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A RENEWAL THEOREM OF BLACKWELL TYPE

By PauL EMBRECHTS, MAKOTO MAEJIMA AND EDWARD OMEY

Imperial College, Keio University and Economische Hogeschool Sint Aloysius

Suppose {X,, X;, ---} are i.i.d. random variables with finite mean 0 <
E(X,) < . If S, stands for the nth partial sum, and {a(n)}, is a sequence of
nonnegative numbers, then G(x) = Yy a(n)P{S, < x} is a generalized
renewal measure. We investigate the behaviour of G(x + h) — G(x) as x —
for {a(n)}, regularly varying.

1. Introduction and results. Let {X;, X,, ---} be a sequence of non-
negative independent identically distributed random variables with distribution
function F(x) and with 0 < EX, = u < o, and write S, =0, S, =X, + --- + X,
forn=1.

The object of this paper is to give renewal theorems of Blackwell type for
generalized renewal measures, i.e. theorems on the asymptotic behaviour of

(1.1) Yrian)Pix<S,=x+h}, h>0, x—>

for some sequence of nonnegative constants {a(n) | n € N}. When F is lattice, we
suppose F is concentrated on the nonnegative integers and suppose its span
equals 1. We then examine the asymptotic behaviour of

Y1 a(n)P{S, = k}

as k — oo,

Clearly connected with the problem above is the asymptotic behaviour of
-0 a(n)P{S, < x}. When a(n) = 1 this function is known as the renewal
function U(x) = Yn=o P{S, < x}. Similarly in the lattice case, the renewal
sequence {u,}, is defined by w, = Y iy P{S; = n}. Generalized renewal measures
of the form ¥;—, a(n)P{S, = x} have been studied by many authors. See e.g.
Embrechts and Omey (1983), Greenwood, Omey and Teugels (1982), Heyde
(1966), Kalma (1972), Kawata (1961) and Smith (1964). As to the asymptotic
behaviour of (1.1), Kawata (1961) gave a result for {a(n)}, such that Y7, a(k) =
na + o(n'’?) for some a = 0 and various moment conditions, and Kalma (1972)
studied the case where a(n) =n", « E R.

The main result which we are going to prove in this paper is the following.

THEOREM 1. Let a(x) be a positive function such that a(x) € RV,, that is
a(x) = x°L(x), L(x) being slowly varying. Let F be nonlattice.
(a) In case a > —1, for all h >0,

(1.2) Swcia(n)Pix< S, < x+ h} ~ a(x), as x — .

a+1
I
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(b) In case o = —1, if (i) L is monotone and\as X —> 0

(1.3) 1 - F(x) ~ Ka(x)(x > o) forsome K=0

or if (ii) x'**(1 — F(x)) — 0 for some 6 > 0 as x — o, then (1.2) holds.
(¢) In case a < —1, if (1.3) is satisfied then (1.2) also holds.

REMARK. For F lattice, a similar theorem is easily formulated and proved.

2. Proof of Theorem 1(a). The proof depends on the following renewal
type of result. Let {b,}.en be a sequence of nonnegative constants and G(x) =

n=o bpP{S, = x}.

LEMMA 1. Letp=0.If

{ZF-0 be}n € RV,
then
Gx) ~p 2lobr as x— oo,
PROOF. Letf(s) =E(e™™),B(z) = Y0 b.z2" and g(s) = [ e**"dG(x). There

exists a slowly varying function L such that Y7?_, b, ~ n"L(n) as n — . From
Feller (1971, page 447), it follows that

B(z) ~(1-=2)"L((1—2)")T(1 +p) as z11.
Since g(s) = B(f(s)) and 1 — f(s) ~ us as s | 0, it follows that
g(s) ~ (us)"L(s™)I(1 +p) as s |O.
An application of Feller (1971, page 445) yields the conclusion. 0
The following result is interesting in its own right.
LEMMA 2. Let U(x) = Yoo P{S, = x} be the renewal function and let R(x)

be a nondecreasing function such that R(0) =0 and forally € R, R(x +y) ~ R(x)
as x — o, Then forally € R,

UsR(x +y) — UxR(x) ~yu'R(x) as x— oo,

PROOF. Take y > 0 and x, such that 0 < x, < x, then

U+R(x + y) — U*R(x)
= (J(: e + f_ >{U(x +y—2)— U(x — 2)}dR(2)

+f Ux+y—2)dR(z)=1L + 1, + I,

say. First, since 0 = I = U(y){R(x + y) — R(x)}, it follows that I3 = o(R(x)) as

X — ©,
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In I, we have x — z = x,. For any ¢ > 0, choose xo = x(¢) large enough so that
(by Blackwell’s theorem), we get

<z_e>R(x—xo)< I, <<y+£)R(x—xo).

p Rx) ~ R \u R(x)
Hence
f — ¢ = lim inf; %;) < lim sup;—« Rﬁc) < % + e

Finally for I, we have

0=<1IL =U(y + %){R(x) — R(x — x)},
so that I, = o(R(x)) as x — o. Combining the estimates for I, I,, I; and then
¢ | 0 we obtain the desired result. [

PROOF OF THEOREM 1(a). First we show that we can assume that na(n) is
nondecreasing. Since a > —1, we know that na(n) asymptotically equals a non-
decreasing sequence, nc(n) say. In this case, we have for any ¢ > 0

(1=¢cn) <an) =@A+ekc(n)
for all n = ny(e). Now, since p = E(X;) < o, we have
Ym a(n)Pfx< S, <x+ h} =0
and
Y% c(n)Pix<S,<x+ h}=o0(x""), as x— .

Hence if the result is true for {c¢(n)},, then it also holds for {a(n)},. From now
on we assume that {na(n)}, is nondecreasing. Define,

G(x) = Yn-0 a(n)P{S, = x}, Gi(x) = J; ydG(y),

R(x) = 350 b,P{S, = x}, b,=(n+ 1a(n+ 1) — na(n),

Qx) = J; ydF(y).
Then G,(x) = R+Q * U(x).
Now it follows from Lemma 1 and xa(x) € RV, that
R(x) ~ p™ 'xa(x) as x — oo,
By assumption, also Q(x) — u as x — «. Hence
R+Q(x) ~ u “xa(x) as x-—> oo.
Since R*Q is nondecreasing and regularly varying, it follows from Lemma 2 that

Gilx +y) = Gilx) _y
R+Q(x) n

as x — oo,
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and hence also that

Gi(x + y) — Gi(x) Yy
xa(x) #tv+1

as x — o,

Now from the definition of G, it follows that (for y > 0)
2{Gx +y) — G(x)} = Gi(x +y) = Gi(x) = (x + Y){G(x + y) — G(x)}
therefore
{G(x +y) = G(x)}/a(x) » u™ 'y as x — .

The proof of the Theorem is thus completed. O

3. Proof of Theorem 1(b) and (c). We prove Theorem 1(b) and (c)
simultanously for fixed L and by an induction argument. We know from Theorem
1(a) that (1.2) holds for o > —1. Suppose now (1.2) holds for o = (6 < 0). We

shall prove that it then also holds for o = 6 — 1. Denote by F™the nth convolution
of F with itself and write

Yra1a()P{x <S8, < x + h} = ¥7- n"'L(n)F™(x, x + h])
= Gy-1(Jx, x + h]).

(3.1)

The following lemma will be needed.

LEMMA 3. Let Q(x) = [§y dF(y) as before. Then for n =1 and all h > 0,
2F™(x, x + h]) < nQ+F"V(Jx, x + h]) < (x + h)F™(x, x + h]).

PrROOF. Let W(x) = [§ y dF"™(y). Using Laplace-Stieltjes transforms we
easily see that

W(x) = nQ+F" V(x).
Hence
nQ+*F" Y(x, x + h])

x+h x+h
= f ydF™(y) = (x + h)F™(x + h) — xF"(x) — f F™(y) dy

< (x+ h)F™(x + h) — xF™(x) = hF™(x)
= (x + h)F™(x, x + h]).
The left hand side inequality follows similarly. 00

Using this lemma in (3.1), we have
(3.2) Gi-1(Jx, x + h]) < 7' T7-1 n’L(n)F""VxQ(Jx, x + h))
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and
Gi—1(Jx, x + h)) = (x + h)™* Ty n’"L(n)F"V+Q(Jx, x + h)).
Let
V(lx, x + h]) = ooy n’L(n)F"V(Jx, x + h])

=Ymo (n+1)'L(n + DF™(x, x + h)).

Now (n + 1)’L(n + 1) ~ n’L(n) as n —  and Y-, n’L(n)F™(]x, x + h]) ~
hu™"x"L(x) by the induction hypothesis. Using for fixed n, the estimates

" n’L(n)F™(]x, x + h]) = o(a(x)) and 7, (n + 1)’L(n + 1)F™(Jx, x + h])
= o(a(x)), we also have

(3.3) V(Qx, x + h]) ~ p " *hx’L(x) as x— oo.
To prove the theorem it remains to show (cf. (3.2)) that

V+Q(Jx, x + h))
x"L(x)

— hu™ as x — .
Now
V+Q(Jx, x + h])
x x+h
34) = fo [Vx+h—y)— V(x—y)]dQ(y) + f Vix + h—y) dQ(y)

= Il + 127
say. We consider two cases: § = 0 or § < 0.

(I) Case 6 < 0. In I,, since x <y < x + h, we have

x+h
0=<L=V(h) f dQ(y) = V(h)(x + h)[F(x + h) — F(x)].

Hence
(3.5) lim, e Lo/ (xL(x)) = 0
by (1.3). As to I, in (3.4), we write for some 0 <e <1,

I1=f +f EIII+IIZ’
0 &x

say. We first consider I,,. If § <0, V(x + h — y) — V(x — y) < ¢ for some positive
constant ¢, so that

Ly =c f dQ(y) =c¢ f ydF(y) = cx[F(x) — F(xe)].
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Therefore

I L,
1M SUPy— 0 m

1-0

< c[limx_,oo x {(1 —F(ex)) — (1 — F(x))}]

(3.6) L(x)
. x'"L(ex)  (ex)'™"(1 — F(ex)) _ =1 _
=< c[llmx_,m ) L) L) - K] =c - K 1).

Finally we consider I};. Since in I,;, (1 — ¢)x < x — y < x, we have from (3.3), for
some constant ¢ > 0,

Vix+h—y)— Vx—-y) <c(x—y)”L(x—y)
(8.7) x"L(x) - x"L(x)

L(tx)
L(x) -

which is bounded independently of x if x is large. So, using Lebesgue’s theorem
and (3.3) we obtain

< ¢(1 = &)’ supa-n=i=1

. Ill — =01 f‘” —_, =0
(3.8) lim e 57— o = * h | Q(dy) = p'h.

Now combine (3.5), (3.6) and (3.8) to see that

V=Q(Jx, x + h]) _
x"L(x)

lim sup,_.. wh ‘ < cK("' = 1).

Letting ¢ T 1 yields

V* Q(lx, x + h])
xL(x)

N “—Ilh.

This proves the case § < 0.

(II) Case 6 = 0. First suppose L is monotone and (1.3) is satisfied. If L is
nonincreasing, the argument of (I) applies. Next suppose L is nondecreasing. As
in (I), I, = o(L(x)). Write, for some x, with 0 < xy < x,

x—Xq x
Il=f +f =I5+ IS,
0 x—Xqo

say. In I7; we have x — y = x,, hence for large x, and some constant ¢ > 0,

V(x—y+h)—V(x—y)<cL(x—y)<c
L(x) - Lix) ~ 7

since L is nondecreasing. Hence by Lébesgue’s theorem, I3/L(x) — hu. In I35,
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we have
Vix+h—-y) = V(x—y) < V(x,+ h)
so that
2 = V(xo + h)[Q(x) — Q(x + h)] = o(L(x)).
Combining these estimates yields

V+ Q(x, x + h])
L(x)

Next suppose L is not monotone, but x'**(1 — F(x)) — 0 for some 6 > 0. We
write

V«Q(x, x + h))
x/2 x—Xxo X
- U * f, + L)Mx +h=y) = Vi - y)}dQ(y)

x+h
+f Vix+h=y)dQ(y)=d, + Jo + J5 + J,

— hu.

say. As before,
Jy= V(h)(x + h)(F(x + h) — F(x)) = V(h)(x + h)(1 — F(x)) = o(L(x)),
since x'**(1 — F(x)) — 0. In J;, we have x — y = x/2 so that

Vix+h—-y)— V(x—-y)
L(x)

< const. {L(x — y)/L(x)}

< const. sups<i<1{L(tx)/L(x)} — const.

as x — %, Hence we can use Lebesgue’s theorem
VLGN b | dQiy) =
For oJ,, if x, is large, it follows from (3.3) that
VL) = const. | 1L = /LG 40
Note that x> < L(x) < x**for large x. Then we have
(/L (x)} < const, x7" f/ e - Q)

< const. x’27{Q(x — xy) — Q(x/2)}
< const. x'**{1 — F(x/2)}
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which tends to zero as x — o by assumption. As to J3, we have

J3=fx_x {Vix+h—-y)— V(x—y)} dQ(y)

< V(xo + h){Q(x) — Q(x — x0)} = V(xo + h){1 — F(x — x0)}

from which we get J; = o(L(x)) as x — . This proves the case § = 0. Hence we
have proved the statement for noninteger o under assumption (1.3) and for
integer o under the extra assumption that x'**{1 — F(x)} — 0 as well as (1.3).
However, if « is an integer less than or equal to 2, the condition x'**{1 — F(x)}
— 0 is implied by (1.3). So, we don’t have to impose this extra assumption in the
case o < 2. The conclusions in Theorem 1(b) and (c) are thus proved. 0

4. Concluding remarks.

(a) If « = —1 and L is a positive constant, the generalized renewal measure
G(x) = X1 (1/n)P{S, = x} is called the harmonic renewal measure which was
well studied by Greenwood et al (1982). Let us compare our Theorem 1(b) with
their results. In our paper, we always assume u < o, Then by Theorem 2 in
Greenwood et al (1982),

(4.1) logx — G(x) =D + o(1) as x — o,

where D is determined by u = exp{y + D}, v being Euler’s constant. From (4.1),
we only get

(4.2) G(x+ h) —G(x) =0(l) as x — oo,

However, since u is finite, 1 — F(x) = 0(1/x), which is (1.3) with K = 0. Hence
our Theorem 1(b) gives us the rate of convergence in (4.2):

Gx+ h) — G(x) ~ (h/x) as x — oo,

If we assume

(4.3) 1—F(x) ~x"L(x), 1<pB <2,
then it follows from Theorem 3 in Greenwood et al (1982) that
(4.4) G(x+ h) —G(x) ~(h/x) as x— o,

which is the same as our conclusion. However, in our Theorem 1, to get (4.4), we
do not have to assume (4.3) and only need 1 — F(x) = o(x™*) for some 8 > 1.
Furthermore, our Theorem 1 assures that similar results also hold for the case
where L is not necessarily constant.

(b) In our theorems, if we replace a(x) = x“L(x) by other a(x), decreasing
more rapidly than a power say, then in general, the order of growth of
Sria(n)Pix<8S,<x+ h}

will be different from a(x/u). The following example illustrates this situation.
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Leta(x) =e™,¢>0and 1 — F(x) = e, b> 0. Then
x+h
Plx<S,<x+h}= f (bt e/ (n — 1) dt.

Hence
-1 a(n)P{x < S, < x + h}
= e (1 — ™) " "(exp(—u ' (1—e™)h)exp(—(1—e™)xu "),

where we have used EX; = u=b"1If ¢ > 0,c > 1 — e, so that the order of
growth of Y, a(n)P{x < S, < x + h} as x — o is slower than that of a(x/u).

(c) Using the notation G(x) = Yo a(n)P{S, < x} we can restate Theorem
1(a) ((1.2)) as

(4.5) {G(x + h) — G(x)}/a(x) > p ™ h as x— oo,

Hence, if H(x) = G(log x), A(x) = a(log x) and x = log x’, h = log h’ then (4.5)
becomes

(4.6) {H(x'h') — H(x")}/A(x') > clogh’ as x’ — o

where ¢ = p™! is strictly positive. Hence H € I1(A), therefore (by de Haan,
1970) A(x’) is slowly varying, which is equivalent to

VyeER alx+y) ~a(y) as x— o,

This means that whenever a result of type (4.5) holds, the sequence {a(n)}, is
essentially nonexponential. This explains the main reason why a(x) € RV is a
natural condition in our theorems.

(d) It is also worth noticing that the convergence in (4.5) holds uniformly in
[0, A] for all A finite. This fact, even in the ordinary Blackwell theorem, is
seldomly stated explicitly. See for instance Chan (1976), however without explicit
proof. The uniform convergence follows directly from (4.6) and Seneta (1976,
Theorem 2.12 page 79).
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