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ON THE MEAN CONVERGENCE OF THE BEST LINEAR
INTERPOLATOR OF MULTIVARIATE STATIONARY
STOCHASTIC PROCESSES'

BY MOHSEN POURAHMADI

Northern Illinois University

It is shown that a necessary and sufficient condition, for the existence of
a mean-convergent series for the linear interpolator of a g-variate stationary
stochastic process {X,} with density matrix W, is that the Fourier series of
the isomorph of the linear interpolator should converge in the norm of L%(W),
and this happens if the past and future of the process are at positive angle.
This provides a positive answer to a question of H. Salehi (1979) concerning
the square summability of the inverse of W and improves upon the work of
Rozanov (1960) and Salehi (1979).

Introduction. Let {X,} be a g-variate, discrete parameter, weakly stationary
stochastic process (S.S.P.) with the spectral density matrix W. Assume that all
the values of { X} are known, except for the values X, k € T, where T'is a finite
subset of the set of all integers Z. An extremely important problem in the theory
of g-variate S.S.P.’s is to interpolate the unknown values of X;, k € T by using
the known values X;, k € T, where T’ = Z\T. In this case, the natural thing to
do is to find a mean-convergent series representation for the interpolator in the
time domain in terms of X, k € T’. The possibility of such a series representation
was first studied by Rozanov [7]. In [7] it is shown that if W € Ljx, and W™ €
Lix,, then such a series can be found. Later, by using the Von Neumann’s
alternating projections, Salehi [10] found an expression for the linear interpolator
of a g-variate S.S.P. under the assumption that W € L}, and W' € L;,. But,
the expression obtained in [10] depends upon the optimal factor of the spectral
density, the reciprocal of the optimal factor and the innovations of the process
and consequently it is not suited for applications, because the formula for the
interpolator is not explicit in X, 8 € T”. In 1979 [11], for ¢ = 1 and a stationary
random field, Salehi has found a mean-convergent series for the linear interpo-
lator in terms of the known values X, k € T’ under the assumption that W €
L* and W' € L% In [11], among other interesting open questions in this field,
it is asked, whether the condition W~ € L? can be replaced by W™ € L. In
this paper we show that the answer is positive. Actually, among other results, we
show that, for 1 < ¢ < o, both W € L, and W' € L2, can be weakened and
replaced by the condition that the past and the future of the process be at positive
angle i.e. p(W) <1.

Our method will rest on using our previous results [5] concerning the “unrav-
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eling” of the Kolmogorov’s isomorphism between the spectral and time domains
and its relation with the positivity of the angle between the past and the future
of the process.

1. Notation and preliminaries. Throughout the paper, for a ¢ X g matrix
A= (a;),trA=3Y", a;, A* =(a;), A™" for the inverse of A if it exists. Functions
will be defined on [—=, 7] and we identify this interval with the unit circle in
the complex-plane in the natural way. Values of a function f defined on [—, =]
or on the unit circle will be denoted by f(6). dm denotes the normalized Lebesgue
measure on [—m, ] i.e. dm(f) = (2w) 'd6 and [ stands for [,. For 1 < p < oo,
L” denotes the usual Lebesgue space of functions on the interval [—, 7]. Loy,
denotes the space of all ¢ X ¢ matrix-valued functions whose entries are in L?.

In the following, we introduce a few concepts which are needed in this study.
For further study and information concerning the general theory of g-variate
S.S.P.’s [4] and for interpolation theory of such processes [8, 9, 11] are recom-
mended.

Let {X,; n € Z} C HY, be a g-variate S.S.P., where H" is the Cartesian product
of a Hilbert space H with itself q times. For each process {X,} C H¢ and integers
—o < k < /< o, we define M (X) = sp{X,; k < n < 7/}, where sp{. - -} stands
for the closed linear span of elements of {-..} in the metric of HY. M(X) =
MZ.(X) is called the time space (domain) of the process { X,,}. The spectral space
(domain) corresponding to the spectral density matrix W of the process is denoted
by L*(W) and is defined by L?*(W) = {®; ® a ¢ X g matrix-valued function with
| @1l = [ tr ®(0) W(0)®(6)* dm(0) < }. It is known [4] that L%(W) with the
inner product ((®, ¥))w = [ tr 8 W¥* dm is a Hilbert space. The map V: M(X)
— L*(W) defined by VX, = eI, n € Z, where I is the ¢ X q identity matrix,
can be extended to an isomorphism between M (X) and L*(W), [4]. This exten-
sion is also denoted by V and is called the Kolmogorov’s isomorphism between
the time and spectral domains. Under this isomorphism to each Y € M (X) there
corresponds a unique function & € L*(W), which is called the isomorph of Y €
M(X) in L3 (W).

2. Interpolation of a g-variate S.S.P. From here on, we assume that our
S.S.P. {X,} with the spectral density matrix W is full-rank minimal ie. W' €
Ljx,. Let T C Z be a finite set and k € T In the following theorems we obtain
conditions and formulas for the linear interpolator of X;. Because of stationarity
of the process, without of loss of generality we assume that 0 € T and k = 0.

Let My = sp{X,; k € T’} in HY Then the best linear interpolator of X,
denoted by X, is defined by X, = (Xo| Ms), where (X, | Mr) denotes the
orthogonal projection of X, onto the subspace My of H? Since X, € M(X),
because of the isomorphism between the spectral and time domains there exists
a function ® € L?*(W) which is the isomorph of X,. In order to find a formula
for X, in the time domain, we must have the explicit form of & € L3(W). But it
is shown in [8, page 101] that ®(0) = I — (Xker Dre*")W™1(0) a.e. (8), where
Dy, k € T, are constant ¢ X ¢ matrices and can be obtained by solving the
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following system of linear equations;

(1) JEke'l‘ DiC,—, =0 for t e T\{0},
]Eke’l‘ D,Cy, = I,

where C, = [ e"*"W~(9) dm(6), k € Z, i.e. the kth Fourier coefficient of the
inverse of W. It follows from the system of equations (1) that ®, the isomorph of
X, has a Fourier series representation as:

(2) ®(0) ~ Tker Bre ™,

and its Fourier coefficients By, k € T, can be written explicitly in terms of C;’s
and D)’s. Actually, we have

3) B.==%,erD,Crp, RET'.

In view of the relation (2) and the isomorphism between the spectral and time
domains, the temptation of writing X, = ¥ rer Br X\ cannot be resisted. However,
in general, this is not correct, as the infinite series 3 ;<7 B X, may not converge.
The rest of this paper is devoted to finding conditions on W such that the series
¥ ket Br X converges in the norm of H¢ The next important and simple lemma
is an immediate consequence of the isomorphism between spectral and time
domains [5].

For & € L*(W) we denote its kth Fourier coefficient by

&, = [ e=™@(0) dm(0), k € Z.

We note that for a general W, &, is not necessarily well-defined. But, in this
paper we only deal with W’s such that W and W' € L;,, in this case by a
simple use of Cauchy-Schwartz inequality it can be shown that ® € L., i.e. s,
k € Z is well-defined.

3. Lemma. Let Y be an arbitrary element of M(X) and ® € LA(W), with
Fourier coefficients ®,, k € Z, be the isomorph of Y under the map V. Then Y =
Yhe—w ®rX_r in HY if and only if the Fourier series of ® converges in the norm of
LX(W).

By an application of Lemma 3 to X, it follows that, for the series ¥ yc7 Bi Xk
to be convergent in HY, it is enough to find conditions on W such that the Fourier
series (2) of ® is convergent in L?(W). These conditions on W are, generally,
found by demanding the Fourier series of the individual function ® to be
convergent, cf. [4, 7, 11]. Here, we use a different approach, that.is we find a
condition on W such that the Fourier series of every function in L*(W) is
convergent in its norm.

Several important problems in the theory of g-variate S.S.P.’s are related to
the problem of “unraveling” of the Kolmogorov’s isomorphism V. Namely, finding
conditions on W such that given any ® € L?*(W) as the isomorph of any Y €
M(X), it is possible to find a mean-convergent series for Y in terms of X,;
n € Z. In [5] we have discussed the importance of such “unraveling” to the
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problem of prediction of a S.S.P. Here, we show its importance and application
to the problem of interpolation of g-variate S.S.P.’s through the use of the
measure of the angle between the past and the future of the process.

As a measure of angle between M?.(X) and M (X) we define, p(W) =
sup | (P, F'))|, where P and F vary over the unit balls of M°..(X) and M%(X),
respectively. It is clear that 0 < p(W) < 1. The past and future of { X,} is said to
be at positive angle if p(W) < 1. We note that if p(W) <1, then W' € Lixq, cf.
[6].

For ease of reference, in the following we shall state without proof some of the
results of [5] which are basic to our present work. For a density function W (4),
0 € [, 7] we denote its smallest and largest eigenvalues by w,(6) and w,(6),
0 € [—=, 7], respectively.

4. Theorem. Let W be a g X q matricial spectral density function.

(a) If p(W) < 1, then the Fourier series of every ® € L*(W) eonverges in the
norm of L*(W).

(b) If the Fourier series of every ® € L*(W) converges in the norm of LX(W) and
wil € L*, then p(W) < 1.

(¢) If (w,/w,) € L*, then p(W) < 1 if and only if w, = e“**, where u and v are
bounded real-valued functions with || v || . < (7/2) and U denotes the harmonic
conjugate of v.

Now, by applying Theorem 4 and Lemma 3 to the isomorph of X, and other
variables of interest, we find some useful conditions on W for the mean conver-
gence of series of the form Y, B, X,.

In the important special case, in which T is a singleton, i.e., T = {0}, the
system of equations (1) reduces to the very simple equation D,Cy, = I or D, =
C5'=(f W' dm)~". In this case, we have from (3) that, B,=—D,C_, = —C;'C_,,
k#0.

The S.S.P. {Y,} defined by Y, = Co(X, — X,) is called the normalized two-
sided innovation process of {X,}, [3]. A formula for finding Y, in terms of the
normalized one-sided innovation process of {X,} and the Taylor coefficients of
the reciprocal of the optimal factor of the spectral density W is given by Lemma
2.7 (b) [3]. In the following theorem, we find a simple expression for Y, in terms
of X,, n € Z and the Fourier coefficients of the reciprocal of W. We note that
for each integer n, e"™W ™! is the isomorph of Y,,, [3].

5. Theorem. Let {X,} be a full-rank minimal q-variate S.S.P. with the

normalized two-sided innovation process {Y,} and the spectral density matrix W.
Then,

(@) Y, = Yi-—« CX,—, if and only if the Fourier series of W' converges in the
norm of L*(W).

(b) Yn = Zil—x CI:Xn—In pr(W) <L

(© Y, =YiwCX,if WE Ljx,, W' € Li,.
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Theorem 5 (a) and (b) follow immediately from Lemma 3, and Theorem 4 (a),
respectively. Theorem 5(c) is an immediate consequence of the Riesz-Fischer
Theorem and the boundedness of W.

6. Remark. ASince Y() = C()(X() - X()) or X() = X() - DO Y(), it follows from
Theorem 5 that, X, = Xy — Dy Yic—« C, Xy = Xo — DyCo Xy — Tivo DoCr X_ =
S50 (—DoC-p) Xk = kw0 Br Xk. Thus, the best linear interpolator ¥ 7o Bx X} is
convergent in HY, if and only if the series for Y, is convergent in HY This shows
that the conditions of Theorem 5 are sufficient for the convergence of the
representation of X,

The next theorem provides conditions for the convergence of Y,y B, X},
when T is not necessarily {0}. Its proof follows from Lemma 3 and Theorem 4
applied to the function ® € L?(W) with Fourier series and coefficients as in (2)
and (3).

7. Theorem. Let {X,} be a full-rank minimal q-variate S.S.P. with the
spectral density matrix W. Then,

(a) X, = ¥ ver Br Xy, if and only if the Fourier series of ® converges in the norm
of L*(W).

(b) Xo= Yrer BeXpif (W) <1.

(c) Xo=Yrer BxXyif WE Lj«,and W' € L2y,.

8. Remarks. (a) There are many unbounded matricial spectral density
functions such that p(W) < 1. This can be seen either from Theorem 4(c) or the
Helson-Szeg6 Theorem [1, 2] on characterization of scalar density functions W
with p(W) < 1. It is shown in [1] that p(W) < 1, if and only if W = e“*°, where
u and v are bounded real-valued functions with || v || < (7/2). Also, it is known
that if p(W) < 1, then both W and W™ € L!** for ¢ sufficiently small [12, page
81] (This shows that W' is not necessarily in L) It follows from the Helson-
Szeg6’s Theorem that the class of density functions defined by W(6) =
| 1+e”]“|1—e"|™" 8>0,a=%and a + < 1, has the property that p(W)
< 1. But, these densities are neither bounded nor their reciprocals belong to L2
Thus, it follows from Theorem 4(c) that a matricial density function with p(W)
< 1 is not necessarily in L%, nor W™ € L2.,. Thus, Theorem 7(b) provides a
positive answer to Salehi’s question [11, page 841] and improves upon the work
of Rozanov [7] on this problem.

(b) We note that in Theorems 5 and 7, the Fourier coefficients of W™ are
playing a role similar to that of Fourier coefficients of the reciprocal of the
optimal factor of W, cf. [3, 4]. Considering the difficulties of finding the optimal
factor of W [4], it becomes clear that the task of implementing the algorithm for
the linear interpolation is much easier than that of the linear prediction of
S.S.P.’s.
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