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CONDITIONED LIMIT THEOREMS AND HEAVY TRAFFIC

By G. HOOGHIEMSTRA AND D. P. KENNEDY

Delft University of Technology and University of Cambridge

In this note we prove a generalisation of a conditioned functional central
limit theorem of Bolthausen (cf.[3]). This generalisation explains the nature
of the discontinuity between such conditioned limit theorems for random
walks (or in queueing for waiting times) with or without drift.

1. Introduction. Foreachn=1,let Y, Y., - - - beii.d. random variables
with mean u, and variance ¢%. We assume that as n — », ¢2 — ¢2, 6> > 0, and
unVn — —Aa, 0 < A\ < ®. By S, we denote the partial sums: S, = 0, S,, = Y.,
+ -+ + Yu, k= 1. Let C = CJ0, 1] be the set of continuous functions on [0, 1],
with the uniform topology, and denote by ¥ its Borel o-field. We define Y, as
the random element of C that is linear on each interval [(k — 1)/n, k/n],1 <k <
n, and has values: Y,(k/n) = S,./o Vn, 0 < k < n. Furthermore let
T, = inf{k: S, < 0}, (inf ¢ = ). :

We shall now introduce the limiting random function that will occur in the
theorem. This random function Y is expressed in terms of Brownian excursion
in the following way. If W denotes standard Brownian motion with zero drift,
starting at the origin, 7~ = sup{t = 1: W(¢) =0}, 7 = inf{t = 1: W(¢) = 0}, then
the meander W+ and the excursion W§ are defined by

WHt) = Q1 = 77) WG~ +(1 - 17)8)],
Wit) =Gt =7 ) 2|\ WE + Gt =7)t)], O0<t=<1.

The finite dimensional distributions of Y® € C, which completely determine
this random function, are given by: for0 <t, <t, --- <t, <landyy,ys, -+,
=0,

Pr{iY®(t) <y, -+, YOUt) < yi}

(1.1) = (y(\)™ f exp(¥eA2(1 — u™))Pr{W§ (u%t) < uy,, -- -,
W (u?ty) < uy} du,
where y()\) = {1 —\e "2 [T e/ dv).

We shall prove the following theorem.

THEOREM. Asn — o,
(1.2) (Yol T,>n) >, YN on (C, ¥).
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To explain why the theorem formulated above is interesting, consider a random
walk S, k = 0, generated by one sequence of i.i.d. random variables X;, X,, - - -.
If T = inf{k: S, < 0} then for EX; = 0 and EX? = ¢2, Bolthausen’s theorem tells
us that the random sequence (Z.(.)|T > n), where Z, € C is linear on
[(k =1)/n, k/n] and Z,(k/n) = S,/o Vn, weakly converges to Brownian meander
W*. However for EX; < 0, and when certain conditions are imposed on the
distribution of X, the limit is no longer W+*, but some renormalisation of
Brownian excursion Wg. (To obtain W3, S, must be divided by some other
multiple of vn.) The reader may consult [1] or [5] for these results. In the above
theorem the mean values EY,; depend on n in such a way that an intermediate
result is obtained. For A = 0 the random function Y™ = W*, the meander, while
it is seen from (1.1) and by partial integration that for A — o the finite
dimensional distributions of Y™ approach those of the excursion W{. In the
following example we give an application of the theorem.

EXAMPLE. Consider a sequence of GI/G/1 queues: Y,; = v, — u,;, where
the service times v,; have a distribution with mean 8, and the interarrival
times u,; have a distribution with mean a, and independent of v,;. In this case
(Sux/avn| T, > n) denotes the normalized waiting time of the kth customer
conditioned by the event that the number of customers served during the first
busy period exceeds n. Furthermore u, = a,(a, — 1) where a, = B./a, is the
traffic intensity, and ¢2 = var u,, + var v,;. The conditions of the theorem require
an(@, — 1)Vn — —\o and ¢ — o2 This is the situation of heavy traffic where
the traffic intensity is approaching 1. Hence, dependent on the value of the traffic
intensity parameter and the variance of the queue we may choose the best
approximation for the conditional distribution of the normalized waiting time.

For a generalization of Bolthausen’s theorem in another direction, consult the
paper by Shimura (cf. [7]).

2. Proof of the theorem. According to the Lindeberg form of Donsker’s
theorem (cf. [2], page 77) Y, converges weakly to W,, standard Brownian motion
with negative drift —\. We denote by Q, the measure induced by W, on the Borel
o-field of C[0, ). We now follow Bolthausen’s paper [3]. For f € C[0, ») we
define

7(f) =inf{t: f(s) = f(t), t=s=t+ 1}, inf¢ = o
then, as in [3], Lemma 2.2, Q,(r < ©) = 1 and

(Ynl Tn > n) —>d Y()\)’ on (Cy g)a

where YV(t) = Wy (7\ + t) =W, (1)), 0 < t < 1, with 7, = 7(W,). To obtain this
result, the only thing to check is whether Lemma 3.1 of [3] still holds. However
this is clear, because the lemma only uses the independence and identical
distribution of the sequence involved and not the mean value. To complete the
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proof we show (1.1). Introduce the function £,: C[0, ©) — [1, ») defined by
E(f)=inflt —r:t>7+ 1, f(t) =f(7)], inf ¢ = oo,

From Q,(7 < ©) = 1 we obtain @,(¢£, < ©) = 1. Now take an arbitrary set A €
¥ and denote by B its pre-image induced by the identity Y™ (t) = Wy(r\ + t) —
W)\(T)\), O0=st=1.

Then according to the Cameron-Martin formula (cf. [4], Section 1.11),

Pr{Y® € A} = Q,(B)

(2.1) = J; exp{—\f(r + &) =% N7 + &)} dQo(f)

= J; exp{—\f(r) —%N’7}exp(—YaN’E.(f)) dQo(f).
Notice that 7, is a splitting time for W, so 7, and W(r,) are independent of
{W(ro +t) —W(70), t = 0}, cf. [6]. Furthermore, 7, + 1 is a stopping time and so
(YO),0<t<1} = {W(ro+ t) —W(r), 0=t =<1}
and
{(Wro+t+1) —W(ro+ 1), t <0}

are independent and (cf. [3], page 484) distributed as {W*(¢), 0 = t = 1} and
{W(t), t = 0}, respectively. Putting these facts together, up to a multiplicative
constant the right hand side of (2.1) is equal to

f exp(—¥%\x)Pr{W™* € A, ¢ € dx},
1

where £ = (+* — 77)/(1 — 77) and so is the first return time to 0 beyond t = 1 of
ordinary zero drift Brownian motion starting from Y = W™*(1). It is easy to
derive from the first passage time density in Brownian motion and from the
Raleigh-distribution of W*(1) that

Prit €dx} = Yex™32 dx, x=1.
Hence from the definitions of W* and W,
PriW* € A, £ € dx} = Pr{it € dx}Pr{W*(.) € A|{ = x}
= Yox?Pr{W{(- /x) € xV/2 A} dx.

Relation (1.1) follows after setting u = x™/2.
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