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A NOTE ON THE SURVIVAL OF THE
LONG-RANGE CONTACT PROCESS

BY MAURY BRAMSON AND LAWRENCE GRAY

University of Minnesota

The purpose of this note is to demonstrate survival for the long-range
contact process. This process was introduced by Spitzer [7]; it possesses the
same basic evolutionary rule as does the contact process on the integers,
except that particles may appear at large distances from already extant
particles instead of just as immediate neighbors. We consider here two variants
of this model, and show that in both cases the system will survive if (i) it
commences from a reasonably dense initial state and (ii) the birth rate for
particles is moderately greater than the corresponding death rate. The meth-
odology consists primarily of an energy argument, which provides a lower
bound for the particle density of the system.

1. Introduction. The long-range contact process is a member of a class of stochastic
processes known as interacting particle systems. Considerable interest in this subject has
been generated over the past decade; see Liggett [6] and Griffeath [2] for references. Such
systems are Markov processes on the state space S = {all subsets of Z 9}, The state (or
configuration) A € S is interpreted as the (typically infinite) set of sites occupied by
particles, and the process (£*) represents the evolution in time starting from an initial
distribution p on S.

In the case of the long-range contact process, d = 1 and the time parameter is
continuous. Change of state occurs through birth and death of particles, the dynamics of
which are described in terms of birth rates and death rates. There are two types of models
that we will consider. In both cases, the birth rate at an unoccupied site x depends on the
state A of the system. Let A = 0 be a parameter and define ¢:(A) = min{x — y:y € A and
y=<x} and r(A) = min{y — x:y € A and y > x}. In the uniform birth model, the birth rate
at xis \/(4:(A) + r«(A) — 1). In the centered birth model, the birth rate at x is A if £.(A)
= ry(A), \/2if £,(A) = r:(A) = 1, and 0 otherwise. For both models, the death rate is 1.
Note that in both cases the total birth rate at sites in an empty interval between two
particles is A. The difference is that in the first model, births are distributed uniformly
throughout the interval, while in the second model, they only occur halfway between
occupied sites.

These models along with several others were first introduced by Spitzer [7]. Gray [1]
proved the existence of such models and the fact that they are uniquely defined by
specifying the birth and death rates. The reader who desires more precise formulation
should consult [1].

The evolutionary rules for long-range contact processes are similar to those for nearest
neighbor contact processes (see Harris [3]), in which the death rates are also 1 but births
occur only at sites immediately neighboring extant particles. Another difference is that the
nearest neighbor contact processes possess so-called “dual processes”, whereas the long-
range models do not. (See Griffeath [2] for definitions.) These differences have hampered
investigation of the long-range contact processes, particularly concerning asymptotic
behavior. One basic question that has not been answered up to this point is whether these
long-range systems will under any circumstances survive. Survival means that particle
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886 MAURY BRAMSON AND LAWRENCE GRAY

density remains bounded above 0 for all time. Elementary reasoning shows that the process
will die out for A = 1. Intuition says that survival must be the case for large enough A
(maybe for A > 1) and a dense enough initial distribution, but this does not seem to be
immediately translatable into a concrete argument. While there seems to be no way to
apply the techniques that have been successful for nearest neighbor contact processes, it
is interesting to note that consideration of the question of survival for the long-range
contact process led Holley and Liggett [4] to their renewal proof asserting survival of the
nearest neighbor models for A = 4.

It is the purpose of this note to demonstrate survival of the long-range contact process
for sufficiently large birth parameter A and sufficiently dense translation invariant initial
distribution g. Our method is to analyze the following version of energy: for 8 > 0, let

&%(t) = B-energy of & = E[(4(&4) + ro(£4))?]

It is shown below (Lemma 1) that the distribution of £ is translation invariant, so that
survival is implied by

(1) sup 6%(t) < o for some B> 0.
t=0

Our principle results concerning the S-energy and survival are:

THEOREM 1. Let (£}) denote the long-range contact process with uniform births and
translation invariant initial distribution p. Assume that for some 8 > 0,6%(0) < =, and
that the birth parameter X is greater than Ao = 4 log 2. Then (1) holds, and hence (£})
suruvives.

THEOREM 1. Let (¢%) denote the long-range contact process with centered births and
translation invariant initial distribution p. Assume that for some 8 > 0,64(0) < o, and
that the birth parameter A is greater than Ao = 2. Then (1) holds, and hence (£¥) survives.

A simple consequence of Theorem 1 and a standard monotonicity argument (based on
the “basic coupling” defined in Liggett [6]) is that if (£%) is the uniform birth model with
initial state Z, and if A > A, then the distribution of £ converges weakly to a non-trivial
distribution ., as £ — . The measure p., is stationary for the process. This same argument
does not apply to the centered birth model, which is not monotone. We also note in passing
that our techniques apply equally well to analogous discrete time models to produce results
similar to Theorem 1 and Theorem 1'.

2. Proofs of results. We begin this section by introducing some terminology. It will
be helpful for us to visualize a state A € S as a partition of Z into a collection of intervals
[x:(A), x:+1(A)), i € Z, which are devoid of particles except at the left boundary, i.e., x:(A)
€ Abutx € A for x;(A) < x < x:41(A). In our case, these intervals will always be of finite
length. We number these sites in such a way that xo(A) = max{x < 0:x € A}. Let L,(A)
= Xr+1(A) — x1(A), k € Z. Thus L;(A) denotes the length of the interval % intervals to the
right of the interval containing the point 0 (perhaps as its left boundary). By definition,

&h(t) = E[(Lo(E1))°].

In order to analyze 8%(t), we need some control on the 8-moment of the lengths Ly(¢%).
The first step is the following lemma which involves a “bus-stop paradox” of sorts.

LEMMA 1. Let (¢}) be either long-range contact process with translation invariant
initial distribution p. Then for all t = 0, the distribution of ¢} is translation invariant,
and forallB>0andn=0,1,2, ...,

) Th-o E[(L-x (&%) + -+« + Lu-x(¢))] = (n + VP E[(Lo(6)))"].

(If one is concerned only with the case 8 = 1, one may instead prove the more transparent
inequality E[L, ()] = E[(Lo(¢4)] for n € Z. In any case, the inequalities follow from
translation invariance rather than any other special properties of the models.)
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Proor. Fix ¢ = 0 and let y, be the distribution of ¢&/. By the uniqueness theorem in
Gray [1], u is uniquely determined by the birth and death rates (which are translation
invariant) and by p. It follows that y, is also translation invariant.

Now fix § >0and n € Z*. Let

An(x; ao, ay, . . ., @)
={w&N[x,x+a+... +a,]={x,x+a,..,x+a+...+a}},

where x € Z and a; € Z*, 0 < j < n. A.(x; a0, ay, - . ., @) is the set of configurations with
particles at x, x + ao, . .., X + @ + ... + @», and vacancies in between these sites. Let

A= {An(X; G0y .., 0r): X+ X5 a;=0<x+F}oa))

for k=0, 1, ..., n. For each choice of n and %, s/, forms a partition on the probability
space of &, with a; being identified with L;_(¢}), 0 =j = n. Let

pr(x; a0, ay, . . ., @) = P(An(x; a0, ay, . . ., @n)).

Foreachk=0,1,...,n,let @ = Y%, a,; Then

E[(L-x(&) + ... + Loa(¢9))’]
®) Yo Sz B imeetny (@0 -+ @) Dala; oy ),
which, by the translation invariance of y., equals
4) Yo Do ez ar(@o + ... + 62)Pal0; o, . . ., Gn).
Thus, the left side of (2) is equal to
(5) Yo Yaez (@ + ...+ @) 'pal0; ao, . . ., an).
For 8, ao, . . ., @, = 0, it is elementary to show that

(@ + ...+ @) =+ 1)af™ +...+al").

Therefore, (5) is at most

(n + l)ﬁ 2’;0 Za,,EZ"‘ a£+1 Z"LO EGEZ"pn(O; Qo, . . . an)
T
=(n+1)f Yo Yaez af Yo Daez Pal—(a0 + ... + Ap-1); Qo, - - -, Qn)
R

=(n+ 1)? Th0Yaezr af'po(0; ar)
= (n + 1)*' Yo,z af"'po(0; ao)
=(n+ DPE[(Lo(¢%))?]. O

We will now use Lemma 1 to prove

LEMMA 2. If p is translation invariant and 6%(0) < o, then for all t > 0, &% (t) < .

Proor. Fix¢> 0. Let
N, (¢) = 0/ max{k > 0:each of the particles at x;(£8), .. .,
x(¢5) has died at some time in [0, ¢]}
N/(t) = 0 A min{k < 0:each of the particles at x+1(¢6), ...,

%o(£8) has died at some time in [0, £]}.
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Note that

B
Eh(t) sE[( o) Lk(&ﬁ)> ]

B
=373, 0 - e[ (3 L) |

since the deaths of the particles at the sites x;(£4) occur at exponential times with mean
1 which are independent of each other and of £§. With the change of variable n = i + j, this
inequality may be rewritten as

EHO) =T (1—e™)"T7_ E[(La@) + -+ + Lo s(@)*].
By Lemma 1, this is at most
T2 (n+ DL — e7) "85 0),
which is finite. 0

We now prove the theorems. The technique is quite simple. We use the martingale
approach of Holley and Stroock [5] to get a differential inequality involving &%(¢).

ProOF oF THEOREM 1. (Uniform birth model). When the existence of (£#) is proved

in Gray [1] it is shown that if /:S — 2 is any function in the class &% = {f:3 finite 4o € S
with f(A) = f(AN Ay) forall A € S}, thenforall 0 < s < ¢,

(6) Ef(&) — Ef(€8) = J E[Gf(£)] du,

where G is the pregenerator of (¢4) defined by
(7) GfA) =% _, (fA\{x}) —f(A) + T

MFAU (x)) = £(4))
A4 @) +rA) —1

(In fact, the infinitesimal generator of (££) is an extension of G.) Since &4(t) = E[(Lo(A))*],
it would be nice to apply (6), with f(4) = (Lo(A))#, to obtain estimates for the rate of
growth of &4(¢). Unfortunately, (Lo(-))# & & This difficulty is overcome by approximating
with functions in # Define f,(A) = (Lo(A) An)f forn=1,2,3, ... . We will use (7) to
obtain bounds on Gf,. Applying these bounds in (6) and letting n — o will enable us to
estimate the growth of £%(¢).

Therefore, consider (7) with ££ and £, in place of A and £, Since 0 < £,(£%) < (Lo(££))%,
it is easy to see that

—A(Lo(£))* = Gfa(£h).
Equation (6) implies that

(8) —A f €k (u) du = Efo(§F) — Efa(£5).

Since &%(0) < «, Lemma 2 allows us to apply monotone convergence to the right side of
(8) to obtain

t
9) -A J Sh(u) du < (L) — &%(s).

We also need an upper bound on &%(t) — &%(s). We start again with Gf, and note from
(7) that
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(10) Gfa(£h) = fa(£\{x0(£2)}) + fa(§i\{x1(£0)}) — 2(£0) + @a(£D),

where

_vwau-1 ARAU {x}) - f(4))
<Pn(A) = Zx=x0(A)+l 5(A) — %A) — 1

for A € S. Clearly, | @, | < Af.. Let ¢ = lim, @,. Then if we substitute (10) into (6) and apply
dominated and monotone convergence, we obtain

Eh@t) — Eh(s) SJ E[(Lo(&:\ {x0(£0)}))7 + (Lo(&8\ {x1(£2)}))*

s

— 2(Lo(£5))” + @(é)] du
(11

= f (ET(L-1(£5) + Lo(£5))” + (Lo(£4) + L1(£4)"]

— 2ef(u) + Ep(£L) du.

By Lemma 1,
E[(L-1(£4) + Lo(£4))* + (Lo(£h) + Li(£4))*] = 2564 (w),

so (11) becomes

¢
(12) E3(t) — E(s) = J (2°*" = 2)6%(u) + Ep(£L)) du.

The next step is to estimate E@(£4). Note that on the set
Bi.= {Lo(£h) = &, xo(£h) = —¢3, 0=</¢<k,

it is the case that
PUED) = o [S5es (k= )F = RO + Db (P = RO] if B> 1
=0 if k=1.
By Lemma 1, the distrib;ltion of ¢f is translation invariant, so P(Bg,) = (1/k) P(B),

where B, = {Lo(¢4) = k}. It follows that

Ep(68) = Sia tp oo 45 5 (= )7 = B0) + S (78 — )]

AP(B ;
= 2;*;2(,@—_‘1;’;2,':11 [ (R = j) — BF) + i (7 — )]

= 2;‘;2(%’% I;c=—11 (B _j)ﬁ+1 +jﬁ+1 _ kﬂ+1)

. NPBY (" g1
52k=2z,7'_w<2f0 xF T dx — (B— 1)k .

Assuming without loss of generality that 8 < 1, we obtain

Ep(&) = 5_1}1'% E5(u) + 2\.
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We now substitute this estimate into (12) to reach the conclusion that

(13) Eh(t) — E4(s) = 8(B) f Eh(u) du + 2\ (¢ — s),

A8
2+ 8
in (9) and (13) are bounded for any ¢t > s = 0. Consequently, &%(t) is continuous for ¢ = 0.

Now fix A > 4 log 2. For such A, §(0) = 0 and §’(0) < 0, so for 8 small enough, §(8) < 0.
Then (13) implies that the function &%(¢) must decrease on every interval I such that
8% (u) > —2)/8(B) for u € I. It follows from the continuity of &% (¢) that

supso &%(t) = max{&%(0), —2A/8(8)}.
Thus, (1) holds and the proof is complete. [

where §(8) = 261 — 2 — . From the proof of Lemma 2, it follows that the integrands

Proor oF THEOREM 1’. (Centered birth model). The proof here is essentially the same
as the proof of Theorem 1, except for the estimation of Gf,. For this model,

Gf(A) = Yzea(f(A\{x}) — f(A)) + Trea(f(A U {x}) — f(A))b:(A)

for f € & where b.(A) is the birth rate at x for the state A defined for the centered birth
model in Section 1. Therefore,

Gfn(&4)
Lo(g4) + 1Y
< (L_1(£5) + Lo(£4)# + (Lo(£Y) + Li(£4)® — 2fu(&) + A((—O(g—;—t—> - ﬂ(&‘&)) .

Assume without loss of generality that 8 < 1. Then (Lo(§}) + 1)% < (Lo(£4))? + 1. We use
this fact and Lemma 1 to obtain

EGf.(8)) = (2”“ + 21\5) E%(u) — (2 + A) Ef.(¢5) + /25,

Substituting this into (6) and applying monotone convergence, we have the following
analogue to (13):

(14) Eh(t) — (S)<8('B)J’ Eh(u) du+ 7 (t— ),

where §(8) = 2! — 2 — A(1 — 1/2*). The rest follows as in the previous proof. The
inequality (9) still holds in the present case, so &4(¢) is continuous for ¢ = 0. If A > 2, then
8(B) < 0 for small enough B, so by (14),

sup.=o &4(t) < max{&%(0), — A/(2#8(8))}.0
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