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CORRELATED RANDOM WALKS

By EpwaRD A. BENDER! AND L. BRUCE RICHMOND?

University of California, San Diego and University of Waterloo

We consider random walks on lattices with finite memory and a finite
number of possible steps. Using a local limit theorem, we generalize Polya’s
theorem to such walks, describe how to compute tail probabilities when the
number of steps is large, and obtain asymptotic estimates for the average
number of points visited.

We study what we call a finitary correlated random walk (fcrw) defined as
follows. There is a finite set S of states together with a step probability p: Z¢ X
S X S — R having finite support. We interpret p(k, s|¢) as the probability of
moving to state s and taking a step k given that the fcrw is in state £. The
probability that an fcrw starting in state so, takes steps ki, - - - , k, and ends in
state s, is

Pr(ki, -+, Kn; 80| 80) = Xs,,- - nses [1i=1 P&, 8i | 8i-1).
The probability that an n step fcrw starting in state s ends in state ¢ at location
kis
Pr(k; n, t|s) =Y Pr(ky, --- , kn; t]5),
the sum ranging over all k; such that k; + ... + k, = k. Since p has finite

support, this sum is finite. The probability p.(k) that an n-step fcrw ends in
position k is

pn(k) = Y. Prk; n, t|s)q(s),

where q is the starting probability.
We impose two conditions on an fcrw. The first ensures that it is essentially d-
dimensional and the second that all states are recurrent.

ConDITION A. For some n and some i, j € S, the vector space over R spanned
by differences of those k with Pr(k; n, j|i) # 0 is R“.

ConpITION B. The directed graph with vertex set S and edge (i, /) when p(k,
J|9) = 0 for some k is strongly connected.

An ferw is drift free if the expected value of k is o(n); i.e., Y, k pn(k) = o(n).

We can view a fcrw as a Markov chain {(X,, Y,), n =0} where X, €S, Y, €
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7% and
P{(Xn, Yo)|(Xn-1, Yn-1)} = p(Yn, Xn| Xn-1).

We are interested in Y, + - .- + Y,, the location after n steps of an fcrw starting
at the origin. The process {X,, n = 0} is also a Markov chain and Condition B
says that it is irreducible.

Now consider some examples of fcrw’s, beginning with (uncorrelated) random
walks on Z¢. These have | S| =1 and p(k, s|s) = Pr(k), the probability of a step
of k. If Pr(k) = 1/2d when k € Z¢ is a unit vector and zero otherwise, we have
the classical nearest neighbor walk. If Pr(k) = 2% when k = (%1, --., *1) and
zero otherwise, we have a random walk on the generalized body centered cubic
lattice. If d = 2 and Pr(k) = % for k = (1, 0), (0, £1) and £(1, 1), we have the
triangular lattice.

The hexagonal lattice can be obtained by introducing two states 0 and 1 in the
last example and defining p(k, s|¢) = % when s # ¢ and (—1)‘k = (1, 0), (0, 1), or
(-1, -1).

Consider a random walk with Pr(k) = 1/m when k € S and zero otherwise.
(This is a definition of S). Suppose k € S implies —k € S. We can eliminate
immediate reversals by defining an fcrw with p(k, s|t) = 1/(m — 1) when k = s
# —t and zero otherwise. The more general case of a walk with restricted reversals
has been considered in the literature, see Domb and Fisher [3]. Here the steps in
the various directions are allowed to have different probabilities but these
probabilities are reduced by an amount § when a step forms a direct reversal of
the previous step. Clearly this is also an fcrw and 8 = 1/(m — 1) gives the previous
example with no immediate reversals. We shall return to restricted reversal walks
in a subsequent example with § defined as here.

We now indicate how the results of [2], hereafter referred to by III, apply.
Familiarity with III is needed in what follows. Unfortunately recapitulating the
concepts and theorems of that paper here would require extensive space. Follow-
ing Temperly [11], define

Ty =Yk p(k, j|)x*

where x* = x}t ... x*¢ Also set C; = g, the starting probability. It is easily seen
that the conditions in Definition III.1 hold with « = S, r and no arbitrary, and p
dependent on an examination of 7' (This uses Condition B above.) Since }; Pr(k;
n, j|i)x* = T, Condition A implies that A in Definition II.2 is d-dimensional.
Then Theorem III.1 and Lemmas IIL.2 and II1.4 apply with an(k) = p.(Kk).
Theorem IIL1 is a local limit theorem for matrix recursions modulo a lattice
which shows not only that the probability that an n-step walk is at a point tends
with n to a multivariate normal distribution (which follows from classical results
of Kolmogorov [8] or see Hammersley [7]), but also that when the points lie in a
given coset of an appropriate sublattice, the density function is asymptotically a
multivariate normal. Much literature, beginning with Kolmogorov [8], has been
devoted to the study of conditions under which the local limit theorem is valid.
For many natural fcrw’s, such as the classical nearest neighbor walk, there is not
a local limit theorem. See Renshaw and Henderson [11] for a complete discussion
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of a certain correlated random walk which is shown to have an asyptotically
normal distribution and for references to other correlated random walks and their
applications.

Our first result is a generalization to fcrw’s of Polya’s theorem that return to
the origin is persistent for the classical nearest neighbors walk if and only if the
dimension is less than or equal to two. It follows easily from Feller’s theorem [5,
Theorem XII1.3.2], Theorem II1.1, Lemmas II1.2 and II1.4 that:

THEOREM 1. Return to the origin is persistent if and only if the fcrw is drift-
free and of dimension 1 or 2.

Asymptotic estimates for the average number of points visited at least r times
by an n-step random walk have been obtained by Dvoretzky and Erdos [4]. We
show:

THEOREM 2. Let S denote the expected number of points visited at least
r times after n steps by an fcrw. Then as n — « and r is fixed

Cn'”? d=1
S ~{Cnjflogn d=2
Cn d=3

where C is independent of r for d = 1, 2 and a strictly decreasing function of r
for d = 3.

Determination of C is generally difficult, even for d = 1 and 2 the value of C
will depend on the lattice. See Montroll and Weiss [9] for some values.

Theorem 1 can be generalized somewhat. The requirement that p(k, s| t)x*
have finite support can be relaxed to the requirement p(k, s| t)x* converge ina
neighborhood of 1. The results of Foster and Good [6] suggest that, in fact,
Y| k|’p(k, s|t) <  suffices, however, our methods appear inadequate to prove
this. Barber and Ninham [1, Section 2.3] discuss extensions of Polya’s theorem to
other random walks. Nash-Williams [10] has given a characterization of a geo-
metrical nature for a random walk to be persistent. The fact that a random walk
can be recurrent only if it is drift-free follows from the strong law of large numbers
for functions of Markov chains. The proof of Theorem 2 parallels that of Montroll
and Weiss’s treatment [9] of uncorrelated case, to which we refer the reader for
further historical background, and so is omitted. Since an fcrw is really a semi-
Markov chain (indeed the special case which can be reduced to a finite Markov
chain) it seems likely that both Theorems 1 and 2 can be generalized via more
orthodox probabilistic techniques. The specific questions that Theorems 1 and 2
treat seem not to have been answered in such generality in spite of a vast
literature concerning Markov and semi-Markov chains. In our proofs Theorem
II1.1 of [2] is essential.

The determination of asymptotic estimates for the probability that n-step
walk is at a point far from the mean seems to have been almost ignored (totally
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ignored in the case when there is not a local limit theorem). We now discuss this
much more thoroughly than in [2].
By (I11.4.3) with r given by m(r) = k/n,

A+0O
(L1) ) =252 A,

where A depends on r, k + A and n modulo pq. The explicit dependence can be
calculated as discussed in III.

We only illustrate the determination of r and A by an example here. Consider
random walks with restricted reversals. In this case, S CZ? has cardinality s and
k € S implies —k € S. We have

pk, k|j) = {5 if j = —k, a reversal,

¢ + 8 otherwise.

Clearly s e + (s — 1) = 1. Domb and Fisher [3, (16)] obtain

1-6fz
1—(1+8)fz+8°

(1.2) Y pa(k)x*z" =
where
1
f= 3 Ykes kK~

As noted in Section IIL5, A is given by 1/z where z is a zero of the denominator
of (1.2). Thus

o A= gz (L4 8) S+ YT+ OPE T — dos”
and
(1.3b) ki_dlogh _ (1+8)Fhir*

n dlogr; 2As— (1+6)Xrc’

A one-dimensional walk with unrestricted reversals (§ = 0) and unit steps (S =
{1, —1}) is one simple case of (1.3). In this case we easily obtain the result
obtained by applying Stirling’s formula to the exact expression

“n n
Pr(X,=k) =2 (n(n i /2).

Generally r and A can only be obtained numerically in terms of k/n. Since
(1.4) k/n=2logA/2logr

and A(r) is an eigenvalue of T'(r), it is fairly straightforward to carry out the
numerical calculations. In fact, if tabular results are desired, we can specify r,
solve the eigenvalue equation for A, and then find k/n from (1.4).
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