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A NOTE ON THE RATE OF CONVERGENCE IN THE
MARTINGALE CENTRAL LIMIT THEOREM

By ERICH HAEUSLER
University of Munich

It is shown that a method recently developed by Bolthausen permits an
extension (up to a logarithmic factor) of an estimate of the rate of convergence
in the martingale central limit theorem due to Heyde and Brown.

1. Results. Let the real random variables Xi, - --, X, form a martingale
difference sequence w.r.t. the o-fields %, C &, C --- C %,, i.e. suppose that
E(| X;|) <, X; € % and E(X;| Z:-1) = 0 as. for 1 < i < n. For convenience,
write o2 = E(X? | #.1) and a, = supier | P(C%1 X; < t) — ®(t) |, where &
denotes the standard normal distribution function.

In martingale central limit theory, various sets of conditions for a, — 0 are
known, and many authors derived explicit bounds on a,. For 0 < § < 1, Heyde
and Brown (1970) showed

(1.1) a, < ¢;(Ln2s + N, 25)/@*2)

where L, 5; = Y71 E(] X:|**?) and N, 2s = E(| %1 o7 — 1|'**) and where ¢; is
a finite constant depending only on 8. The virtue of an estimate like (1.1) is that
it provides a rate of convergence under basic conditions of the martingale central
limit theorem, demanding that these conditions hold in an L,-norm, not only in
probability.

The proof of Heyde and Brown is based on the martingale version of the
Skorokhod embedding scheme. This method seems to be unsuited to obtain (1.1)
for 6 > 1. It is the aim of the present note to show that the method developed in
Bolthausen (1982) yields (1.1) for all § > % up to a logarithmic factor. The
following theorem is a preliminary result.

-

THEOREM. Suppose Y%, o} = 1 a.s. For any 8 > % there exists a finite
constant c; depending only on & such that a, < c; L/ |log Ly 2s | whenever

Ln,za < Vs,

If the assumption of Y2, o7 being a constant a.s. is deleted, we obtain as a
corollary the following:

MAIN RESULT. For any & > Y there exists a finite constant ¢; depending
only on & such that a, < ¢;(Ln 25 + Ny25)"/®**” | 10g(Ln,25 + Ni,25) | whenever Ly,
+ N n,2 <V,
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For a stationary martingale difference sequence (X;);cz, such that E(X?| X,
J=<0)=1las. and E(| X, |2*?) < o for some 6 > 1 we infer

sup.eg | P(Ti-1 Xi < tn'/?) — &(t)| = O(n™¥C+2D)og n).

For 6 > 3/2 this rate is better than n=/* and apparently it does not follow from
the results of Kato (1979) and Bolthausen (1982) which seem to be the only
known results establishing rates faster than n='/4,

2. Proofs.

PROOF OF THE THEOREM.  Since the proof is similar to the proof of Theorem
2 in Bolthausen (1982) we only sketch the main steps for which we use a notation
which is as close to Bolthausen’s as possible. As a notational convention, let the
symbol ¢ always denote a generic absolute constant. Let Z,, - - -, Z, be standard
normal variables and ¢ be a centered normal variable with variance 2 > 0 such
that #,, Z,, - .-, Z, and ¢ are independent. Putting s = 1 we obtain as in (4.2)-
(4.4) of Bolthausen (1982)

@1 a, < c[supier Ym-1 E(|X,,.|3>\;,3| P (Tr — 0,Xn AN )
' + supren St E(| 0nZm |72 19" (T = 00mZmAi)) |) + «]

where U, = 375" Xj, T = A2 (t — Un), A= 31 62 +x2and 0 < 0, 0/, <
1 and where ¢ denotes the standard normal density. Here the assumption
Y2, o? =1 as. is essential.

Fix 8 € (0, min(«*/3, %)) and define stopping times 7o <7, < .- < Tig-1+1 DY
70 =0, 7; = inf{k: Tk, o7 2 jB} for 1 = j < [87"] and 7(5-y41 = n, where [871]
denotes the integer part of 7. Fix t € R and write

Sret E(| X |°A52 19" (Trw = 00 XA |)
= ¢ S B, o | Xn 1A Xy | < 8Y2)
I(o% < B) | #"(Tm — 0 XnAe)) |)
+ E(X, o | Xn Ao 1(o7 > 8))
+ E(Z0e, 1 | X A X | > B72)]

= ¢ M + 1I; + III;).

Let us consider I; for a fixed j € {1, ---, [87'] + 1}. On {r;., < m =< 7;} N
{oZ =B} N {| Xn| < BY? we have

A} =1—-jB—-B+ k2= 2\, =< X\?
=1-(—-1B+«* and |0,X,.A\;!| =<1
Furthermore, ¥7/_, ., o I(o7 =< B) < 28 as. and «? = 38. Therefore, the

J

arguments leading from (4.6) to (4.9) of Bolthausen (1982) may be copied to
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obtain
I < cA*B8a, + 1 — (j — DB + \j].

Note that Bolthausen always employs the inequality a. < é(n, s, v) =é(n—1,s,
2v) in his proof; this step is deleted here. Obviously

I, + 1L, < o8 BT, 0 | Xl ™),
hence
supier Ym=1 E(| Xn BA2| P (T — OnXnm DD
< c[a, '33/2 Z[ﬁ"lﬂ -3 33/2 2[ﬂ"]+1 j_3(1 —(] _ I)ﬁ)l/z

+ 2[# 1+1 —3)\ + K-3'31/2 3L, 2]

j=1
< c[a,8"?|log B (x* — 28)7/2 + B*|log B| + kB2 L2 + «]

where the last inequality is the result of simple calculations. By the same
modifications of Bolthausen’s arguments on the second half of page 679 of his
paper, we obtain exactly the same estimate for the second supremum in (2.1).
Combining, we arrive at

a, < c*a,8Y2|log B (k2 — 28)™V2 + c*8Y2|log B| + c*k*8Y**Ln5s + c*x.

This inequality is true for all «* > 0 and all 8 € (0, m1n(x2/3 14)), and c* is an
absolute constant. We take now «2 = 3 8 + 4¢*28 | log 8| for 8 € (0, %). Then

< a,/2 + c*BY2|log B| + 37287 L, s + 3'/8"% + 2¢*8V* | log B,
hence for all 8 € (0, ¥2) and an absolute constant ¢ < o
a, < c(B"*|1og B| + B7'°L,z2)-

Putting 8 = L¥3™, we have 8 < ¥ for L,z < 27%*/2 and a0, =< ¢ LY/5r
| og L, 25|, where c; depends only on 8. This estimate remains true for L, 2; < %2
if ¢; is suitably enlarged. O

PROOF OF THE MAIN RESULT. The proof is based on an idea of Dvoretzky
(1972). Let L(F, G) denote the Lévy-distance of the two distribution functions F
and G, i.e.

L(F,G) =inf{e > 0: F(x — ¢) —<G(x) < F(x +¢) +¢forall x €ER}.

The following inequalities are well known and easily proved:

(2.2) L(F, G) = sup.er| F(x) — G(x)|,

(2.3) sup.er | F(x) — G(x)| = (1 + lgll.)L(F, G),
if G has a bounded density g, and

(2.4) L(F,G) <2E(|X - Y|*)V9* forall s>0

if the random variables X and Y are distributed according to F and G, respectively.
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Define the stopping time 7 by 7 = max{k € {0, 1, ---, n}: 3%, ¢? < 1}
(with 32 6?7 = 0) and put X; = X;JJ@i < 7) for 1 =i < n and X,...
= Y(1 — 37, 0})"/? where Y is independent of %, with P(Y = 1) = 1 =
P(Y = -1). X;, ---, X,,1 is a martingale difference sequence satisfying the
assumptions of the Theorem so that

supen | P(T Xi < t) — @(t) |
@5 < ¢ (H E(1 X |%)/ | log T2 E(] X:|*%) |
whenever ¥ E(| X;|2*%*) < 1. But
T E(1Xi|**®) < Loas + E(] 1 — $iz1 o} ')
=L,os + E(|1 = 3%, o?|"™I(r =n)) + E(|1 — 3, o?|'I(7 < n))
< Ln2s + Np2s + E(maX,<i<,07*%) < 2(Lags + Nogs) < V2

whenever L, 5 + N,2; < Y%. Let F and F denote the distribution functions of
. X;and 32 X, respectively. Then by (2.2)-(2.4) .

supser | P(X: Xi = t) — d)(t)| =< c¢(L(F, F) + L(F" ®))
< C[E(l 2 X Zn+1 |2+26)1/(3+26)
+ supren | P(Z2 Xi < t) — @(2) |],

and because of (2.5) it is enough to show that the expectation is bounded by
¢s(Ln,2s + Ny 25). But

E(I S8 Xi = $20 Xi1*) = GlE( Shrn Xi17%) + E(| Xuna| 7)),
E(| X"“ |*%) = E(|1 = $i=1 67 |'™) < Lpas + Naas

and
E(13%+1 Xi|1*®) < o[E(] 31 67| + E(max;<i<, | Xi|>%)]
S GlE(|Zh o = 11™) + E(|1 = X1 0| ™) + Ly 2]

< ¢;(Ln,2s + Ny 2s)
by a well known Burkholder inequality, cf. Burkholder (1973), Theorem 21.1.0
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