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LIMIT LAWS FOR THE MAXIMUM OF WEIGHTED AND
SHIFTED ILI.D. RANDOM VARIABLES

By D. J. DALEY' AND PETER HALL

Australian National University

Gnedenko’s (1943) study of the class ‘¢ of limit laws for the sequence of
maxima M, = max{X,, ---, X,-,} of independent identically distributed
random variables X,, X), - - - is extended to limit laws for weighted sequences
{w.(v)X,} (the simplest case {y"X,} has geometric weights (0 = v < 1)) and
translated sequences {X,— vn(8)} (the simplest case is {X, — né} (6§ > 0)).
Limit laws for these simplest cases belong to the family ¢ characterized by
Gnedenko; with more general weights or translates, limit laws outside ¥ may
arise.

1. Introduction. Let {X,} (n =0, 1, --.) be a sequence of independent,
identically distributed (i.i.d.) random variables (r.v.’s) with distribution function
(d.f.) F, and define

(1-1) Mn = max(Xh D) Xn) =d maX(X(), X19 M) Xn—l)-

In a classic paper Gnedenko (1943) exhibited the class & of all possible non-
degenerate limit laws that can arise from such sequences {M,}, and discussed
domains of attraction for the elements of & (that is, given the common d.f. F of
the X, what properties of F' determine whether G € ¥ will be its limit law?).
This work has been expounded and extended in de Haan’s (1970) tract, see also
Balkema (1973) and Galambos (1978).

The present paper has its origins in the asymptotic behaviour of an extreme
case of a storage model (Daley and Haslett, 1982, and Daley, 1984), namely, in
studying possible limit laws as 7 1 1 of the r.v.

(1.2) Y(y) = supn=ofy"X,}, 0=y <1,

in the case that X, = 0 a.s. This observation led us to investigate limit laws using
sequences {w,(y)} of weight functions more general than the geometric, and also
to consider the possibility of r.v.’s like

(1.3) Z(0) = sup,=0{X, — né} (y>0)
with the prototype sequence of translates {né} replaced by the indexed sequence
{0 (5)}.

In what follows, we always take 0 < v < 1, where

wo(y) =12 w,(y) = wWpta(y) 20, (n—>m), w,(y)—1 (y—-1),
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572 D. J. DALEY AND PETER HALL

and 0 < § < 0, where
0o(8) =0 < 0,(8) < Vp41(8) > 0, (n—> o) and v,(6) >0, (56— 0).

In Section 2 we discuss the existence (i.e., a.s. finiteness) of r.v.’s like Y(y)
and Z(8), and investigate the limit law behaviour in Sections 3, 4 and 5. When
the limit law of {M,} is of the double exponential type, limit laws exist for both
Y(y) and Z(8) and are also of double exponential type; when {M,} has any other
limit law, a limit law for Y (y) will exist and for Z(8) may exist, but not all three
limit laws will be the same. The results are summarized in Section 6 where also
a duality between Y (y) and Z (5) is exploited. Connections between the functional
equation of Gnedenko’s general theory and the present limit laws are exhibited
in Section 3, and there and in the subsequent section we exhibit examples of
non-degenerate limit laws lying outside ¥

For the sequences {w,} involved, the supremum is evidently zero unless
Pr{X, > 0} > 0, while for {v,}, if either of the r.v.’s Z(6) and Z(8) + A has a limit
law (where A is any constant), then so does the other and the laws are of the
same type. Accordingly we shall assume throughout that

(1.4) Pr{X <0} =0, Pr{X>0}>0,
and define the positive (and possibly infinite) quantity
(1.5) ¢ = supfx: F(x) < 1}.
More generally than (1.2) and (1.3) we define
(1.6) M(y) = M(y; w) = supnzofwn(v)Xa},
(1.7) Z(8) = Z(3; v) = supy=0{X, — v.(8)},
and
(1.8) M(v, 8) = M(y, 6 w, v) = supn=o{w,(v) X, — v,(8)}.
Observe that if w,(y) =1or0asn(l —+v) < or > 1, then
(1.9) M1 - 1/n; w) = My,

so any results that we prove for M (y; w) must hold true for {M,}.

2. Existence. In this section we discuss the a.s. finiteness of the r.v.
(2.1) M= M(w, v) = supp=o{w.X, — U}

for given sequences {w,} and {v,} for which v, 20,0 < w, < 1.

THEOREM 1. (a) Either M < x. a.s. or M = o a.s.
(b) M < = a.s. if and only if either

(i) Z < o, 0r
(ii) # = =, and {v,} and {w,} are such that
(2.2) Y=o [1 = F((x + v,)/w,)] <

for some finite x.
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REMARKS. If w, = 0 for any n then the corresponding term in the sum at
(2.2) is taken equal to zero.

The condition at (2.2) can be expressed in terms of a functional inverse as
follows, assuming that (x + v,)/w, ultimately increases monotonically. This is
true in particular when {v,} and {w,} are sequences as in Section 1. And, note
that (2.2) cannot hold when # = = unless either v, — % or w, — 0 (or both) as
n — oo; then it is no loss of generality to take x = 1 as in the following.

Let h(y) be any nondecreasing function satisfying for y = 1

(2.3) h(y) = inffn: (1 + v,)/w, >y} < h(y) + L.
Then (2.2) is equivalent to the condition
(2.4) Eh(X) < .

For example, when v, = 0 and w, = v", we can take h(y) = (log y)/log(1/v),
and the finiteness of

E log(max(1, X)) = E log(1 + (X — 1).)

ensures that Y(y) at (1.2) is well-defined, as asserted in the introduction.
Similarly, when w, = 1 and v, = nd, we can take h(y) = (y — 1)/6, and so the
a.s. finiteness of Z () at (1.3) is equivalent to requiring EX, < .

PROOF OF THEOREM 1. (a) Since M is a function of the independent r.v.’s
{w, X, — v,}, the zero-one law implies that Pr{M < o} =0 or 1.

(b) If (i) holds then M <  a.s. by inspection of the defining relation (2.1). In
proving (ii) we may assume that w, > 0 for all n. Now M = « a.s. if and only if
for all x,

Pr{w,X, — v, > x infinitely often} = 1,

and by the Borel-Cantelli lemma for independent events, this condition is
equivalent to -

o= Y% Priw,X, — v, > x} = Trco [1 — F((x + v.)/w,)].

3. Gnedenko’s class ¢ and limit laws for M(vy, 8). It is appropriate at
this stage to recall certain facts about the class &. First, by a limit law G
(understood to be nondegenerate) we mean that for some sequence of constants
{a,}, {b.} the sequence of d.f.’s {F,} has

F.(a,.x + b,) = Glex + d), (n > x)

for all points of continuity cx + d of G. Here, ¢ > 0 and d is any constant. Thus,
we do not distinguish between G(x) and G(cx + d) in identifying this d.f. as a
limit law: we say that G(x) and G(cx + d) are of the same type.

Next, recall that Gnedenko (1943) identified the class & of limit laws for
{M,} as comprising all d.f’s G such that, for every integer k = 2, 3, - .- there
exist constants a, by for which

(3.1) (G(x))* = G(agx + by) (all real x).
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Moreover, ¥ = ¥, U % U ¥, where the limit laws in these three classes are as
follows (the parameter « is any positive constant):

fo (x < 0),

(3.2) G = 2(®) =\ exp(—x=) (x> 0);
(3.3) G(x) = ¥, (x) = .{ixp(-(—x)") g ; 8;:
(3.4) G(x) = A(x) = exp(—e™) (=0 < x < ™).

Suppose that for families of sequences {w,(y)} and {v,(5)} as in Section 1 we
can write 6 = (y) such that 8(y) | 0 as v 1 1, and that there exist functions a(y)
and b(y) with a(y) > 0 such that

(3.5) aM + b = a(y)M(y, 6(v); w, v) + b(y)

converges to the limit law Has vy 1 1.

THEOREM 2. If aM + b at (3.5) converges weakly to the limit law H as v 1 1,
then for every integer k=1, 2, - - -

(3'6) Mk = Mh(77 6(7)’ w, U) = Supn>0{wnh(7)Xnk - Unk(a(‘y))}

has aM,, + b converging weakly to H, = (H)Y*. Conversely, the convergence of
aM,. + b for any integer k implies the convergence of aM + b to a limit law H and
hence of aM, + b to (H)* for every k.

PROOF. Since wn(y) 1 1and v.(6(y)) | Oasy 11,
SUPo=n=r{Wn (¥)Xn — Ua(8(y))} = SUPosn<,Xn, (v T1)
for each positive integer r. Consequently, defining
M(r) = suppzr{wa (v)Xn = va(6(¥))}, -

it follows from (1.4) that for each such r, Pr{M = M(r)} — 1 as v 1 1. Then, for
any a(y) and b(y), we have as vy 1 1

SUP—w<y<w | Pr{aM + b < y} — Pr{aM(r) + b < y}|
< PriM # M(r)} — 0.
Fix the integer k = 1, and let H™" denote the d.f. of aM(r) + b so that
HY™®(y) = [I7_ Fl(y = b(y) + a(y)va(v))/a(v)wa(v)]
= [1k0 I, Fl(y = b(v) + a(y) + a(¥)vne+i(¥))/a(y) Wk (¥)]-

By the monotonicity properties of {w,(y)} and {v.(y)} in n, each infinite product
on the right-hand side is bounded above and below by Hy"*" and H o
respectively, where

HO" = T2, Fl(y — b(y) + a()vau(v))/a(v)wae(¥)]-

(3.7
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(Since F(0+) < 1, we need only consider y — b(y) + a(y)v..(y) = 0.) Therefore
Ho™(y) < (HY™ (y)* < HOO9(y),

But it follows from (3.7) that for each r and k&,
SUD_aocyco | HY™(y) — H(%(rﬂ)h)‘( y)| >0

as v 1 1, and by taking r = 0 and using (3.7) a second time it also follows that

(3.8) SUP—wey<e | Pr{aM + b < y} — (HYV ()| — 0.
The argument establishing (3.7) can be used to show that
(3.9) SUP—wey<o| HYV (y) — HEO(y)| = 0

for v 1 1. Combining (3.9) and (3.8) proves the results as claimed.

COROLLARY 2.1. M(y, 6(v)) has a imit law in ¥ if and only if for each k,
M, (v, 6(v)) has a limit law in <. In this case the limit laws of M and M, are of
the same type.

PrOOF. Recall (cf. (3.1)) that the class & has the property that G € ¥ if
and only if (G)Y € ¥ for every positive rational ¢, and that the laws G and (G)?
are then of the same type. The assertion now follows from the theorem.

Another corollary also follows immediately:

COROLLARY 2.2 H € ¥ if and only if each H} is of the same type as H.

THEOREM 3. If for each k there are constants ax, b, and a function f.(vy) such
that My (y) =4 axM (fe(v)) + b then HE <.

PrOOF. Let a(y)M(y) + b(y) converge weakly as v 1 1 to the limit law H.
Then by Theorem 2, a(y)M.(y) + b(y) converges weakly with limit law H, =
(H)'*. But we can also express the convergence of M as a(fi(v))M(f:(v)) +
b(f.(v)) converging weakly with limit law H. Consequently, by Theorem 2.1.1 of
de Haan (1970), H and H,, are of the same type, and the theorem follows from
Corollary 2.2.

EXAMPLE 1. Limit law for Y (v). Referring to (1.2), it is clear that
Yi(y) = supneoly "X} =a Y(v¥),

so limit laws for Y are in ¥.

EXAMPLE 2. Limit law for Z(6). Referring to (1.3),
Z(8) = supp=of{Xu — nkd} =4 Z(kd),

so limit laws for Z are in ¥.
It is important to note here that no claim is made about the limit laws of Y (vy)
and Z(8) being the same, or being the same as for M,,.
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EXAMPLE 3. Limit laws for polynomial weights. Suppose
wa(v) = (1 +n(l - %), v.(8) =0.
Then taking h(y) = (y"— 1)/(1 = v)(cf. (2.3)), a.s. finiteness of M(vy; w) is
ensured by the finiteness of EX'/" (cf. Theorem 1). Further,
Mi(v; w) =¢ M(1 — k(1 — v); w),

so limit laws for sup,»o{X,./(1 + n(1 — v))"} are in &

EXAMPLE 4. Limit law not in & Given i.i.d. {X,}, suppose that both {M,}
and Z(8) have limit laws but that the limit laws differ. Introduce w,(5) = 1 and
Un(8) = (r(6) — n).6 for some integer-valued function r(.) to be specified. Then

M) = sup,=0{X, — (r(8) — n).8} =4 max(M,s), Z(3)),

with M, and Z(8) independent. By choosing r(-) so that r(5) — o (6§ — 0) and
Pr{M(6) = Z(6)} = 1 — Pr{M(8) = M,;s} » 0 or 1 as 6 — 0, then any limit law
for M(6) € & because the d.f. is the product of two different types of d.f. in &

In a little more detail, for example, suppose the d.f. of X; is &, for some a > 1,
and define r(5) as the integer part of 1/6*/““"". Since the law of eM|; .« equals &,
whenever 1/¢“is an integer, then the limit law of 6"V M, equals ®,,, while the
limit law of 6/“~YZ(5) (cf. Theorem 7 below) is

lim,_oPr{s"“PZ(5) < y} = exp(—y~“V/(a — 1)).
4. Domains of attractions for weight functions. In detalhng the precise

analytical form of a (nontrivial) limit law as 7 11 for the r.v.’s M(y, 6(v); w, v),
equivalently of a limit for

H™(y) = Pr{a(v)(M(y, 8(y); w, v) + b(y)) < v}
=I5 FI(b(y) + va(y) + y/a(¥))/w.(¥)],

it is evident that some assumptions are needed concerning the way that F(x) —
1 as x — Z, and that for each fixed ¥ we must have

(4.1) lim inf, . {(b(y) + v.(v) + y/a(y))/wa(y)} = 7.
The condition (4.1) implies that

_log H(‘Y)( y)
(4.2) = —Yn-o log F[(b(v) + va(y) + y/a(y))/w.(¥)]

= (1+0(1) X7 [1 = F((b(y) + va(y) + y/a(y))/wa(¥))]

where, because by assumption H”'(y) has a nontrivial limit as vy 1 1, the term
0(1) converges to zero uniformly on bounded intervals for y. All the results in
this section essentially start from this representation (4.2).

Recall that a function U mapping R* = (0, ) into itself is said to vary regularly
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(at infinity) with exponent p, —0 < p < o, when
(4.3) lim, . U(tx)/U(x) = t* (all x € R").

Gnedenko showed that M, has a limit law in %, if and only if # = 0 and 1 —
F(x) varies regularly with exponent —«, and that &, is then its limit law, while
its limit is in <, if and only if # < ®© and 1 — F(¢# — x!) varies regularly with
exponent —a, and that ¥, is then its limit law.

THEOREM 4. Suppose that 1 — F(x) is regularly varying with exponent —oa <
0, and that
(4.4) 0> Yoo [l = F(l/wa(y))] > o, (v T1).
Then the limit law of M (y; w) exists and equals ®,€ <.

PrOOF. The finiteness of the sum at (4.4) allows us to conclude from

Theorem 1 that M(vy; w) <  a.s.
From the monotonicity of {w,(y)} it follows that the function a(y) defined by

(4.5) a(y) = supfa: r-o [1 — F(1/a w.(y)] = 1}

decreases monotonically in v and — 0 as ¥ — 1. By the right-continuity of F and
the strict monotonicity in n of each sequence {w,(v)},

1= 350 [1 = F(l/a(v)wa(v))] = 1 = E5oo PriX = 1/a(y)wa(v)}
=1-Pr{X=1/a(y)} > 1, (y—>1).
Consequently,
(4.6) S0 [1 = FA/a(wa(y)] = 1, (v — 1)
For each y > 0 we have from (4.2) with v,(y) = 0 and b(y) = 0 that
—log H”(y) = (1 + 0(1)) X7=0 [1 = F(y/a(y)w.(v))],

where the term of 0(1) is bounded by [1 — F(y/a(v))]/2F(y/a(vy)). By the regular
variation assumption concerning F,

[1 = F(y/a(v)w.(¥))/[1 — F(1/a(y)w.(y))] = ¥y

as vy — 1, and this convergence is uniform in n because 1 = wy(y) > w,(y) (all n
and v). Thus

—log H”(y) = (1 + 0(1))y™ Tn=o [1 — F(1/a(v)wa ()]
—y = —log &.(y), (v —1).

EXAMPLE 5. Suppose F(x) = ®,(x). Then, much as in example 6.1 of Daley
and Haslett (1982), for 0 < v <1 and y > 0 we have

Pr{(1 — )" sup,=o{y"X,} < y} = exp(—y™) = ®.(y).

The limit behaviour is trivial!
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THEOREM 5. Suppose that # < © and 1 — F(# — x7') is regularly varying
with exponent —a. Then the limt law of Y (v) exists and equals V.., € &

PROOF. By rescaling we can and shall assume that # = 1. Define a(y) by

a(y) =infla>0:a7'1 - F(1 —a™) = —(a + 1) log v},
sothat asy 1 1, a(y) — .
Write
HY(y) = Pria(y)(Y(y) = 1) = =y}, (0<y <o)
= Pri{sup,-0v"X, =< 1 —y/a(y)}.

Since a(y) — ® (y 1 1), we may assume that y < a(y), and then there is a least
integer N(v) such that Y <1 — y/a(y). For n = N(y), v"X, < 1 — y/a(y) as.,
and therefore, as at (4.2),

—log H”(y) = —log Pr(NX¥™" {y"X, = 1 — y/a(v)})
=1 +0(1) XD - Fiy™(1 - y/a(y)))]

where, since 1 — y/a(y) — 1, (y 1 1), the term o(1) is bounded for given y by

[1-FQ - y/a(y)2F (1 — y/a(y)).
Since the terms in the last summation decrease monotonically in n, and each
term — 0 as vy 1 1, the sum can be approximated by the integral

log(1—y/a(v))/logy
» f [1 = Fle™*'(1 — y/a(y)))] du

= (=logy)™! f [1-FQ-vHpHv-1)"dv
aly)/y

on substituting 1 — v™! = e™°¢7(1 — y/a(y)),
= (=logy)™'(1 + o())(y/(a + V)a(y))[1 — FA — y/a(y))]

by the integral theorem for the tails of regularly varying functions (e.g., Theorem
1 of VIIL9 of Feller, 1966). But by definition of a(y), for any ¢ > 0,

1=[1-FQ-1/(aly) — e)l/l(aly) — &)(a + 1)(=logy)]

_1-F1-1@y -¢) _aly) 1-FQ1-1/aw)
1-F(1-1/a(y) a() —¢ al)(a+ 1)(-logy)

=@+ o)L = FA = 1/a(¥)))/[a(v)(a + 1)(-logy)] =1 + o(1)

as ¥y — 1, and thus [1 — F(1 — 1/a(y))l/a(y)(@ + 1)(— logy) — 1 as vy — 1.
Consequently,

—log H”(y) = (1 + o(D))y*"!, (y > 1),

proving the theorem.
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Comparison of Theorems 4 and 5 prompts the question as to whether Theorem
5 may hold with a general class of weight functions as in Theorem 4. The
following example shows that any such result would require such a class to be
more restricted than the general class of Theorem 4.

EXAMPLE 6. Suppose we are given i.i.d {X,} with 1 — F(1 — x™") regularly
varying with exponent —a. Then the limit law for {M,} is ¥,,, while the limit law
for Y(v) is ¥.s,. Much as in Example 4, consider the weights v+ where
r(v) is an integer. Then

M = sup,sofy" 7 + X,} =4 max(M,,, Y(v))

with M,(,, and Y(y) independent. By choosing r(y) appropriately, a limit law
may be exhibited for M™ as the product of the limit laws ¥, and ¥+, of M,
and Y(y). Hence, it is not in &

For example, if Pr{X, =1 — x} = min(1, ™),

Prir(y)(My,) — 1) < —x} = e

Let a(y) be determined for Y(y) as in Theorem 5. If we now set r(y) equal to
the integer part of a(y), then a nontrivial limit law for a(y)(M™ — 1) exists and
is a product as asserted. If either r(y) = o(a(y)) or a(y) = o(r(y)), then any limit
law for M is trivial (i.e., equals 0 or 1).

THEOREM 6. Suppose that 7 < « and is such that {M,} has A as its limit law.
Then a limit law for Y () exists and it too equals A.

PROOF. Appealing to (4.2), we seek functions a(y) and b(y) such that
(4.8) Xi-o [1 = F(y7"(b(y) + y/a(v))] > e™ (v 1T 1).
Observe that, because {M,} has limit law A,

(4.9) (1 = F(x + yR(x)))/[1 = F(x)] > e™

as x — Z where

(4.10) R(x) =[1 - F(x)]"" f L = Fw)] du

(see e.g. Theorem 2.5.1 of De Haan, 1970), for which as x 1 7,

R(x)

- X

(4.11) R(x)
X

-0 if /= -0 if /<o,

Further, from (4.9) it can be checked that the convergence there is uniform on
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compact sets, and therefore (as will be needed below)

1= f w1 — F(u)] du/x™ f [1 — F(u)] du

_[T1-F@&+ yR()) dy
(4.12) = J‘: 1 - F(x) "1+ yR(x)/x
=1-eV (x> ),

by restricting the range of integration to the closed interval [0, ¥’] for some
finite y’.

Supposing a(-) and b(-) are given, and that y > b(y) (for otherwise the sum
at (4.8) is not convergent), the sum at (4.8) is approximated as at (4.7) by

log[(b(v)+y/a(y))/A/logy
f [1 = Fe™®(b(y) + y/a(v)))] du

0

where the upper limit = o if / = o, and the approximation is asymptotically
.exact provided F(b(y) + y/a(y)) — 1. Assume this last holds. Substituting v for
the argument of F, the integral equals

. "/
(~log v)™* f v7(1 — F(v)) dv.
b(v)+y/a(v)

We now treat the cases / = © and / < « separately.
Supposing # = o, it follows from (4.12), written as

f v7'[1 = F(v)]dv/x™! f [1=F@)]dv—1, (x— ),

that the sum at (4.8) equals

o

(1 + o(1))(=log v)7'[b(y) + y/a(x)]™ f (1 - F(u)) du

bly)+y/aly)
= (1 + o(1))(=log v)'[b(y) + y/a(y)]™"
- [1 = F(b(y) + y/a(v)IR(b(v) + y/a(y)).
Define b(vy) as the root in (0, ) of

(4.13) Jz:(w (1 = F(u)) du = b(v)(=log v) = (1 = F(b(v))R(b(¥))

and set a(y) = 1/R(b(y)), so that b(y) = Z = o and b(y) + y/a(y) > © (v T 1).
Then from (4.9),

1 - F(b(() +y/aly)) =1 - F(b(y) +y R(b(y))
=e (1 + o()(1 = F(b(7)));
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from (4.11),
b(v) + y/aly) = b(¥)[1 +y R(b(H))/b(y)] = (1 + 0o(1))b(v);
and from (2.5.25) of de Haan (1970),
R(b((y) +y R(b((¥) = (1 + o(1)R(b(v)).

The sum at (4.8) is now seen to be equal to (1 + 0(1))e™, and the case / = x is
established.
In the case 7 < w0, with a(-) and b(.) as at (4.13), it is trivially true that when

b(y) +y/a(y) — 7,

4
(—log y)™ J; v'(1 = F(v)) dv

(v)+y/aly)
/

= (—log ¥)7'(1 + 0(1))2! f 1-F(@)) dv
b(y)+y/aly)
and the similar analysis as for # = « follows to establish the result. -
Theorems 5 and 6 with the case w,(y) = v" of Theorem 4 can be summed up
as follows:

Suppose M, has a limit law G € &; then Y (v) has a limit law in < being equal
to G unless G = V¥, in which case the limit law is V..

Equivalently, the d.f.’s F yielding limit laws for M, in ¥ yield limit laws for
Y(y) in ¥\{¥,: 0 < a < 1}. From Example 1, all the limit laws for Y(y) belong
to ¥ so there remains open the question as to whether there exists any F yielding
a limit law for Y(y) in {¥: 0 < a = 1}.

5. Domains of attraction for location functions. The same prefatory
remarks to Section 4 apply in considering possible limit laws for r.v.’s like
{Z(8): 6 > 0}. Our results are not quite as general as for M (y; w) in that it is only
for certain d.f.’s for which A is the limit law of {M,} that we have obtained results
with fairly general sequences {v,(5)} (see part (b) of Theorem 10 and Section 6,
but note also Theorem 8 where v, (5) = n'/%j).

THEOREM 7. Suppose that 1 — F(x) is regularly varying with exponent —a <
—1. Then the limit law of Z (5) exists and equals &, .

ProoOF. For all sufficiently small 6 > 0 define
a(d) = supfa > 0: a”}(1 — F(a™)) = (a — 1)8},
so that a(8) | 0 as 6 | 0. Using (4.2), we study for 0 <y < o,
H%(y) = Pr{a(®) sup{X, — ns} < y} = [[7- F(né + y/a(5)),
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SO
(6.1)  —log H?(y) = (1 + 0(1)) Tuzo [1 — F(né + y/a(s))]

=(1+0(1)) J(: [1 = F(éu + y/a(6))] du

= (1 + o(1))s7" f/ o [1 = F(v)] dv

= (1 +0(1))67(a = 1)"(y/a(6))[1 — F(y/a(8))]
=1 + o)y Ha®)'[1 = F(1/a(@))/(« — 1)b

(5.2) =(1+ o(1))y~!
provided
(5.3) (@)1 = F(1/a(8))/(@ — 1) -1 as | 0.

But, much as in the proof of Theorem 5,
1=(1/a(d) — &)[1 — F(1/a(8) — €))/(a — 1)

C1-F(/a®) -0 1 - F(1/a(3))
=1 Fa/ae) T THa s

and since by right-continuity the last term = 1 (all §), and the other terms — 1
as a(6) — 0, (5.3) holds and the theorem is proved.

REMARK. A r.v. X with ®,as its d.f. has EX <  if and only if a > 1. Since
sup,{X, — né} < « a.s.

if and only if
©>¥r o[l —Fno]=ot f [1 = F(v)] dv = 6'EX,
0
the constraint on the exponent « in the theorem is seen to be necessary.

THEOREM 8. Suppose that 1 — F(x) is regularly varying with exponent —a,
and for 0 < 8 < « define

(5.4) Z(8) = supn=o{X, — n'/s}.
Then a limit law for Z4(6) exists and equals ®,_s.

PROOF. Let a(é) be a function to be defined later, with a(§) — 0 as § — 0,
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and such that a(8)Z;() has a nontrivial limit law. With H?(y) = Pr{a(6)Z,(5)
=yl

—log H?(y) = (1 + 0(1)) T30 [1 — F(n'?5 + y/a(5))]

(5.5) =(1+ o(1)) J; [1 = F(y/a(6) + éu'’)] du

=(1+0(1))s* f BvP7 1 — F(y/a(8) + v)] dv.
0
We now establish the following analogue of Theorem 2.6 of Seneta (1976).

LEMMA. When G(x) varies regularly with exponent —a and o > 3 > 0, the
function

(5.6) Gy(x) = f V7 1G(x + v) dv
0
is regularly varying with exponent o — B; specifically,

(5.7) Gs(x)/x"G(x) — J; uP 11+ u) ™ du, (x> ).

Let y > 0 be fixed for the time being, and consider
G _ [ (o)), 8) e
2°G(x) o \x x x
yx ps—1 —a «
(5.8) _ f (2) (1 . 9) ((x £ 0)Glx +v) 1) d
o \x X x°G(x) x

+fm<2>ﬂ_1§i’£_+_‘2 dv
e \x Glx) x°

For 0 < 8 < q, the integral
© B-1 —a
INC A
b \x X X

is a beta function, and on 0 < v < yx, (x + v)*G(x + v)/x*G(x) > 1 as x — .
Consequently the first integral — 0 as x — o by dominated convergence.
As in the proof of Theorem 2.6 in Seneta (1976), with 0 <y < a — 8,

x7? f V7 IGv + x) dv = x7* f v v+ x)™*L(v + x) dv

yx yx
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where L(v) = v*G(v) is a slowly varying function,

f = (o) vy " dv
—a+n -n . — —_ —_—
<x SUPyz x4y {0 "L (0)} . (x) (1 + x) ”
© p—-1 —a+n
~ (x + yx)7"L(x + yx)x™*" f (2> (1 + 2) dv
e \X X x

fm o\ o\ " dv
=(y + 1)*"G(x + yx) N (;) <1+3_c> e

It follows that the modulus of the second integral at (5.8) is at most

® -1 —a+n
(y + D) (G(x + yx)/G(x)) Jy; (3—2) (1 + 2) v

X X

© p-1 —a+n
= (1 +oW)(y + 1) J; (g) (1 + J—‘Z) %

which may be made arbitrarily small by taking y sufficiently large. The lemma
is now established.
Applying the lemma to the expression at (5.5), we have

—log H?(y) = (1 + 0(1))86"(y/a(5))’[1 — F(y/a(5))]
= (1 + 0(1))B6 Py~ "(a(5)) (1 — F(1/a(3))].
Thus, determining a(5) by
(5.9) a(8) = supfa > 0: [8(1 — F(1/a))]"%/éa = 1},
and establishing the analogue of (5.3), —log H®(y) —y~“"# (5§ — 0) and Theorem

8 is proved.

THEOREM 9. Suppose that 7 < « and that 1 — F(¢ — x7') is regularly varying
with exponent —a. Then the limit law of Z (8) exists and equals ¥ ...

PROOF. Much as in the proof of Theorem 5, we show that, taking 7~ = 1
without loss of generality,
Pria(8) sup{X, — né} < —y} — exp(—y**!)), (0 <y < x)
where for general /
(5.10) a(d) =infla>0: [1 — F(#z — #0)]/7a < (a + 1)5}.
The details are similar and are omitted.

THEOREM 10. (a) Suppose that F is such that {M,} has A as its limit law.
Then a limit law for Z () exists and it too equals A.
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(b) If additionally # = » and

R(x) = f (1 - F(w)] du/[1 - F(x)]
(5.11) *

=EX-x|X>x) > 1l/a (x— x)
for some 0 < a < ®, then for sequences {v,(8)} satisfying
(5.12) Y=o Pr{X > v,(8)} < o,
(5.13)  Pr{sup,=ofx, — 0.(8)} — a(8) = y/b(8)} — exp(=e™), (5| 0)

where for sufficiently small § > 0,

(5.14) a(8) = supfa: Y5-o [1 — F(a(d) + v,(8))] = 1}
and
(5.15) b(8) = 1/R(a(d)).

PROOF. In the particular case v,(8) = nd of part (a), we can define a(3) in
place of (5.14) by the root of

1=6" f(a) [1—=F@)]dv= J; [1 — F(a(d) + éu)] du

= (1 +0(1) T7=0 [1 — F(a(d) + nd)).
Now the convergence we seek to show is that
exp(—e™) = lim; o Pr{sup{X, — v.(8)} — a(d) = y/b(d)}
= lim; ;o [157-0 F(a(8) + y/b(8) + v, (8))
= lim; o H®(y) say.
.~ Much as before, and in the case v,(6) = né,

—log H®(y) = (1 + 0(1)) X7-0 [1 — F(a(8) + y/b(3) + nd)]

= (1+ 0(1)) J; [1 — F(a(3) + y/b(5) + éu)] du

oo

= (1+o0(1))57! f [1 = F@)]dv

a(5)+y/b(5)

(5.16)

= (1 + 0(1))67'[1 — F(a(d) + yR(3))IR(a(5) + yR(3))
= (1 + 0(1))67'[1 — F(a(8))le™R(a(d) + yR(9)),
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using Theorem 2.5.1 of de Haan (1970),
= (1 + o(1))eR(a(d) + yR(5))/R(a(3))
— e

as at de Haan’s equation (2.5.9). Part (a) is proved.
For part (b), we have in place of the relation above (5.16) that

—log HO(y) = (1 + 0(1)) Z7-0 [1 — F(a(d) + y/b(3) + v.(3))].

In view of (5.14), in which, much as in Section 4, the infinite sum is asymptotically
equal to 1 for 6 | 0, it is therefore enough to show that we may write

Zr=o [1 — F(a(®) + y/b(3) + va(5))]
= (1 + o(1))e™ Zi-0 [1 — F(a(d) + y/b(d))].

While a direct proof can (presumably) be constructed, it is simpler to appeal to
the duality argument of Section 6 and apply Theorem 4. Details are given in the
next section.

6. Duality between scale and location functions. Since for positive
{X,}and0<y<1

Sup,=o{y"X.} = exp(supn=oflog X, — n log(y™)})

exp(sup,=of{ W, — né})

where W, = log X, and 6 = —log v, it is proper to exhibit any relationship
between the results of Sections 4 and 5. For brevity, write DA 4(-), DA s (-) and
DA 4 (-) to denote the domains of attraction of the limit law (-) for the respective
sequences {M,}, {Y(v)}, and {Z(8)}. Then most of Theorems 4 to 10 can be
phrased as follows:

Fe DA (®,) = FE€ DAg (®.,) and (when a>1)
F € DA?(Q(V_I);
FeEDA,(Y,)=F€E€ DA (¥,s1) and F € DAy (Yut1);

FeDA,(A)=Fe€ DAs(A) and F € DA (A).

When the tail of the d.f. 1 — F(x) of the r.v. X varies regularly with exponent
—a, [1 = F(tx)])/[1 — F(x)] > t ™ (x = =) for 0 < t < «. Consequently, since

Prilog W >y + 7/a} = Pr{W > eyer/a}
= (1 + 0o(1))e "Pr{W > ¢}
= (1 + o(1))e "Pr{log W >y},

the r.v. W = e* has its d.f. € DA 4(A) with E(W — x| W> x) = 1/a as x — .
Conversely, when W = e* satisfies these conditions, 1 — F(x) varies regularly
with exponent —a.
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It is this converse statement which enables part (b) of Theorem 10 to be
deduced from Theorem 4. To see this, write w,(d) = exp(—v,.(8)), a,(8) =
exp(—a(d)), W, = exp(X.,), so that

X, — 0,(8) — a(d) = y/b(3)
if and only if

a1(8)wn () W, = exp(y/b(3)).
Now

-0 Pr{W, > 1/w,(0)} = X7-0 Pr{X, > v,.(8)}
whose finiteness is assumed at (5.6), and
a,(8) = exp(—supfa: Y70 [1 — F(a(d) + v.(8))] = 1})

exp(—supfa: Yn-o Pr{W > 1/e™*“w,(8)} = 1})
supfa;: Yo Pr{W > 1/a,w, ()} < 1}.

The condition at (4.4) is satisfied and a(y) at (4.5) may be replaced by a, (5), and
Theorem 4 therefore applies to sup{w,(6) W,}.
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