(z) \cdot \sup_{\|h\|_{H} \le 1} (\sum_{i=1}^{n} |\langle x_i, h \rangle|^2)^{1/2}$$

for every $x_1, x_2, \dots, x_n \in H$. Remark that $\int_E p(z) d\iota(\gamma_H)(z) < +\infty$.

By Pietsch's factorization theorem (Pietsch [4], Pietsch's theorem is valid for a p-summing operator $u: X \to Y$, where X is a Banach space and Y is a quasi-normed space such as $Y = L^{1/2}(\Omega)$) $\phi \circ \iota$ can be decomposed as

$$H \xrightarrow{\iota} E \xrightarrow{\phi} L^{1/2}(\Omega_{\phi})$$
 H_1

where H_1 is a Hilbert space, U is a Hilbert-Schmidt operator and V is continuous. Let ν_0 be the cylinder set measure on $(L^{1/2}(\Omega_{\phi}))^a$ (the algebraic dual) which corresponds to the identity random linear functional $id:L^{1/2}(\Omega_{\phi})\to L^{1/2}(\Omega_{\phi})$. The image $V'(\nu_0)$ can be regarded as a continuous cylinder set measure on H'_1 , hence $U'(V'(\nu_0))$ is a Radon measure on H' and we can see $U'(V'(\nu_0)) = \iota'(\nu)$.

This completes the proof.

REFERENCES

- [1] DUDLEY, R. M. (1970). Random linear functionals. Trans. Amer. Math. Soc. 152 273-298.
- [2] Maurey, B. (1972a). Espace de cotype p, 0 . Séminaire Maurey-Schwartz 1972-1973 No. 7. Ecole Polytechniques.
- [3] Maurey, B. (1972b). Théoremes de Nikishin: Théoremes de factorisation pour les applications linéaires à valeurs dans un espace $L^0(\Omega, \mu)$. Séminaire Maurey-Schwartz 1972–1973 No. 10, 11 et 12. Ecole Polytechnique.
- [4] PIETSCH, A. (1967). Absolut P-summierende Abbildungen in normierten Räumen. Studia. Math. 28 333-353.
- [5] Sato, H. and Okazaki, Y. (1975). Separabilities of a Gaussian Radon measure. Ann. Inst. H. Poincaré 11 287-298.
- [6] XIA, DAO-XING. (1972). Measure and Integration Theory on Infinite-Dimensional Spaces. Academic, New York.