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ASYMPTOTICALLY BALANCED FUNCTIONS AND STOCHASTIC
COMPACTNESS OF SAMPLE EXTREMES

By L. bE HAaAN AND S. I. RESNICK!

Erasmus University and Colorado State University

Necessary and sufficient conditions are given under which all partial
limit distributions for properly normalized sample extremes of i.i.d. random
variables are proper and nondegenerate. In the process we study a new type
of extended regular variation called asymptotic balance that should be useful
in other contexts as well.

1. Introduction; formulation in terms of inverse functions. Suppose
Y, Y,, ... are independent identically distributed (i.i.d.) random variables with
distribution F. Set X, = VL, Y. (n=1,2, ---).

DEFINITION 1. The sequence of sample maxima {X,} is stochastically compact
if there exist {a, > 0, b, € R, n = 1} such that every sequence {(X,x) — bnw)/
a.), kB = 1} contains a subsequence whose distributions converge weakly to a
nondegenerate probability distribution. Such a limit distribution is called a par-
tial limit distribution for F. We also occasionally say that F is stochastically
compact if the above holds. The constants {a,, b,} are called normalizing con-
stants.

EXAMPLE. The geometric distribution satisfies the definition with b,, = const.
log n and a, = 1 but is not in a domain of attraction.

Corresponding notions for partial sums are developed in Feller (1966), Simons
and Stout (1978), Maller (1981), de Haan and Resnick (1984). For maxima the
special case b, = 0 (with no exclusion of degenerate distribution but excluding
an atom at zero) was treated in de Haan and Ridder (1979).

Our aim is to give conditions for stochastic compactness of {X,} in terms of
the distribution function F. We start by analytically expressing stochastic com-
pactness in terms of the inverse function of the distribution function F. The next
section gives conditions for stochastic compactness in terms of that inverse
function. In Section 3 we then derive conditions in terms of F itself. The final
section gives special cases and examples.

Stochastic compactness of F means vague subsequential limits of {F*(a,x +
b,)} are proper and nondegenerate. Suppose for some sequence of integers {n(i)}
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STOCHASTIC COMPACTNESS 589

satisfying n(i) — o
Frapix + b)) — G(x).
This is equivalent to
(1) (n(@)(1 = Flannx + bap))) ™! — (—log G(x)) ™!

and (1) is often the most convenient way of expressing the existence of subse-
quential limit distributions for maxima. In the sequel we shall use the symbol
f(t) <X g(t) to mean f(t) > 0, g(t) > 0 and log(f(t)/g(t)) is bounded. From (1), if
1= Fi(t) X1 = F,(t) (t 1 x) and F} is stochastically compact, then so is F,. Also
if F is stochastically compact then so is 1 — (1 — F)“ for « > 0. Further it is clear
that {a,} and {b,} can be replaced by {a}} and {b}} in the definition of stochastic
compactness if and only if a} < a, and a;'(b} — b,) is bounded. This gives the
extent to which the normalizing constants are unique in the definition.
If U is a nondecreasing function define for x € (inf U, sup U)

U—(x) = inf{s: U(s) = x}

so that U is nondecreasing, left continuous and ¢t < U~ (x) iff U(t) < «x.
Throughout this paper, convergence of a family of nondecreasing functions means
weak convergence, i.e. U, — U means U,(x) — U(x) for all continuity points x
of U. It follows that U, — U iff U,y —» U~

For the distribution F define the end points

x;, = inf{x:F(x) > 0}, x,=sup{x:F(x) <1}

and set ¥(x) = (1/(1 — F))~(x) so that ¥:(1, ) — R. Note ¥ is bounded if —o
<X <Xy <o,

We now express the property of stochastic compactness in terms of V.
Inverting (1) we obtain

(¥(n(i)x) = bui))/@niy = R, (x) = (1/-log G)~(x) (weakly on (0, «)).

So partial limits for F"(a,x + b,) correspond to partial (or subsequential) limits
for a,'{¥(nx) — b,}. The latter partial limits (generic notation P) then must be
finite and nonconstant.

We claim that equivalently the partial limits (generic notation R) of
a;'{¥(nx) — ¥(n)} must be finite and not identically zero. This is obvious with
regard to the finiteness of the limit functions. It is also obvious that if some P is
constant, then the corresponding R exists and is identically zero. Conversely
suppose R is identically zero. Take a further subsequence n(i) such that
anih{¥(n(i)x) — b,u} — P. Combination with a;){¥(n(i)x) — ¥(n(i))} — 0 (for
all x > 0) gives a,{{¥(n(i)) — bniy} — P(x) for all x > 0, a contradiction.

To summarize: If F is stochastically compact with normalizing constants
{an, b,}, then all partial limits of a,'{¥(nx) — ¥(n)} are finite and not identically
zero. Conversely if this condition on ¥ holds, F is stochastically compact with
normalizing constants {a,, ¥(n)}. We now give a refinement of this characteri-
zation.
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PROPOSITION. If F is stochastically compact with normalizing constants
{a., b,} then for any sequence of reals t,, — o there exists a subsequence
{t.} C {tn} with
\I’(tnx) - \I"(tn)

a(t,)

where a(t) = ay and H(x) is finite for all x > 0 and H(x) # 0. Conversely, if (2)
holds, F is stochastically compact with normalizing constants {a,, ¥(n)}.

2) — H(x) weakly on (0, )

PrOOF. From the remarks preceding the Proposition, it is clear that (2)
implies stochastic compactness so let us suppose F is stochastically compact with
normalizing constants {a,, b,}. Observe the inequalities
ay W(2Lt] 2/3) — WAt _ W(tx) — () _ ¥([£12x) — ¥(&)
ag Qg(y - a(t) - ap )

(3

Ifforx>0ast,—»

{W(t.x) — ¥(t,)}/a(t,) — H(x)
weakly on (0, ), then taking further subsequences if necessary and using (3)
gives
(4) ¢ Hy(x/3) = H(x) = Hy(2x)
where H, is a partial limit of {(¥(nx) — ¥(n))/a.}. Since F is stochastically
compact, the remark preceding the proposition gives that H, is finite and not
identically zero on (0, ) and these same properties must hold for H by (4) if the

constant c is finite and positive.
It remains to prove that if

an (¥(npx) — ¥(ny)) — H(x) and ag, as,, — c,
then c is finite and positive. Now

¥(2nx) — ¥(2n) _ (\I’(2nx) — ¥(n) _ ¥(2n) — \I/(n)) Qn
Qon h a, an, Qon )

Taking partial limits we get for partial limit functions H, and H,
Hy(x) = {Ho(2x) — Hy(2)} c¢7".

Now ¢ = = is impossible since H, is not identically zero and H, is finite. Also c
= 0 is impossible since H, is finite and Hy(2x) — H,(2) is not identically zero.
The proof is complete.

Functions ¥ with property (2) are studied in the next section.
Let U:R, — R, be nondecreasing. Then U is of bounded increase (BI) or of
dominated variation if
log lim sup,_..(U(tx)/U(¢)) <o
log x

lim,
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U is of positive increase (PI) if

log lim inf,_...(U(tx)/U(t))
> 0.
log x

See Feller (1966), Goldie (1977), de Haan and Ridder (1979), Matuszewska (1962),
Simons and Stout (1978), Seneta (1976).

We will need the following properties of BI and PI. If U € BI and PI then
a. forsome o>0,

® ds - f ® ds
fl U < ® ad UG ) Srs

b. for some «, m>0,

f°° ds <o and x™ fw ds is increasin
y s°U(s) . s°Uls) e

¢c. U~ €BlandPIl

lim,_,.

=1L

2. Properties of ¥. We now begin our study of functions satisfying (2).
For any family of nondecreasing real functions {f.(x)}.c , and any sequence
t;, — o there exists a subsequence ¢, — % such that f, (x) converges weakly to
some nondecreasing function g(x) (possible £ ). Such a function g is called a
partial limit function for {f,(x)}.

Suppose now ¥:(q, ®) — R is nondecreasing (possibly bounded) for some
g € R. (For convenience we suppose q = 1.)

DEFINITION 2. V¥ is asymptotically balanced if there exists a positive function
a(-) such that all partial limits of

Y(tx) — W(t)
a(t)

for t — oo are finite and not identically zero. The function a(-) is called the
auxiliary function. It is clear that if a(-) is an auxiliary function then a;(-) also
serves as an auxiliary function if and only if a,(¢t) < a(t) (t — ).

From Section 1, F is stochastically compact iff the ¥ defined there is asymp-
totically balanced.

Functions satisfying a relation similar to the one described by Definition 2
have been studied by Bingham and Goldie (1979). They do not assume ¥ is
monotone but require a(-) to be regularly varying.

We will give necessary and sufficient conditions for a function ¥ to be
asymptotically balanced. We start with some lemmas.

LEMMA 1. If ¥V is asymptotically balanced then for all x > 0

aw _
at) =

lim sup,_..
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PrROOF. Suppose not, then there exists x, > 0 and ¢, — o such that

a(tnxo) _
alt,)

lim, .

Take {t,'} C {t,} such that

Y(tnx) — ¥(t)
a(tn')

limn’_wc = Hl (x)

weakly and convergence holds for x = x,.
Take now {t.~x¢} C {t. x,} such that

‘I’(tn” x()x) - ‘I,(tn" xO)
a(tnxo)

= H)(x) weakly.

l m, .

Pick x > 0 such that (according to Definition 2) H,(x) # 0 and x is a continuity
point of H,. Then

. a(t,~xo)
lim, e
a( tn ")

| Wt xox) — W(twr)  Wtwrxo) = ¥(tw) | / [ Wt x0%) — W(tarxo) |

= hmn”—m l a(tn") a(tn ] a(t xO) ]
B H,(x) =%

which is a contradiction.

COROLLARY 1. Suppose ¥ is asymptotically balanced with auxiliary function
a. There exist positive constants ty, ¢;, 1 < i < 8 and constants po, p(po < p), %o
such that for x = x,

(i) x™ =< lim inf,_.a(tx)/a(t) < lim sup,_..a(tx)/a(t) < x"
(i) (¥(tx) — ¥(t))/a(t) = c1x” for t =t
(il]) ‘I’(t) =< cyt” for t=t.

REMARKS. (a) If p, > 0 then lower bounds of the order of x” and t* are valid
in (ij) and (iij) respectively. If p, < 0, the lower bounds are noninformative.

(b) With regard to stochastic compactness of maxima, (ij) says partial limit
distributions have a right tail bounded above by const. x™~ provided the right
end point of the limit distribution is infinite.

Proor. In what follows, ¢ is a positive constant, perhaps different with
each use. Let /(x) := lim sup,_...a(tx)/a(t) for x > 0. Then Z(xy) < Z(x)Z(y) so
that by the theory of subadditive functions (Matuszewska, 1962, Hille, 1948),
lim,_.(log #(x)/log x) exists and is finite. From this, the right-most inequality in
(i) follows and the other inequality in (i) is obtained in a similar way.

By the definition of asymptotic balance and Lemma 1, we have for some c, p,
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to that for t = to

V(2t) — V() _ e
R )

= 2",

For t = t, it follows that
a(2't) _ a(2"t) a(2t)

«® —a2n e =2
and therefore
W(2"t) — W(t) _ a(2"'t) W(2't) — ¥(2"'t) W(2t) — W(b)
a(t) T a@®) a(2"'t) alt)

scf2"+ ...+l =c-2v

and (ij) follows easily. The bound in (iij) follows from (ij) by setting ¢ = t.
The inequality in (iij) and the relation 1 — F"(yy) ~ n(1 — F(y)), y > imply
the next result.

COROLLARY 2. If {X,} is stochastically compact, then for any fixed integer m,
E(log X))+ < 0.

LEMMA 2. If ¥ is asymptotically balanced with auxiliary function a, then any
partial limit H of {a(t)}"'{¥(tx) — ¥(t)} (t — =) satisfies H(x) > 0 for some
x> 1.

PROOF. Suppose not; i.e. for some ¢, — @

‘I’(tnx) - ‘I’(tn)
a(tn)

The definition of asymptotic balance will be contradicted if we find a sequence
r, — o such that

(5) lim, =0 forall x>1.

lim,_, M =0 forall x>0.
a(ry)

From Corollary 1 and (5) we note that there is an n, such that for n > n,
v(2t,) — ¥(t,) 1
— < —
a(t.2) 2
and, in general, there exists for any k an n, such that for n = n,

W(kt,) — ¥(tn) < 1
a(t,VEk) k’

Without loss, suppose n, < ny < --- — . Take s, := max{k:n, < n}. Then
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$p, — © (n — ») and

. \I/(tnsn) - \I,(tn)

lim, ,, ————————— =0
a(t,Vs,)

Now forx <1

_ Y(taxvs,) = W(taVs,) _ Wltn) — Witas,)

0 > —0 — 0
a(t.Vs,) altas,) " !
and forx>1
0 < Vx5 = Wltsn) _ Wltws) = ¥t _ o (0
a(t,5,) altns,)

and the desired contradiction is obtained by setting r, = ¢,vs,. From Corollary 1
we see that

(¥(tx) — ¥(t))/(al®)x”) < c1x"™

(for t = t,, x = xy) and if we pick B sufficiently large the right side is Lebesgue
integrable on (1, «). It is convenient to choose 3 so that

(6) B8>3p+1.

THEOREM 1. If V¥ is asymptotically balanced and (3 satisfies (6)

S e ds  W(t) t1 [T dW(u)
s -1 —_ - =
a(t) X't J: ¥(s) s B-1 B-1J. u

for t— oo,

Proor. For any partial limit H we get from (6) and Corollary 1 that
J7 H(x)x™" dx <  and from Lemma 2 we get [¥ H(x)x™* dx > 0. If

(¥ (t.x) — ¥(t.))/a(t,) — H(x)
then by Lebesgue’s theorem on bounded convergence and Corollary 1 we get

f H(x)x™ dx = lim,_.. f Y(tnx) = ¥(t,) dx
‘ ! alt.) x°

N = lim, . fl ( f ’ \If(du)) o ail:,)

5! f * U (du)
= l n—oc - 1)
Mg =1, T e

the last step following by Fubini. So any sequence t,- has a subsequence ¢, — o
with

ta? " d¥(u)
(8 = Dalt,) Ji,  u™

lim,_.. finite and positive.
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The result follows by contradiction.

THEOREM 2. If for some (3> 1 the function
T dv
® K(x) :== f %

is finite and 1/K(x) is of bounded and positive increase (cf. Section 1), then ¥ is
asymptotically balanced. Conversely, if ¥ is asymptotically balanced, then for all 8
large enough, K is finite and 1/K(x) is of bounded and positive increase. Moreover
for all such B we have the representation (for x> p > q)

9) ¥(x) = ¥(p) =(8—-1) f K(s)s™ ds — K(x)x"™' + p*'K(p).
P

PROOF. Suppose ¥ is asymptotically balanced and g satisfies (6). From
Theorem 1

K(t) = r(t)a(t)/t° !
where
0 < ¢, = lim inf, .r(t) < lim sup,_.r(t) < c, < .
On the one hand, for large x
lim sup,_..(K(tx)/K(t)) < c.lim sup(a(tx)/a(t))x~ ¥ < cyx"*!
and p — 8 — 1 < 0 ensuring 1/K € PI, and on the other
K(tx)

lim inf, . 500 = x>0
ensuring 1/K € BI.
Conversely suppose K given by (8) satisfies 1/K € BI N PI. Inverting (8) we
have

Y(x) — V@) _ o f K(ts) 5y g _ o1 K(t2)

TR K() K@ &
For any sequence t,. — o there is a subsequence t, — « such that
. K(t.x) _
lim,, e K©) S(x)

weakly with S(x) finite and positive for all x. It follows that

l.m \I,(tnx) - ‘I’(t)
e TR ()

Obviously H(x) is finite for all x > 0. We show H(x) > 0 for some x > 1. If not

=(B-1) J; Sw)u’? du — x*1S(x) + 1 =: H(x).
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and H(x) = 0, x = 1 we have

(10) (B-1) f Swu?du=x"'S(x) —1 for x>1.

Differentiation gives S’(x) = 0. Substitution of S(x) = c¢(x > 1) in (10) then gives
¢ = 1, which means that 1/K is not of positive increase.

REMARK. The following parallel statement can be proved: U is asymptotically
balanced if and only if for some 8 > 0 the function P defined by P(¢t) = [6v*U(dv)
is of bounded and positive increase. Also then a(t) < t *P(t) (t — ). This will
be used and proved in a forthcoming paper by de Haan and Stadtmiiller.

We can now construct smoother versions of V.

COROLLARY 3. If V¥ is asymptotically balanced, there is a continuous and
strictly increasing ¥, such that ¥,(t) > W¥(t) and ¥i(t) — ¥(t) < a(t) as
¢t — . Even more: There exists a twice differentiable ¥, with ¥,(t) > ¥(¢t) and
Vy(t) — ¥(t) X a(t). Both ¥, and ¥, are asymptotically balanced with a(-) as
auxiliary function. If we set W3 (t) = Wy(t'/*~V) then —1/x(¥#(x))” € BI N PI and
—x(¥$(x))” X (¥3(x))".

PrOOF. Let ¥i(x) = (8 — 1)x"' [ ¥(s)(ds/s”) and from Theorem 1 we
obtain (¥,(t) — ¥(t)) <a(¢). To check if ¥, is asymptotically balanced use (8):
Partial integration gives

¥i(x) = ¥(x) + x* ' K(x)

and from (9)
(11) Vi(x) =¥ (p) + (B—1) f K(s)s"% ds + p*'K(p)
so that

V(tx) — @) _ *K(ts) ,_

T oke B TD) ke %

As in Theorem 2, we obtain that ¥, is asymptotically balanced and from Theorem
1 we see that an auxiliary function is t*"'K(t) a(t). Similarly, define W¥,(x) =
(B — 1)x”7! [ ¥,(s)(ds/s”). By analogy with the above paragraph, ¥, is asymp-
totically balanced with auxiliary function a(-) and ¥,(t) — ¥,(t) < a(¢) and so
Wo(t) — W(t) X a(t).

Set ¥y = ¥ and ¥¥(t) = ¥,(tV4Y), i =0, 1, 2, and we get ¥ (x) = x Iz
(Y#1(w)/u?) du,i=1, 2. Then

(12) (¥¥(x))" = 27 (¥ Hx) — ¥Ei(x))
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so that

f(¥i(x) — (Y1)} — (¥i(x) — ¥i(x)

(¥3(x))” = o

_ x{(¥Ex)” — (Y1)} — x(¥i(x)’
x2

(from (12))

(Y1)’

X .

It is easy to check that ¥, is asymptotically balanced with auxiliary function a(t)
iff ¥* is asymptotically balanced with auxiliary function a(t/‘*-V). Therefore
setting K*(t) = 7 (d¥&(u)/u) we get from Theorem 2 (with 8 = 2) that 1/K* €
BI N PI. From the analogue of (11) for ¥} (set 8 = 2 and replace K by K*) we
get

(¥1(x)) = K*(x)

and so

—(¥¥(x))’ _ —K*(x)
x x

(¥3(x))” =

It follows that —1/x(¥3(x))” € BI N PI.
Lastly, from the expression for (¥3(x))” we have

(Y3 (x))’ =f sT'K*(s) ds

and by property a. of Section 1

(W) _ [:s7K*9)ds
—(¥5(@)" K@

ExXAMPLE. The function

x
\Il(x) — f t—a(~/+sinloglogt) dt
1

(a > 0) is asymptotically balanced for vy > V2 and is not for ~ = V2 (cf. de Haan
and Ridder, 1979, example 7.2).

We conclude this section by giving a different formulation of the property of
asymptotic balance.

PROPOSITION. A nondecreasing function ¥ is asymptotically balanced if and
only if there is a positive function a(t) such that

V(tx) — U(t) l
(t)

lim sup,.« <o forall x>0
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and
W(tx) — W(t)
a(t)

lim inf,_.. >0 for some x>1.

PRrOOF. It is clear that Definition 2 follows from the properties given by the
proposition. Conversely the two properties follow from the representation (6):
For x > 1 we have

, _n | K@) _ Y(x) - ¥(@)
cx'=(B—-1) ) s"2ds+ 1= R
5—1 _ K_(tx) = Ki(tx) 1 K(tx)
= (xf 1) ko~ Ko +1=1 K©)

and the lim inf (t — o) of the last expression is positive for large x. The necessary
result for x < 1 is similarly checked.

REMARK. This definition should make it possible to study the property of
asymptotic balance in a nonmonotone context. It also proves that one always
can take a(t) = ¥(tx,) — Y¥(t) for some x, > 1.

3. Conditions on F for stochastic compactness. From the previous
work, we know F is stochastically compact if and only if ¥(¢) = (1/(1 — F))—(¢t)
is asymptotically balanced. Corollary 1 (iij) informs us that for large ¢t we have
¥(t) < ct”. Upon inverting we find that if x, = o, 1 — F(t) < ¢’t”"/*. So some £
satisfies (6), i.e. 8 — 1 > 3p, iff ultimately (1 — F(t))"! <c’t™? iff

W*(t) = WY V) < et

This choice of 3 guarantees that [7 [7 (1 — F(s))"™" ds dy < .
We begin with a lemma which shows a stochastically compact distribution can
be replaced by a smooth distribution.

LEMMA 3. Suppose F is stochastically compact and ¥ = (1/(1 — F))~. Define
V., ¥, as in Corollary 3 and define distributions F;(i = 1, 2) by
1

—— =¥,

1-F;
Thenl1—FX1—-F;astTx (i=1,2).

ProOF. Without loss of generality we may suppose 8 = 2 which amounts to
replacing F by the stochastically compact F, with tail 1 — F,(x) := (1 — F(x))"".
Also V¥ is replaced by ¥, (x) := ¥(x"*""). Using (8) and the fact that a(t) <
tK(t) = ¥,(t) — ¥(t) we have for a typical subsequence {t,}, t, — o for which
t.K(t,)/a(t,) — c and (K(t,)) 'K(t,x) — S(x), that

Y(tx) = Wit) _ . “Kits) o Kltx)

at,) lme ) Ry %7 K - B®

lim,,_..
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weakly with H(x) = ¢ [1 S(v) dv — cxS(x). Inverting we obtain

1
ta(1 — F(¥1(ta) + xa(tn)))

By passing to a further subsequence if necessary, we may suppose convergence
holds at x = 0. Since H(1) < 0 and H(x) > 0 for some x > 1, we get for this
inverse: H—(0) > 0 and (draw a picture!) H(¢) < o for some £ > 0. Since
1 — Fy(¥,(t,)) = t,' we obtain on setting x = 0 that
—_ 1 i L= B()
"7 (1 = F(¥1(t,)) "1 = F(¥(t)
exists finite and strictly positive.

Because ¥, is continuous and strictly increasing, we conclude any sequence
s, —  has a further subsequence ¥,(t,) such that 1 — F,(¥,(¢,)) <X 1 — F(¥,(¢,)).
The result follows for 1 — F, and a similar proof works for 1 — F,.

We provide a representation theorem.

lim,, = H (x) weakly.

THEOREM 3. F is stochastically compact if and only if there exists a distribution
Fy satisfying 1 — F(x) X1 — Fy(x) as x | x, and for some 2, < x,

(13) 1—F#(x)=exp{—f %}, 20 < x <X

with f(x) > 0 and f'(x) bounded on (2o, xo].

PROOF. Suppose F is stochastically compact. As in the previous lemma, we
may without loss of generality suppose 3 = 2. Then ¥, from Corollary 3 satisfies
—xV¥3 (x)

Vi
and Wy(x) — ¥(x) < a(x), x — . Set ¢ := ¥5 and 1 — Fy = 1/¢. Lemma 3
assures us that 1 — F <1 — Fy. Now f = ¢/¢’ = ¢¥3(¢) and hence f’' = (¢/¢’)’
=1+ (¢¥7(¢)/¥35(¢)). The assertion follows.

Conversely suppose F; has a representation as in (10). It is sufficient to prove
that a distribution function with tail (1 — Fj)* for some « > 0 is stochastically
compact. Take « such that a7'f’(x) = ¢ < 1. Set ¥ = (1/(1 — Fy)*)~. For some ¢
>0, M < « we have

< —y¥"(y)
¥ (y)
Now 1/¥’ is of positive and bounded increase since ey~ < (d/dy)log(1/¥’(y)) <
My~ It follows, since

<=M forall y€E (2, x0).

W(tx) — W(t) f TYts)
() D W)

that ¥ is asymptotically balanced, hence F is stochastically compact.
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COROLLARY 4. If F is stochastically compact
1—-F(x—)X<1-F(x) for x7 x.

EXAMPLE. Von Mises’ well known example of a distribution function for
which the normalized sample maxima do not converge

F(x)=1—e™™ (x=0)

clearly satisfies the requirement of the theorem with f(¢) = 1.

COROLLARY 5. F is stochastically compact if and only if for some 2z, < x

1-F(x) = c(x)exp{— J; % dt]l

with g(x) < ¢(x) X1, f> 0 and f’(x) bounded on (2o, xo).

PrOOF. It is easy to check, for example by looking at the inverse functions,
that if U € BI N PI, then the two probability distributions F; and G related by

1 1
1-¢_ U'1_F,
are either both stochasfically compact or neither is.
Set
Fyx) =1 —exp[— fx—l—dtl , 2<x<x
| Ju 107
and

Ux) = exp{f g° (/1 = F))7(s) ds} .

0 S

One readily checks U € BI N PI and
1 " g
log Ul ——————)) =2—=.
( & (1 - F#<x>)) @)
THEOREM 4. F is stochastically compact if and only if [ (1 — F(s))*™' ds is
finite for some 3> 1 and
[ (1 = F(s))” ds
M (1 = F(x)) [ (1 — F(s))"" ds
J¥ (1 = F(s))’ ds <1
F(x)) [ (1 — F(s))" " ds '

0 < lim inf,
(14)

< lim sup,y,, 1=

PROOF. Suppose F is stochastically compact and, as in Section 2, set K(x) =
[% u™"" d¥(u) so that 1/K(x) € BI N PI by Theorem 2. Return to (7) and note
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that this relation holds for 3 replaced by 8 + 1; i.e.

, ¢ d\I/(u) J’
(15) lim,, ... Bal) f H() ,,ﬂ

Dividing (15) by (7) gives

t, Jru”d¥w) B Jf Hx)x " dx
Jou™ " d¥(u) T B-1 [t Hx)x™ dx

_ Ji Hx) d1 = (1/x7))
JT H(x) d(1 = (1/x"7)°
The extreme right hand side of (16) is clearly greater than zero and also less than

one since by Lemma 2, H(x) # 0 for x > 1. Using the transformation theorem for
integrals to change variables in (16), we thus obtain

im i t J.fly(l) 1- F(u))ﬁ du

0<l1 f . A
an I (1 - F@)™ du
t [9, (1 — Fu)’ du
[ 1 — Fw)* ' du

Replacing t by (1 + ¢)/(1 — F(t)) and using ¥((1 — ¢)/(1 — F(¢))) =t =
Y((1+¢)/Q — F(t))) gives

lim, .

(16)

< lim sup;.« <l

(1+¢) JQaraya-roy (1 — Fw)’ du
0 < lim inf,, x ~
1 - F@) F¥asoya-ray (1 — Fw)*™ du

- hm inf 1+ o (1 — F(w)” du
™01 — F(t) & asasa—roy 1 — Fw)’ ™ du’
The integral in the denominator is K((1 + ¢)/(1 — F(t))) and because

¢; <lim inf, . K((1 + )t)/K((1 — ¢)t)

(1/K € BI) we get
1 2 (1 — Fw)” du
- F@) ffl?((l+c)/(1—l~‘(t))) (1- F(u))ﬁ—l du
2 (1 — F(w)” du
- F@®) [? (1 = Fw)*" du’

giving the left inequality of (14). The right inequality is more delicate. Set J(x)
= [7s7?K(s) ds = x'K(x) — [T u™ d¥(u) so that from (16)

o J(x)
(18) lim inf, .. K& > 0.

By property b of Section 1 there exists m > 0 such that x™J(x) is increasing.

0 < lim inf,,, 1

< lim infy,, a
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Hence for any e > 0
19) J((1 = e)t)/J(1+e)t) = (1 —e)7' (A + &)™

From the definition of J and the transformation theorem for integrals

X0

J(x) = f w B (xT = uY) d¥(u) = J;( ) 1 - F(s))”Y(x™' — (1 — F(s))) ds.
It follows that

1—c¢ - f *o _ - _ _ _
J<1 - F(t)) = Juctroipy (&~ FO A = F@©) = 0 = F(s)) ds

and holding the nonnegative integrand fixed and using ¥((1 + ¢)/(1 — F(t)))
= t we get this is at most

J:v (1 = F(s))"((1=F(t)) — (1 — F(s))) ds

(20) X X,
= (1 - F(t)) f (1 — F(s))" ds — f (1 = F(s))’ ds.
Therefore
0 < lim inf,_.x J(x)/K(x) (from (18))

(I = e)J((A —€)/(1 = F(¥)))
= Ft)K((1 = ¢)/(1 — F(1)))

(1 + &)"J((1 + €)/(1 = F(¥)))
&)" (1 — F(t)K((1 — e)(1 — F(¢)))

< lim infthO (1

(from (19))

< lim infy,, 1=

. (1+¢em
< lim infy,, (1_—8;"1_1
l(l — F(t)) [° (1 — F(s))’ ' ds — [} (1 — F(s)) dsl
(1= F(@) [ (1= F(s))’"ds

(from (20) and the form of K).
Pick ¢ > 0 sufficiently small and we obtain

(1 = F(s))’ ds

B $UPes (T p()) [ (1 = F(s)) ds

as required.
Conversely suppose (14) holds and set
[® (1 — F(s))® ds
(1= F(x) [ (1 — F(s))*'ds "~

r(x) =
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Observe that

PRNAIES PR
de T2 (1= Fw)y™ du) ~ \[* 1 - Fw)™ d

)(r(x) -1)<o0
u

for sufficiently large x. So there is a continuous strictly increasing function F,
such that for sufficiently large x

1 - Fix) = fo 1 - F(w))”? du/f ' 1 - Fw)"'du

1-Fi(x) .. 1 - Fi(x)
% 1= Fx) ® < lim supyqy, 1= Fo)

and

<1

(21) 0 < lim inf, ) .

It suffices to verify that F, is stochastically compact and this we do by means of
Corollary 5.
Observe that

(1 — r(x)
J2 (1 - F(w)’ du/(1 — F(x))’

d
g5 (Tlogl — Fi(x) =

_ (1= r) = Fx)'/Q = Fix))”
S (1 = Fw) du/(1 — Fi(x))’

and setting

_ [P (1 = Fu)® du
&) = Ry

and
(1 — r(x)( — F(x))*
(1 - Fi(x))* ’

&(x) =
we obtain the representation of Corollary 5.

REMARK. This criterion corresponds to Theorem 2.8.1 of de Haan (1970) for
weak convergence of the sequence {X,.}.

An alternative set of conditions is contained in the next theorem.

THEOREM 5. F is stochastically compact if and only if for some 8 > 0

fofo(l—F(s))"dsdy<oo
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and

(1 = F(x))’ [ [ (1 = F(s))° ds dy
(22) 5 < lim lnfxTxo (J-;O (1 _ F(y))ﬁ dy)2
(1 = F(x))? [? [ (1 = F(s))’ ds dy
(J2 (1 = F(y)° dy)*

< lim supyq, < o,

PROOF. Suppose F is stochastically compact. Without loss of generality we
may suppose 8 = 1 in Theorem 4. With this convention in mind, we proceed by
establishing a sequence of identities.

First we observe by the transformation theorem for integrals

(23) J;(O) (1 - F(s)) ds = f u™t d¥(u) = K(x).

Next observe that by Fubini and (23)

f(o) fo (1 = F(s)) ds dy
d\Il(u)

= J;(O) s(1 — F(s)) ds — ¥(x)K(x) = f V(u) — — ¥(x)K(x)

- f f d¥(s) d—‘I;(“) = f ( f d‘“‘”) d¥(s)
00 = f * s( J’ ” d\I/(u)) d¥(s)
x s u S
_ f ” J’ W f * dW(u) d¥(s) | f * d¥(u) d¥(s)
x x s u S x s u S
_ f * < f * J’ * d¥(u) d\I/(s)) o + xK2(x)
x v s u S 2
= {f K?*(v) dv + xKQ(x)I[/Z

Finally we have (recalling 23)

[0 J3* (1 — F(s)) ds dy l
([, (1 = F(s)) ds)? 2| xK*x)

[[5 K*w) du 1} .
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Because 1/K € BI N PI, we get from property a of Section 1 that
T8 [ (1 = F(s)) ds dy

x([¥n (1 — F(s)) ds)?

S I3 (1 = F(s)) ds dy

2(J ¥ (1 = F(s)) ds)®

We then get (22) by replacing x by 1/(1 — F(t)); this step is made rigorous in
exactly the same manner as the analogous problem was handled in Theorem 3.

Conversely, suppose (22) holds and again without loss of generality let 8 = 1.
As in the proof of Theorem 3 we find that for large x

X9 2 X0 X0
1 — Fy(x) := <f (1 — F(s)) ds) /f f (1 = F(s)) ds dy
x x Yy

is a distribution tail and 1 = F; )< 1 — F. Furthermore let

h(x) = (1 — F(x)) f—o J‘-o (1 = F(s)) ds dy/(fo (1 - F(s)) ds)

and we find

1 < lim inf, .
2

< lim sup, .«

(2h(xy — 1)
2[5 (1 = F(s)) ds dy/[? (1 — F(s)) ds

d
4y (log(l = Fu(x))) =

and setting g(x) = 2h(x) — 1,

f(x>=f°f°<1—F<s)> dsdy/f°<1—F<s)) ds

enables us to verify the representation in Corollary 5 is satisfied. Thus F, and
hence F is stochastically compact.

REMARK. This criterion is comparable to that of Theorem 2.5.2 of de Haan
(1970).

4. Particular cases and examples. One can distinguish two particular
cases: a(x) <1 and a(x) <X ¥(x) corresponding to the situations where either no
scaling or no shift is necessary. We now show how the conditions particularize.
First we have the following connection.

THEOREM 6. If the sequence of maxima X, X,, - - - is stochastically compact
with norming constants a, >0and b, ER (n=1, 2, - -.), then for some positive
sequence {B,} all partial limit laws of {X,/8,.} are proper and have no atom at the
origin (but may possibly be degenerate) and ¥ € BI.
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PrROOF. From the representation (9)

(x)

¥(x) — ¥(p)
x 1K (x)

21K (x)

lim inf,_,. = lim inf,_..

1
o K(sx) o o\ s2 oo
= j: lim inf, . KGs) (8 —1)s"7ds — 1.

Since this holds for every ¢, we may let ¢ | 0 and obtain

. ¥(x) f . Kxs)
lim inf, .. ) > X lim inf,_.. K@) ds—1>0.

Hence for x > 1

W(tx) ~ 1 < lim su Y(tx) — ¥(t) lim su t"IK(t)
0 = M SUPe—e T ) P g 1)

Hence V is of bounded increase and, by de Haan and Ridder (1979, Remark 4.1),
the result follows.

The exponential distribution shows that indeed not all limit laws of {X,/B.}
are necessarily nondegenerate.

The particular case in which no shift is necessary, i.e. in which b, = 0
(n=1,2, ---)is a possible choice to obtain proper and nondegenerate limit laws,
corresponds to the case

t"IK(t) X oa(t) X Y(t) (t— »)

lim sup,_.«

or

vy <o | O _ (g e f Y6 46— w),

8,11—1 Sﬂ

corresponding to ¥ of bounded and positive increase as it should. This can also
be expressed as 1/(1 — F) € BI N PI (property c of Section 1).

Similarly, the particular case when no scaling is necessary, ie., a, = 1
(n=1,2, ---), to obtain proper and nondegenerate limit laws, corresponds to

K@) Xa(t) X 1

ie.

p1 d‘I’(s) - (,8 _ l)tﬁ—l f % ds — ‘I’(t) XL

sﬁ—l

This again corresponds to
lim sup;_..¥(tx) — ¥(t) <o forall x>1
and
lim inf, . ¥(tx) — ¥(t) >0 for some x>1.

This can also be expressed as (1/(1 — F)) o log € BI N PL. Cf. Remark (b) after
Corollary 1 and also Anderson (1970).
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ExAMPLE. The distribution function
F(x)=1-(logx)™ for x=e

is not stochastically compact since the tail is not bounded by a power function.

ExXAMPLE. The Poisson distribution
F(x) = Yiex €7 (N*/R))
satisfies

1—F(n—1)_oo
1-F(n)

and hence is not stochastically compact according to Corollary 4.

lim, e

EXAMPLE. The partial limit distributions for the geometric distribution
Fx)=1—-e x>0
([x] = integral part of x) are (with the choice b, = log n, a, = 1)
G(x) = exp{—exp{—[x + ¢]}}, —o<x<
with0<e=<1.

ExAMPLE. The distribution function
[
F(x)_l_exPl J; 2t + cos ¢t/

is stochastically compact by the representation of Theorem 3.

ExAMPLE. The distribution function

_ If" dt |
F(x)_l_exPl_ o tH(2 + cos t)]

is stochastically compact by the representation of Corollary 5. Set g(t) = (2 +
cos t)7', f(t) = t. It is not clear how to fit this distribution into the representation
of Theorem 3.

ExAMPLE. For the distribution function

F(x) = 1 — exp{—a(¥2 + sin log log x) log x} (x = e)

one has (de Haan and Ridder, 1979, example 7.2.) 1/(1 — F) & PI and so by
Theorem 6 and property c of Section 1, F is not stochastically compact.

ExXAMPLE. We apply the criterion of Theorem 5 to von Mises’ example
F(x) =1- e—.\'—sinx (x > 0)
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Choose 3 such that e*” < 2. We have forx < 1
e—/ix—/f < {1 —_ F(x)}ﬂ < e—ﬁxﬂf
hence

B—le-ﬁx—/f < f {1 — F(t)}’j dt < B—le—/fxﬂf

and

Bl < f f {1 — F(t)}® dt dy < %™,

It follows for x = 1

o1 < gt < (L= FOWE [T (0= F@) dtdy} _
- - {J£ (1 — F()) dt}? ’

.
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