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ON THE CADLAGUITY OF RANDOM MEASURES

BY ROBERT J. ADLER' AND PAUL D. FEIGIN
Technion-Israel Institute of Technology

We consider finitely additive random measures taking independent values
on disjoint Borel sets in R*, and ask when such measures, restricted to some
subclass o7 of closed Borel sets, possess versions which are “right continuous
with left limits”, in an appropriate sense. The answer involves a delicate
relationship between the “Lévy measure” of the random measure and the size
of </ as measured via an entropy condition. Examples involving stable
measures, Dudley’s class I(k, a, M) of sets in R* with a-times differentiable
boundaries, and convex sets are considered as special cases, and an example
given to show what can go wrong when the entropy of < is too large.

1. Introduction. Over the last few years there has been a resurgence of
interest in the classical results of Lévy (1934, 1937) and Ito (1942) on the
representation and structure of stochastic processes with independent incre-
ments. The research this has generated has followed two somewhat disjoint
paths. One has involved the development of new constructions and representa-
tions of these processes. Examples can be found in the works of Ferguson and
Klass (1972) and Le Page, Woodroofe and Zinn (1981), which develop represen-
tations for such processes based on sums of order statistics, thus shedding new
light not only on the analytic structure of these processes, but also on their
sample path behavior. The second path has involved extending the basic ideas of
Lévy and Ito to stochastic processes defined on parameter spaces more general
than the real line. Thus, for example, the sample path properties of random fields
with independent increments over disjoint rectangles were studied in Adler et al.
(1983).

It is a logical and conceptually simple step to progress from such random fields
to random measures taking independent values on disjoint measurable sets. That
is, if 4" denotes the Borel subsets of the unit cube I, = [0, 1]* of R*, and (Q, &
P) is a probability space, we wish to study mappings X: #* X @ — (—o, )
satisfying

(1.1) For each B € #*, X(B, -) is a random variable,
(1.2) Almost surely, X(-, w) is a finitely additive measure on %#*,
(1.3) By, - -, B, pairwise disjoint implies X(B;, -), - - -, X(Bs, -) independent.

As early as 1956, Prekopa studied the problem of the existence of such
measures when, in place of (1.2), they were assumed to be countably additive.
Kingman (1967) also studied the existence problem for the case of countably
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616 ADLER AND FEIGIN

additive, positive, measures, which he showed must be purely atomic. When only
finite additivity is demanded, the existence problem is far less delicate, as we
shall show in the following section.

Despite prior interest in the existence problem, there has been no attempt, by
any of the earlier authors, to investigate “sample path” properties of random
measures. Indeed, even the simplest of questions, as to whether, or how, the
classical cadlag (right continuity, left limits) properties of independent increment
processes on the real line carry over to random measures has never been asked.
Our aim here will be to tackle precisely this problem.

The paper is organized as follows. In the following section we shall define our
problem and delineate our aims and tools. One of the main tools will turn out to
be Dudley’s (1978) “metric entropy with inclusion”. In Section 3 we shall provide
an example of a class of sets over which certain stable random measures fail to
have left limits. This provides motivation for the problem of asking when
cadlaguity occurs. (Remember that on the real line all independent increment
processes, after the elimination of degenerate discontinuities, always possess
cadlag versions.) In Section 4 we shall develop our main result, giving conditions
under which stochastically continuous measures with homogeneous, independent
increments possess cadlag versions. These conditions will be stated in terms of
the size of the index set. Finally, in Section 5, we shall close with some comments
of a general nature and a conjecture.

It seems worthwhile to point out at this stage why notions such as entropy
need to be introduced here at all. In the case of Gaussian processes, entropy
appears in discussing continuity of processes on the line, and so its appearance
in the dicussion of continuity of measures (or set-indexed processes) is not
surprising, (cf. Dudley, 1973). No such condition appears, however, in discussing
independent increment processes on the line, and so its appearance here requires
some justification. The justification stems from the fact that in moving from
processes defined on R’, or even R* k > 1, to random measures, we lose one of
the main tools of that theory—that of the maximal inequality. It is exactly to
replace this tool that entropy techniques need to be introduced. Their precise
role in replacing the maximal inequality can be seen by comparing the proof of
Theorem 4.2 below with that of the corresponding result for random fields, in
Section 3 of Adler et al. (1983).

Finally, we wish to acknowledge the helpful comments of an associate editor
and referee of an earlier version of this paper, who pointed out some home truths
about the difficulties of defining general random measures that we had either
overlooked or forgotten, as well as pointing out a few minor errors. Dick Dudley
pointed out to us the existence of some early results of his that made the proof
of Proposition 2.1 a simple matter.

2. Independent increment measures, cadlaguity and entropy. Let X
be a random measure satisfying conditions (1.1)-(1.3). Thus, we emphasize, X is,
for almost all w, a finitely, but not necessarily countably, additive measure. Let
us add one more restriction, that of stochastic continuity. That is, if d denotes
the symmetric difference metric defined on %* by d(A, B) = A(AAB), where \ is
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Lebesgue measure, then for any sequence {B,} of sets in %* and all ¢ > 0 we have
2.1) P{| X(B,) — X(B)| > ¢} >0 whenever d(B,, B)—0.

(For an alternative definition of stochastic continuity, in terms of a finer topology
on Borel sets, see the remarks at the end of this section.) A stochastically
continuous measure cannot have degenerate atoms. In general, we shall call a
random measure satisfying (1.1)-(1.3) and (2.1) a Lévy random measure. (Note
that this is not the same as Karr’s (1978) usage of the same term.) It is reasonably
straightforward to check (cf. Theorem 3.1 and equation (3.37) of Adler et al.,
1983) that if Lévy random measures actually exist, then the logarithm of their
characteristic functions can be expressed, for each Borel A, by

(2:2) log{E[e™*™} = P (u) + ¢P (),
where
(2.3) v P(u) = iuM(A) — %u?V(A),

(24) YPu) = J;l l[ei“" - 1]»(A, dx) + J;l X [e™ — 1 — iux] - »(A, dx),

and
(2.5) M is a real valued function on %* continuous in the d metric;

(2.6) Vis afinite, nonnegative measure on I, absolutely continuous with respect
to Lebesgue measure;

(2.7) for all A € #*, v(A, -) is a positive measure on R with »(I;, {0}) = 0 and
satisfying

f x%v(I,, dx) < oo, f v(Iy, dx) < oo;
xl=1 [xl>1

(2.8) for every Borel B C R with positive distance to {0}, »(-, B) is a non-
negative, finite Borel measure on I, absolutely continuous with respect
to Lebesgue measure.

It is clear from (2.3) that every Lévy random measure can be expressed as the
sum of independent Gaussian and nonGaussian measures, the continuity prop-
erties of which can be investigated separately. Since the continuity properties of
Gaussian measures have already been studied in depth (under the name of set-
indexed processes; e.g. Dudley, 1973), we shall concentrate only on the non-
Gaussian part in what follows.

Our first task must be to establish that set indexed processes with log
characteristic function given by (2.4) actually exist, and moreover, have versions
that are Lévy random measures. We shall prove

PROPOSITION 2.1. There exists a set-indexed process with independent incre-
ments and log characteristic function (2.4). Moreover, this process has a version
that is a finitely additive random measure on I,.
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PrROOF. We start with a slightly more general problem and then specialize.
Let S be the vector space of bounded measurable functions with support in I,
and let Y(f) be the functional on S defined by

log[¥(f)]
(2.9) f ] ixf(0) o) ) l
- suppf ljl;|>1 [e — 1jp(dt, dx) + f - e = 1 — ixf(t)]w(dt, dx)l,

I«

where » is as above. Calculations as in Section 3.4 of Gelfand and Vilenkin (1964)
readily establish that ¢ is positive definite. Furthermore, y(0) = 1 and ¢ is
obviously continuous in the topology of pointwise convergence of the f’s. Con-
sequently, by Theorem (1.4) of Dudley (1969), there exists a random linear
functional, . say, on S, with log characteristic functional (2.9). Now use this
< to define a finitely additive random measure X via the correspondence
XA, w) = L4, w), where I, is the indicator function of A. It is trivial to check,
using the linearity of .« and (2.9), that X has all the required properties, and
the proof is complete.

Having established their existence in general, let us now look at some special
cases of random measures. Note that hereafter, unless explicitly stated otherwise,
we shall always assume that we are working with the measure version of our
processes.

When the measure »(A, B) of (2.4) is of the form A(A)F(B), where F is a
measure on R — {0} (whose distribution function we also denote by F') satisfying

(2.10) ’[l . x% dF(x) < o, J;l X dF(x) < @

then X has stationary increments in the sense that the distribution of X(A)
depends on A only through A(A). In the particular case that

[clx‘“*‘” dx, x>0

(2.11) F(dx) = 102 | xl—(lﬂi) dx, x<0

for some 8 € (0, 2) and finite constants c,, ¢, we call X a stable Lévy measure
with stationary increments and parameter 8. If, furthermore, ¢, = ¢, = ¢ we say
the measure is symmetric, and we can write the logarithm of the characteristic
function of X(A) as

(2.12) log E{e™“X“)} = —cA\(A) | u]®.

Let us now move to a definition of “right continuity with left limits” for
random measures. Let 97 be a collection of closed Borel subsets of I,. Then we
shall call a random measure cadlag on o7 if the following two conditions hold
with probability one:

(2.13) Forevery A € o7 and decreasing sequence A; 2 A, 2 - - - in o7 for which
ACNy., A, and d(A,, A) -0 we have X(A,) — X(A).

(2.14) For every increasing sequence A, C A, C ... in 7 the sequence X(4,)
converges to a finite limit.



CADLAGUITY OF RANDOM MEASURES 619

When o is the set of closed intervals in R' or rectangles in R* this definition
reduces to the usual one for the right continuity with left limits of random
processes and fields. (Note that had we decided to work with open, rather than
closed, sets, then in these simple cases our definition of cadlaguity would yield
left continuity with right limits.) In these simple cases, a Lévy random measure
always possesses a cadlag version, and, moreover, a cadlag modification (Adler et
al., 1983, Section 3 and Proposition 4.1). However, if the collection of sets o7 is
too large then whether or not cadlag versions exist will depend on a delicate
relationship between the size of o7 and the Lévy measure ».

In order to measure the size of &/ we shall use Dudley’s (1978) notion of
metric entropy with inclusion, which we recall as:

DEFINITION 2.1. Let o7 be a collection of subsets of #*. For each ¢ > 0 let
Ni(e) := Ni(e, o) be the smallest n such that for some A,, ---, A, € B* (not
necessarily elements of o7), for every A € o there exist i, j with A; C A C 4;
and MA//A) <e. Hi(e) := H/(e, &7) = log Ni(e, &) is called the metric entropy
with inclusion (of o).

This notion has previously been exploited by Dudley (1978) in investigating
weak convergence of empirical measures, in the process of which the entropy
with inclusion of a number of interesting classes of sets has been calculated.

For example, consider Dudley’s class I(k, a, M) of sets in R k where boundaries
are given by functions from the sphere S*™! into R* with derivatives of order =<
a, all bounded by M. (For a precise definiton of I(k, a, M), see Dudley, 1974.)
For this class

(2.15) Hi(e, I(k, @, M)) = O(1/e)" as ¢ 0,
where
(2.16) [(k=1)/a if a=1,

T= k- 1)/(ka—k+1) if (k—1)/k<a=l

If o is the set of convex sets in I, then (2.15) once again holds, but with n =
(k—1)/2.

For Vapnik-Cervonenkis classes (Vapnik and Cervonenkis, 1971) Lemma 7.13
of Dudley (1978) states that

(2.17) H(e) < O(log 1/e).

Dudley (1978) gives a detailed discussion of Vapnik-Cervonenkis classes and
provides many examples, to which we refer the interested reader.

REMARK. In the definitions of both stochastic continuity and cadlaguity we
relied on the symmetric difference metric to provide a notion of closeness for
Borel sets. An entirely parallel theory could be developed by replacing this metric
with the topology induced on the Borel sets by the pointwise convergence of
indicator functions. Such a theory would differ from that presented here in only
three respects; (i) There would be no need to restrict consideration to closed sets,
(i) The notion of stochastic continuity would be somewhat weaker, (iii) The
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arguments of Section 4 that suffice to prove cadlaguity when the symmetric
difference metric is used would also suffice, with only the most trivial changes,
to prove actual continuity under the topology of pointwise convergence of indi-
cator functions.

3. A non-cadlag example. We commence by defining a class of sets, &7,
on R2 Let A, be the unit square [0, 1] X [0, 1]. Then given Ao, -- -, A,_1, let A,
be the closed rectangle of height 1 and breadth 2"~ whose leftmost vertical
edge is the rightmost vertical edge of A,-,. Thus the sum of the breadths of all
the rectangles is Y= 2", which will be finite if 1 < y < 2. Now divide each
A, into 2" equally sized, closed, horizontal slices, A,;, - -, A,o». Each A,, thus
has area 27" X 2"'™Y = 27", The collection <7, is now defined as all possible
finite and infinite unions of the sets {4,,}. We make two claims about o7, . The
first relates to its size.

PROPOSITION 3.1. If vy € (1, 2) then H/(e, oZ,) = O(¢"/*™) for every ¢ > 0.

The second claim relates to the non-cadlag behavior of stable measures on
<7, Indeed, we prove something even more pathological, namely

PROPOSITION 3.2. Let X be a stationary, symmetric stable random measure
with parameter B. If 3 > v then sup{X(A):A € oZ,} = o with probability one.

In fact, something stronger than the above proposition is true. A check of the
proof will show that the fact that X is a measure on all Borel sets is never actually
used, but only the fact that X is finitely additive on @7,. Consequently, this
condition could replace the condition that X be measure in the statement o
the proposition. :

The obvious import of the two propositions combined is that the cadlag
property of a given measure can disappear if the entropy of its index set is
increased too far. (We have yet to prove that stable measures are ever cadlag,
but this will be shown in the following section.)

The condition in Proposition 3.1 that 4 > 1 follows from the fact that for y <
1 the sets in o7, cannot be enclosed in a finite rectangle, but lie anywhere in the
unbounded set [0, 1] X [0, ). In such a case the unboundedness of sup{X(A)} is
uninteresting, and does not contradict the cadlag property. However, for v > 1
the unboundedness of sup{X(A)} implies the existence of a sequence, and hence
of an increasing sequence, of bounded closed sets {B;} for which {X(B;)} diverges,
thus contradicting the cadlag requirement (2.14). We shall see later that when 8
< 1 a cadlag version will always exist.

Note that even for v > 1 the sets of &4 €& I,, a condition we have generally
demanded. A change of scale will, however, correct this. Indeed, all that really
counts here is the boundedness of the sets of <7,.
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PROOF OF PROPOSITION 3.1. Choose e =2"", m>1.Set S, =27/(2" - 2) =
MU, A.r), and define

M = M(e) := 1 + [(m + log,S,)/(y — 1)]
where [ -] denotes “integer part”, and log, is a base 2 logarithm. Then
2;0:=M(€) 2n(1—y) < 2—m =g,

and so if we write A(e) for the union U,=pm) Uiz A.x we have A(A(e)) < e. There
are 1+ 2+ 22+ ... + 2MO~1 = 9ME) _ 1 gets A,, with n < M(e). Take these sets
together with A(e), and consider all the possible sets formed by taking unions of
any number of these 24 sets. Then we have a collection of 22 sets from which,
for any A € o7, we can always choose two, say Ao and A;, such that A; C A C
Ao and d(A(), A[) = A(Ao/A[) < e¢. That iS,

Hi(e, o7,) <10g(2*"”) < const. 2™/,

Since H,(e) is clearly monotone in ¢, we can drop the requirement that e = 27"
and so obtain

3.1) Hi(e, ,) < OV,

A little thought shows that one can do little better (in terms of order of
magnitude) in choosing an approximating class of sets. (Consider merely trying
to approximate from above the 22*“™ possible collections among {A )1k, k =
1, ---, 24971 ) Thus the upper bound of (3.1) is, in order of magnitude, sharp
and so the proposition is established.

PROOF OF PROPOSITION 3.2. The proof we shall use here was motivated by
Dudley’s (1979) proof that lower layers in R? are not GB classes.

LetA,;j=1,---,2" n=1,2, ... be the sets described above, and let I1(4,;)
be the projection of A,; on the vertical axis. For each n, each point p := (0, p), 0
< p <1, belongs to II(A, ) for some unique j(n, p). For each such p and M <
+o the events E,, := {X(A,jnp) > M/2"} are independent for n =1, 2, - ..
Furthermore, these probabilities have a uniform strictly positive lower bound,
since

P(X(An) > M2} = P{‘);E"i';’;) > Mz—n(l—v/ﬂ)}.
- X(Ank) .
=P ([MA",»]W ~ M) (since > )

and the last probability is independent of n and & (cf. (2.12)). Thus, for each p
and M, an E,,, occurs with probability one, and so, for each p € (0, 1), n* = n*(p,
w) = inf{n:w € E,,} (inf ¢ = =) is well defined, and finite for almost all w. Define
the indicator functions I.(p, w) = 1 if w € E,, or 0 otherwise, and set I.(p, w) =
0. Since the I, are jointly measurable in (p, ), Fubini’s theorem implies that
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I+(p, w) = 1 for almost all p when w & N, where N is some w-set of probability
zero. Thus, for w & N, n*(p, w) < o for almost all p. Now fix w & N, write o/ (w)
for the (countable or finite) collection of sets {4, = A,x .+ p:p € (0, 1) and n*(p,
w) < oo}. Since almost all p belong to an interval of length 27" which is the
projection II(A,) of an A, in o/ (w) we have that Y4c. ., MII(4)) = 1. However,
X(A) > M(II(A)) for every A € o/ (w), implying

2ae-/w) X(A) > M.
Thus there exists a finite subset o/’ (w) C o/ (w) such that
XUy A) = T X(A) > M,
by the finite additivity of X. Since M was arbitrary we have that X is almost

surely unbounded on <7, and the proof is complete.

4. Entropy-cadlag results. Let X be a Lévy random measure with Lévy
measure »(A, B). Let o7 be a class of closed Borel subsets of I, with inclusion
entropy H(e) = log N/(e, 7). We shall prove the following two results.

THEOREM 4.1. If [L, | x| v(I, dx) < = then X possesses a version cadlag on
/. (i.e. No entropy condition is required.)

THEOREM 4.2. Suppose [, | x| v(Ix, dx) = ». Let X have stationary incre-
ments and set

(4°1) Mn = f V(Ik, dx), n= 1’ 21 o
27 < | x| <27

(4.2) v, = f |x|v(l, dx), n=1,2, ---.
27n<|x| <1

If for some v > 1
(4-3) 2:=1 exp{H(V;v) + vy IOg Vn - Vr—z27 ﬂn/lG'Y} < oo,

then X possesses a version cadlag on <.

Before we prove these results we need to clarify what we mean here by the
term “random measure”. As an example, take as o/the convex sets in R?, and
suppose we have constructed an X cadlag on o7 The measure property of X is
that X(U%L; A)) = Y, X(A,) for disjoint convex A; and n finite. But U, A; need
not be in o7!. Consequently, throughout this section we shall take additivity to
mean additivity when both the A; and U A; belong to o7

Let us now consider some examples. In particular, for stable measures we have

COROLLARY 4.1. Let X be a stable Lévy measure with stationary increments
and parameter 8 € (0, 2). Then X will possess a cadlag version if

(4.4) B <1l:. always,
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(e -1
(4.5) =1 L[H(x ) dx < for some n>2(2_6)

where H(e) is the inclusion entropy of the index set.

PrROOF. By (2.11) the Lévy measure of a stable random measure has finite
mean on [—1, 1] whenever 8 < 1, so Theorem 4.1 trivially covers this case. The
cases 8 =1 and 8 > 1 follow from Theorem 4.2, as follows.

First, take 8 > 1 and note that there exist (3-dependent) constants C,, C, and
C; such that

Mn = 012"“, szn(/:)—l) = Vn = C32n(/3—1)’
(cf. (2.11)). Thus, by (4.3) a cadlag version will exist if for some y €
(1, 6/2(8 - 1))
©_, exp{H(C32 ™ #~V) — grv+60=20)C, C527/8} < oo,

A sufficient condition for this convergence to hold is that for some ¢ > 0, some
C, < » and all n large enough

H(ng—m(ﬁ—l)) < C42n7(ﬁ—1)/25

where

fo (8- 1)
2y + B(1 — 2y) — ¢~

This, in turn will be satisfied if
S [H(Cs2™ ™81 . 2781/ < oo,

which itself follows from

1
J; y"PH(y) dy < .

This is equivalent to

1
f Hi(x?) dx < oo,
0

Now send ¢ — 0 and v — 1 to obtain (4.5) as the requisite condition, thus proving
the corollary for 8 > 1.
When 8 = 1, simply use the facts that

un = 02", V,=0(n),

and apply the argument as before.
It is now a trivial matter to apply (4.5), (2.15) and (2.16) to obtain

COROLLARY 4.2. Let X be a stationary stable measure with parameter
B € (1, 2). Let I(k, a, M) be the sets described in Section 2. Then X has a cadlag
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version on I(k, a, M) if
a>1: < @a+k—-—1)/(a+k—-1)
k-—1/k=a=<1l B<(2ka—Fk+1)/(ka).
Furthermore, X will have a version cadlag on the convex sets in I if
(4.6) B<(3+k)/(1+ k).

Our final example, relating to Vapnik-Cervonenkis classes, is

COROLLARY 4.3. A stationary stable measure always has a version cadlag on
any given Vapnik-Cervonenkis class.

The proof of this follows readily from (2.17) and Corollary 4.1.
We now turn to the proofs of Theorems 4.1 and 4.2, and shall tackle the more
difficult one first. ‘

Proor oF THEOREM 4.2. To prove the existence of a cadlag version, we shall
simply construct one. The construction goes back in spirit to Ito (1969), although
we shall adopt the approach of Adler et al. (1983) to which we shall occasionally
refer to avoid repetitive detail.

We shall require some notation. Let » be the measure on I, X [0, ) defined
by

4.7) (A, B) = v(A, B) + v(A, —B)

for all A € #* and Borel B C [0, ). Set ¢, =2, n=0, 1, - - - and define
(4.8) Dy=(1,0), D,=(en,6n-1], n=1,2, ..

Define sequences of measures {v,} and probability measures {F,}, n = 0, by
4.9) v.(A, B) =v(A,BN[D,U (=D,)]), n=0,1,---,

(4.10) Fu(B) = {[vnuk, B 4> 0

where u, was defined at (4.1). Furthermore, let A be the measure defined by
(4.11) A(dx) = | x| (I, dx),
and set V(x) = [} A(dx). Finally, for n = 1 set

(4.12) Up = L A(dx), V,= V(n) = Y% v,.

Now let {£,}, n = 0, be a sequence of independent Poisson random variables
with parameters u,. Furthermore for each n = 0 let

(TZ, JZ), k = 17 27 e
be a sequence of independent, (mutually and of the £,), identically distributed
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random vectors with joint distribution

(4.13) P{T: € A, J; € B} = MA)F,.(B)

for every Borel A C I, and B C R. Denote the mean of J} by 6,.:

(4.14) 6, = E{J3} = f xF,(dx) = f M ,
ep<|x|=e,_, n

and write o2 for the variance of J}. Note that the following simple inequalities
hold:

(4-15) | 0nl = €n—1, U?l = ng—l, |Jz | < &p—1 Aa.s,,
and
(4.16) |Jk = 0, < 2¢,-1 a.s,,

where we interpret ¢_; as . )
We can now define a sequence of independent compound Poisson random
measures X" by

(4.17) X"(A, @) = 35 I w)1(THw))

for all Borel A C I, with I, the indicator function of A. It is easy to check (cf.
Adler et al, (1983), page 14) that each X" has stationary and independent
increments, and log characteristic function

f (e — 1),(4, dx).

Furthermore, E{X"(A)} = [ xv,(4, dx), so that it follows from (2.5) that a version
of X is given by

(4.18) X(4, w) = X°(A, ») + Yo (XA, ») — E[X"(4, )]},

as long as we can prove the convergence of this sum. Indeed we shall prove both
the convergence and that X is a.s. cadlag.

To do this, we commence by noting that since E{£,} = u, < «, for every n = 0
(cf. (2.8)) we have that each X" has only an a.s. finite number of atoms.
Furthermore, since E{X"(A)} is clearly continuous in A, it follows that each
X"(-, w) — EX"(.) is a cadlag measure over closed Borel sets in I, and so, a
fortiori, over o7 Thus the sum (4.18) will also be a cadlag measure (in the
restricted sense described above) over o7 if we can find a summable sequence
{a,} and an a.s. finite random variable 5(w) for which

supse - {| XA, w) — E[X™(A)]|} = a, forall n=nw).

(Note, however, that this cadlag (restricted sense) measure is not necessarily
extendable to a measure on all Borel sets.) To avoid measurability problems we
shall bound the above supremum by a measurable function (cf. (4.26)), say B.,.
By Borel-Cantelli, cadlaguity will follow if the probabilities P{B, > «,} are
summable. The remainder of the proof consists in showing that the conditions
of the theorem guarantee that this is in fact the case.
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We shall require two inequalities. The first is Bernstein’s inequality (Bennett,
1962, Hoeffding, 1963) which states that for i.i.d. X; with | X; — E(X;) | <M and

variance o2,
(4.19) P{|IYx, (X; — EX))| > x} = 2 exp{—x%/2ns*(1 + Mx/3ns?)}.
The second, which is undoubtedly known but for which we could not find a
reference is

LEMMA 4.1. Let £ be a Poisson variable with mean X. Then for all § > 0
(4.20)  P{l&— \| >0\ <2 exp{—A[(1 + 8)log(1 + ) — 6] + log(1 + 671)}.

Furthermore,
(4.21) 1+ 6)og(l+6)—6=08%/4 for 0<6=<1,
(4.22) 1+dlog(l+6)—56=% for 6>1.

PROOF. Set d = \d. Then the proof proceeds in two parts, corresponding to
d0<landé>1. .

(a) 6 <1: First, note

P{g < X — 6\ = Trar-a e *N/R!
= e MM = ) Tigjma (X = d)¥/R! < e~ 4N (X = d))
= exp{—A[6 + (1 — §)log(1 — §)]}.

For the second part of this bound note first that, for all n = 2, n! = n"e™"*', since
log(n!) = Yo logj = f logxdcx=nlogn—n+1.
1

Thus, writing [x] for the integer part of x, we obtain

2k>)\+d e—-)\>\k - e—>\>\[>\+d+1] Ek>0 )\k
k TIN+d+ 1] (N +d)

< e—x)\[x+d+1]<____>‘ : d)(p\ +d+ 1])—[>\+d+1]e[>\+d+1]—1

d<>\+d< N
se|l—)——
d J\\+d

= exp{—A[(1 + &)log(1 + &) — 8] + log(1 + 67")}.
It is simple to check that, for § < 1,
3+ (1 — 8)log(l — 8) > (1 + 8)log(1 + 8) — &,
so that (4.20) is established for 6 < 1.

() 6>1: Whendé>1,|&—\N| >0\ £ — N> 6], (since £ > 0) in which
case the second part of part (a) can be applied to establish (4.20).

P{E> N+ 2o} =
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Relationships (4.21) and (4.22) follow from elementary calculations.
We now return to the proof of the theorem. Choose y > 1, and define the
sequences {a,} and {5,}, n = 1, by

(4.23) a, =8V, v, 6,= V.
We claim that {«,} is summable, since
E:=1 ap = 8 Z:=1 UnVr:‘Y = 8 2:=1 (Vn - Vn—l)Vr_17
V, o
<8 Yo, f x Y dx =8 f X7 dx,
Vn-1 Vo

since V,, — o under the hypothesis of the theorem. The integral is finite as long
asy>1and V, > 0. If V, = 0, we simply take the {«,} and {X"} sequences for n
= min{k: V,, > 0}, and nothing in the proof or theorem changes.

For each n = 1 let <7, denote a collection of Borel subsets of I, such that for
any A € o there exist A, ;and A, o in &7, satisfying

An,l g A g An,(), )\(An,O/An,I) = 5n-

Recall that o7, can be chosen with #o7, = N(8,, &/) = exp{H(5,)}. Setting, for
each A € o

(4.24) S™(A4) = X"(4) — E{X"(A)} = X"(A) — MA)p.0,,
we have
S™(A) = S™(Ano0) — S"(An0\A) = S"(An1) + S"(A\A,, ).
Thus
[S™A) | = %{|S"(An0) | + |S™(A.D) |}
+ %{| 8"(An0\A) | + | S"(A\A,) | }.

From (4.17) and (4.24) we trivially obtain

S™A) = Ty (i = 0)Ia(TR) + [na(A) — MA)pn)dn

(4.25)

and also
| S™MA) | < Tiwy |JEILA(TR) + MApal 6,1,

where 7,(A) := Yi», I.(T?) is a simple Poisson random measure. Substituting
this into (4.25) we now have

supo| S™(4) |
< SUDw, | Xty (JE — 0.)Ia(TR) | + supa, | na(A) — MA)pa| - 16,1
+ Vosup{Sin, | JE | Loar(TE):A” C A, NANA') < 6., A, A’ € o}
+ Yopnba | O . |

Recall that we need to show that P{sup., | S®(A) | % «,! is summable. We break
the remainder of the proof into three parts, corresponding to the three stochastic

(4.26)
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terms on the right hand side of (4.25).
(i) We commence with
s Pisup.,, | Ziro (J% = 6)Ia(TR) | > /4 — Yopndn | 0, |}
= exp{HG)P{| Tity (R = 0,) | > 27"un0)  (by (4.15), (4.23))

To bound this expression, consider the cases £, > yu, and £, < yu, separately.
For the latter case we have

P{ l 22’;1 (Jg - on)l > 2_nﬂn6n; gn < 7I~‘n}

= Yoo PU ZRo Tk = 00) | > 27 undnle ™ (wn)™/m!
I —2""unol |
|2mo2(1 + 4 - 272",6,/3me?)|

THn
< Srn n
= m—O

- 2 exp

by Bernstein’s inequality (4.19). A simple rearrangement of the above yields

—Htndn |
% + (2 'mo’/pnbdn) |

Noting that (m/u,) < v, and applying inequalities (4.15) and (4.16) we easily
bound this by

2 Yy, ”” exp{

2 exp{—u0,/8(*s + v8:)}.

Taking n large enough so that 6, < 3(1 — v) (this is possible since §, — 0 as n —
) we bound the above by

2 exp{—p,,a,?l/S}.

Applying Lemma 4.1 to the case £, > yu, and combining the two bounds yields
an upper bound for (4.27) of the form

2 exp{H(an) - ﬂnaﬁ/S} +C. exp{H(an) - ﬂn/4}

for a finite constant C. This is clearly summable under the conditions of the
theorem, and thus so is (4.27).

(ii) Now consider
Pfsup;, [ n.(A) = NA)pa| - 10, > an/4}
(4.28) =< exp{H(5,)} - sup.,P{| n.(A) — MA)p,| > 2" 'a,/4} Dby (4.15)

= exp{H(a,,)} : P{ l gn - /‘nl > 6nIJn}-

Once again, it is straightforward to apply Lemma 4.1 to bound the above and
establish the summability of (4.26) under (4.3).

(iii) Finally, let B, be an arbitrary (but fixed) set in &* with A\(B,) = §,.
Then the probability that the third supremum of (4.26) is greater than «,/2 is
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clearly no greater than
exp{2H(5,)} - P{n.(B.) > 2u,8,} by (4.15)
= C[exp{H(an) - ﬂnan/S}F

by Lemma 4.1. Clearly, this is also summable under (4.3), since V,, — o implies
82 < 8, for large enough n.

Collecting parts (i)-(iii) and applying them to (4.26) new completes the proof
of Theorem 4.2.

We can thus turn to the

PROOF OF THEOREM 4.1. Theorem 4.1 is an immediate consequence of
Theorem 5.4 of Adler et al. (1983), which establishes the existence of cadlag Lévy
processes with the paths of finite total variation. The corresponding Lévy measure
is easily seen to be both cadlag and countably additive.

5. A comment and a conjecture. We now wish to make one comment
concerning the sharpness of the results of the preceding sections, and to conjec-
ture what form improvements to these results may take. Take Corollary 4.1 as
an example. There it is shown that if for some ¢ >0

1
(5.1) f [H(x2)] 512281 gy < o
0

for a stable measure with parameter 8 € (1, 2), then a cadlag version exists. It is
known, (Dudley, 1973) that if 3 = 2 (the Brownian sheet case), (5.1) can be
replaced by

(5.2) fo [H(x)]Y? dx < =,

in which case the measure is continuous. One would hope that sending 8 — 2 in
(5.1) would yield (5.2). The fact that this is clearly not the case raises doubts as
to the sharpness of (5.1).

In fact, we conjecture that (5.1) should be replaced by

(5.3) J; [H(x*)]# V2 dx < oo,

but can see no way of proving this. In fact, if (5.3) could be shown to be sufficient
for the existence of a cadlag version, then the results of Section 3 would indicate
that is is also a reasonably sharp condition.

Note Added in Proof. Pyke and Bass (Z. Wahrsch. verw. Gebiete, to appear)
have recently obtained a result stronger than our Theorem 4.2 that, modulo
minor technical differences, implies the above conjecture. Their approach is very
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close to ours, the primary difference lying in the replacement of Bernstein’s
inequality with a sharper inequality specifically tailored to infinitely divisible
distributions. The use of the sharper inequality yields results which, according
to our “counter-example” of Section 3, are essentially best possible.
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