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RECURRENCE AND TRANSIENCE CRITERIA FOR RANDOM
WALK IN A RANDOM ENVIRONMENT

By ERiCc S. KEY
University of Wisconsin-Milwaukee

Oseledec’s Multiplicative Ergodic Theorem is used to give recurrence and
transience criteria for random walk in a random environment on the integers.
These criteria generalize those given by Solomon in the nearest-neighbor
case. The methodology for random environments is then applied to Markov
chains with periodic transition functions to obtain recurrence and transience
criteria for these processes as well.

1. Introduction. Consider the discrete-time stochastic process {X(¢)};=00n
the integers which is constructed in the following fashion.

Let Z denote the integers, Z* the nonnegative integers, and Z~ nonpositive
integers. Fix two positive integers, R and L, and let G be the set of all probability
measures on {—L, - - - , R}. Let {e(z; *)}.ez be a sequence of iid, G-valued random
variables. For each realization of {e(z; *)}2z let X(¢) be a stationary Markov
chain on Z, starting at 0, with transition matrix P{z, z + a} given by

_|e(z a) —-L=<=a=<R

Plz, 2 + a} = [O otherwise.

The vector e(z, *) gives the distribution of the jumps from z for the X-process.
When the {e(z; *)}.cz are fixed, X(¢) is simply a Markov chain on the integers.
Notice that for each ¢ = 0,

Pr{i-L=X(t+1) — X(t)<R}=1.

The sequence {e(z; *)}.cz is called a random environment, and a realization of
{e(z; #)}.cz is called an environment. The process X(t) described above is called
a Generalized Random Walk in a Random Environment on the Integers with
Bounded Jump Size, which will be abbreviated RWIRE. Generalized Random
Walks in a Random Environment on arbitrary abelian groups were studied by
Kalikow [Kalikow, 1981].

When R =L =1 and Prie(z; 1) + e(z; — 1) = 1}, X(¢) is known as a Random
Walk in a Random Environment. This case has been studied extensively and
many results are known. [Solomon, 1975] contains this classification theorem.
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THEOREM. Solomon. For a Random Walk in a Random Environment, let
d = Ef{log[e(0; 1)/e(0; —1)]}.

If d > 0 then lim,_,, X (t) = +x a.s.

If d = 0 then —o0 = lim inf, . X(¢) < lim sup;_,.X(t) = + a.e.

If d < 0 then lim,_,. X (t) = —x a.s.

The object of this paper is to extend this result to RWIRE. The results may
be summarized as follows.

Let u be the measure on G defined by u(A) = Pr{e(0; *) € A}. Let G*
{g € G: supp(g) C {-L, ---, 0}, G* = {g € G: supp(g) C {0, ---, R}Y}, G’
{g€G: 3 a<0<bwith g(a)-g(b) > 0}. Note that (G- UGF) NG’ =@.

THEOREM 5. Trivial cases.

If u(G*) = 0 and u(G®) > 0, then lim,_,. X (t) = +», as. [P].

If w(G®) = 0 and u(G*) > 0, then lim,_.X(t) = —, a.s. [P].

If u(G*) > 0 and u(G®) > 0, then 3 a < b depending only on e so that for all ¢,
a<X(t)=<b.

THEOREM 11. The Zero-One Law. Suppose that u(G’) = 1. Then one of the
following mutually exclusive possibilities holds.

1. lim; X (t) = + a.s.

2. —oo = lim inf, . X (¢) < lim sup;_,.X(t) = +x a.s.

3. lim,_X(t) = —x a.s.
The following ergodic theorem is used to generalize Solomon’s theorem.

THEOREM 21. Oseledec’s Multiplicative Ergodic Theorem (Oseledec, 1968;
Raghunathan, 1979; Walters, 1982). Let {M,},cz+be a stationary ergodic sequence
of r X r real matrices on the probability space (R, %, m) and suppose that
Ellog* || My||] < . Then there are r constants,

—o=<d sd=...-=d <o,
and a strictly increasing nonrandom sequence of integers,
=< < - - <L<pun=r+1l,
satisfying
d, <d, if ¢q=2,8,---,p; p=r,
di=d if iy<i, j<iu; (thei, mark the points of increase of the d;);

so that for almost every w € Q:

For every v € R’, lim,,_.n"'log [M,_; - - - M;MgV || exists or is —oo;

For g = p, V(q, w) = {v € R": lim,_.n"log | M,_, --- MiMyv| < d}isa
random vector subspace of R” with dimension i,., — 1.

If V(0, w) denotes {0}, then v € V(q, w)\V(q — 1, w) implies that

lim, n7'log [ M,-; --- MiM,v | = d,.

The d; are called Lyapunov numbers, and they are a generalization of the logarithms
of eigenvalues.
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This theorem is applied as follows. If E{log[e(0; —L)]} > —« and
E{log[e(0; R)]} > —x, define the iid sequence of real (R + L) X (R + L) matrices
by
R+ 1,k)—e(y; R+1—k)

e(y; —-L)
A, k)=0(+1,k) if 1=i<R+L.

Theorem 22 is stated in terms of the Lyapunov numbers of the sequence
{A—y}yzo-

AR+ L, k)=

THEOREM 22. Criteria for transience and recurrence. Suppose that
E[log(e(0; —L))] > — and E[log(e(0; R))] > —. Let {d;},<i<r+1 be the R + L
Lyapunov numbers of the sequence {A_,},cz+, in increasing order.

If dp + dp+1> 0 then P{lim, ., X(t) = o} =1.

If dg + dg+1= 0 then P{—o = lim inf, ., X(¢) < lim sup,_..X(t) = o} = 1.

If dg + dg+1< 0 then P{lim,_.X(t) = —o} = 1.

Lemma 24 shows that drp = 0 or dg., = 0, so the criterion dr + dg+, < 0 is
equivalent to dg < 0 = dg+,, etc. The condition E[log(e(0; —L))] > — forces
e(0; —L) > 0 a.s. and the condition E[log(e(0; R))] > —o forces e(0; R) > 0 a.s.

In general, dg + dg.1is not computable. In the case where R=L =1

e(0; 1) >[
e(0; -1)/ [’

which shows that Theorem 22 is a natural generalization of Solomon’s result. In
the case where R + L > 2, examples are given where dr + dr+, can be computed,
and in the case where R = 1, a formula is given for the expected time for the
process to enter [1, «). Finally, results analogous to Theorems 11 and 22 are
obtained for Markov chains on the integers whose transition matrices p(*, *)
satisfy

dr + dp+1 = dy + dy = Eflog | det(Ay) |} = E{log<

plx,y) =p(x+ N,y + N)
for some N > 0.

2. The definition of Random Walk In a Random Environment. The
definition of a Random Environment on an abelian group is given in Kalikow
(1981). The following is a summary of that definition in the case where the
abelian group is the integers. The following notation is used throughout:

Z = the integers, Z*=1{0,1,2, ...}, Z-={..., -2, -1, 0}.

Let X be the set of all integer sequences indexed by Z* and endowed with the
o-algebra 7 generated by the cylinder sets in X. A Random Walk in a Random
Environment (RWIRE) on the integers is a discrete-time stochastic process
{X(t)}:cz+ with integer state space. The measure which defines the RWIRE is
defined by a two step construction of a measure P{+} on (X, &).

The first step is to define the random environment. For the rest of this paper,
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R and L will be fixed positive integers. Let G be the set of of all probability
measures on {—L, --. , R} and let u be a probability measure on G. It is assumed
that L and R are minimal in the sense that

1) g €G:g(-L)>0}>0 and u{g € G:g(R)>0}>0.
DEFINITION 1. The Random Environment e defined by u is an integer indexed

sequence of iid G-valued random variables, {e(z; *)}.cz, with common distribu-
tion u.

DEFINITION 2. An environment is a realization of the random environ-
ment e.

The second step is to define P{x} so that conditioned on e, X(t) is a Markov
chain on Z starting from 0 with respect to P{+} conditioned on e. Define the
family of random measures P*’{x} on (X, &) satisfying

P{X(0) = j} =1, ‘
zt+a|X(0)=j’ X(1)=z1’ "'7X(t)=zt}
=PoiXt+1)=2z+a|X(t) =2z}=e(za)

Conditioned on e, X(t) is a stationary Markov chain on Z starting from j with
respect to P*/{x}, whose transition matrix is independent of j. Next, define the
random measure P¢{+} = P*°{+}. Then

Po{X(t + 1)

(2) Pe{X(0) =0} =1,

3) PiXt+1)=2+a|X0)=0,XA)==2, -+, X(t) =2}
=Pli; X(t+1) =2 +a | X() =2} =e(z; a).

Finally, define

(4) Pix} = E{P*{+}}.

Then X (t) is a Markov chain with respect to the measure P{+ | e}.

(3) and (4) show that the RWIRE is determined by the measure pu.

Since R and L are fixed and P*{X(t + 1) =2+ a|X(t)=z}=0forallt € Z*
and a & {—L, ---, R}, X(t) can never move more than R steps to the right or L
steps to the left in one unit of time.

A RWIRE on Z can be thought of as a measure on the set of all Markov chains
on Z. Many of the following theorems are proven by showing that with respect
to this measure, almost every Markov chain has a particular given property.

DEFINITION 3. Metadefinition. Let “xyz” be a property that a Markov chain
might have. A RWIRE is said to have property “xyz” if for almost every outcome
of the random environment e, the Markov chain defined by (2) and (3) has
property “xyz”. For example, a RWIRE is transient if the Markov chain defined
by (2) and (3) is transient for almost every environment.
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Let
G" = {g € G: g is supported on —L, - .., 0}
and

G® = {g € G: g is supported on 0, .., R}.

DEFINITION 4. Let Y(t) be a Markov chain on Z. A finite subset A of Z is
called a reflecting-to-the-right barrier for Y (t) if Y(T) = min(A) for some T = 0
implies Y(¢) = min(A) for all ¢t = T. Reflecting-to-the-left barriers are defined
similarly. See Solomon (1975, pages 10-11).

THEOREM 5. Trivial Cases.
(5) If w(G*) = 0 and u(G®) > 0, then lim,_. X (t) = +, a.s. [P].
(6) If (G®) = 0 and u(G*) > 0, then lim,_.X(t) = —, a.s. [P].
(7) If u(G*) > 0 and u(G®) > 0, then there exist a < b depending
only on e so that for all t, a < X(t) < b.

REMARK. This disposes of all of the trivial cases of recurrence and transience
of RWIRE on Z. The first two statements generalize the one-way mirror example
in Solomon (1975). The last statement gives the generalization of the random
walk Z(t) which satisfies Z(t) = 0 a.s.

PrOOF. The main idea of the proof is to show that reflecting barriers occur
in almost every environment.
To prove (5) it is sufficient to show that for almost every environment

8) X(¢t) can move to the right from every integer,

(9) There are an infinite number of reflecting-to-the-right barriers to the
left and the right of 0.

(8) follows from (3) and the hypothesis that u(G*) = 0.

To prove (9), let F; be the event {e(z, x) € G*: JL =2<(j+ 1)L}. If F; occurs,
then the states {jL, --., (j + 1)L — 1} form a reflecting-to-the-right barrier.
Since u(G®) > 0 and the F; are independent, (9), and hence (5), follows from the
Borel-Cantelli Lemma. The proof of (6) is the same as that of (5), with the roles
of right and left reversed. To prove (7), note that if u(G") > 0 and u(G¥) > 0,
then there is a reflecting-to-the-right barrier to the left of 0 and a reflecting-to-
the-left barrier to the right of 0, which implies (7).

3. Irreducibility of RWIRE. In general, a RWIRE will not be irreducible,
even if the trivial case of the elements of G being supported only on multiples of
a fixed integer is eliminated. For example, if 4 is supported on only two elements
of G, g, and g;, and g, is supported on —2 and 2 and & is supported on —1 and 1,
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then the event {e(—2; *) = e(2; *x) = g2, e(—1; *x) = e(1; *) = g;} has positive
probability. When this event occurs, 0 cannot be reached from any other integer.
However, RWIRE has a property that is almost as strong as irreducibility.

DEFINITION 6. Let {Y(t)}.er be a stochastic process and let r =
inf{t > 0: Y(¢t) € A}. Y(¢) is said to enter A if 7 is finite. If a € A, then Y(¢) is
said to enter A at a if Y(7) = a.

DEFINITION 7. A Markov chain Y (t) on a state space S is called nonreducible

if there is exactly one closed communicating class C, and s € S implies
Pr{Y(t) enters C} = 1.

DEFINITION 8. Let Q be a transition matrix on a countable set S, and let C

C S. The restriction of Q to C, written Qc, is the transition matrix on C defined
by

Qe(x, y) = Q(x, y)[Tyec®(x, ¥)17 if Q(x,y) >0 forsome ye€E C,
Qclx, x) =1 if Q(x,y)=0 forall yeC.

DEFINITION 9. Let Q(x, ¥) be a transition matrix on a countable set S and
let B,CC S. Let a, b € C. ais said to lead to b through C, written a ~>¢b, if there
exists n such that Q¢(a, b) > 0. a is said to lead to B through C, written a ~»>¢B,
if @ ~»¢b for some b € B. a and b are said to communicate through C if a ~¢b and
b ~>ca. The set C is called self-communicating if the matrix Q¢ defines an
irreducible Markov chain on C. For each z € {—L, - - -, R}, define

~2) = u({g € G: g(z) > 0}).

Notice that ~(z) > 0 iff there is a positive probability that some environment
will allow a jump of size z. Therefore, (1) implies that » (R) > 0 and »(—L) > 0.

THEOREM 10. Nonreducibility of RWIRE.
1. RWIRE is nonreducible iff u(G*) = w(G®) = 0 and ged({z # 0: =(z) > 0})
=1.
2. Suppose that the RWIRE is nonreducible. The unique closed communicating
class of the RWIRE will be random, and will depend only on the environment. It
will be denoted by C, and it has the following properties:

a. For each n € Z C. N (-, n] contains a self-communicating subset C;,
satisfying

(10) if 2 € (=%, n)], 2 (w0 Con,
(11) for any z, n € Z=, P**(X(t) enters C,;, U{1, ---, R}) = 1.

b. For each n € Z C. N [n, ) contains a self-communicating subset C%,
satisfying

(12) I'f z E [n’ Oo)’ 2 W[n,w)czn,
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(13) forany z, n€ Z*, P**{X(t) enters C;, U{—-L, ---, —1}} = 1.

PROOF. Proof of 1. If either condition on the RHS (right-hand side; LHS
will denote left-hand side) of 1 fails, it is clear that the RWIRE cannot be
nonreducible. To prove that the RHS guarantees that the RWIRE is nonredu-
cible, a “block” argument similar to the one used in the proof of Theorem 5 will
be used.

Let d = ged(R, L), and let F; be the event
(14) H={iR+L),i(R+L)+d,---,i+1)-(R+ L) —dj

is self-communicating,
(15) z€D;={i(R+L),iR+L)+1, ---,G+1)-(R+ L) -1}
implies 2z ~>p H;.

Since the D; are disjoint, the F; are pairwise independent events with the same
probability. A number-theoretic result proved in the appendix, (Corollary 43),
shows that P{F,} > 0, so that

Pr{F;io0:j€ Z*}=1 and Pr{Fjio:jE€Z} =1
Let H, denote the union of the H; for which F; occurs.

CLAIM 1. Any two elements of H, communicate. To prove Claim 1, suppose
that F; and F}, occur, with j < k. By definition, H; and H, are self-communicating.
Since u(G*) = 0, a step to the right is possible from each state. Therefore, if
2 € H;, then z vo(jr+1),k+1)(R+1)) Dk, 80 by the definition of F, z~v>(jr+ 1), (k+1)(r+L) He-
Interchanging the roles of right and left and of j and k shows that if z € H,, then
2 »jr+ 1), k1) R+ 1) Hj. Therefore, any two elements of H, communicate. [

CLAIM 2. Let z € Z. Then z vzH, w.p.1. To prove Claim 2, note that w.p.1
there exist j = j(e) and k = k(e) such that Fj and F), occur and j(R + L) =z <
(k+ 1)(R + L). Since w.p.1 X (t) has no jumps larger than max(R, L) and D; and
D, each consist of R + L consecutive integers, 2 ~jr+L), k+1&+L)D; U De w.p.1.
Since for i = j or k there is a positive probability of entering H; once X (t) enters
D;,z~vzH, wp.1.0

For a particular environment, take C, to be the smallest closed communicating
class which contains H,. Claims 1 and 2 show that C, is well-defined, and Claim
2 shows that the RWIRE is nonreducible.

PROOF OF 2. Let H, , denote the union of the H; for which i(L + R) = n and
F; occurs. Notice that if z = n, then z v, HZ . Let C:, denote the class of all
states in [n, ®) which may be reached through [n, ©) from states in H;,. More
formally, ¢ € C}, iff there exists h € HJ, such that h v, c. Cc, is defined
similarly. C;, and C;, respectively satisfy (10), (11), and (12), (13).
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From here on it is assumed that the RWIRE is nonreducible. If
ged(fz: » (2) >0}) =d

is greater than 1, but u(G*) = u(G®) = 0, Theorems 11 and 22 are still correct,
because X (t) will be a nonreducible RWIRE on {dz: z € Z}.

4. The zero-one law. Define G’ = {gin G: 3 a> 0, b < 0 such that g(a)-
g(b) > 0}. Note that u(G’) = 1 iff u(G*) = u(G®) = 0.

THEOREM 11. The Zero-One Law. Suppose that u(G’) = 1. Then one of the
following mutually exclusive possibilities holds:
1. lim, X (t) = +» a.s. [P].
2. —oo0 = lim inf,, . X(t) < lim sup,.X(t) = +» a.s. [P].
3. lim,_.X(t) = —» as. [P].

The proof of this theorem requires several propositions about Markov chains.
Let Y(t) be a Markov chain on Z~ U {1, - .. , R} with transition matrix Q(x, y).
Suppose that Y and Q satisfy :

(16) Y(t+1) - Y(t) <R,
17 {1, ..., R} are absorbing states,

(18) for each z € Z~, P{Y(t) enters (z, R]| Y(0) = z} > 0, and for each n €
Z~ there is a set C, which is a self-communicating subset of (—, n]
satisfying

19) if z€ (—», n], the z+v>wnChn,
forany z€Z-U{l, ..., R},
Pr(Y(t) enters C,U {1, ..., R}| Y(0) =2) = 1.

Note that if e = {e(z; *)}.<z defines a nonreducible RWIRE then Theorem 10
shows that conditions (16)—(20) are satisfied a.s. if Q(x, y) = e(x; y — x) for
x=<0.

For such a Markov Chain, and any x € Z~,y € Z ", andx <j < R let

Pr(Y(t) enters (x, R] at j| Y(0) = y) x=y
6(J, ¥) x <y,

(22) fx; y) = [fr(Y(t) enters (x, R]| Y(0) = y) x=y

(20)

(21) filx; y) = [

PROPOSITION 12. Suppose n € Z~. Then
(23) f(n;y) <1 forsome y<n iff f(n;2) <1 forall z=<n,
(24) f(n;y) <1 forsome y=<n iff f(x;2) <1 forall z=<x=<0.

PROOF. Proof of (23). Suppose that f(n, y) < 1. If y € C, then for any



RANDOM WALK IN A RANDOM ENVIRONMENT ON Z 537

z € C,, f(n; z) <1 since z »>¢,y. Given any other z < n, f(n; 2z) < 1 since 2z
~>(—oo,n)Cr. If y & C,, then since Pr(Y(¢) enters C, U {1, ---, R}1 Y(0) = 2) =1,
there exists y, € C, such that f(n; y,) < 1. Now apply the result above.

PROOF. Proof of (24). Suppose that f(n; y) <1 for some y < n < 0. By (23),
f(n; 2) <1 for all z < n. Therefore, f(n; y) < 1 for some y < n implies f(x; z) <
1if 2 < x = 0 and x = n. So suppose that x < n, and f(x; z) = 1 for some z < x.
Then by (23), f(x; z) = 1 for all z < x. So starting from y the Markov Chain visits
(x, R] i.0. Each time it visits (x, R], it has a probability p of visiting (n, R]. Since
the cardinality of {x + 1, - .., n} is finite,

D = infier1,, Pr{Y(¢) enters (n, R]| Y(0) = a} > 0.

So by the Generalized Borel-Cantelli Lemma (Breiman, 1968, pages 96-98), the
Markov Chain visits (n, R] i.o. starting from y, which implies that f(n; y) = 1.
This is a contradiction.

PROPOSITION 13. Suppose y < 0 and (16) holds. Then
(25) f(0; y) =< f(y; y)max,<=r{f(0; y + j)}],
max;<j<r{f(0; y + j)} < [maxi<<r{f(y +j; ¥ + )]

(26) .
-[max,<j<r{f(0; ¥y + R + j)}].

PROOF. Proof of (25). Fixy =<0. Then
f0; ¥) = &1 fei(y; Mf(0; y +j)  strong Markov property
= E§=1 fy+j(y; y)[maxlsst{f(O; y + J)}]

= f(y; y)max,<j<r{f(0; y + j)i],
which proves (25).

PROOF. Proof of (26).
maxi<j=r{f(0; ¥ + j)}
= maxlsst{f(y +j;y + J)-[maxi<e<r{f(0; y + j + k)}]} by (25)
< [maxi<<r{f (¥ +Jj; ¥ + )}]-[maxi<r<arlf (0; ¥ + k)}]
= [max,<j=r{f(y + j; ¥ + j)}]-[max,<k<r{f(0; y + R + k)}].
The last equality follows because (25) implies that
f(0; y) < maxi<;<r{f(0; ¥ + j)}.

COROLLARY 14.
log[max,<j<r{f(0; — nR + j)}] = ¥p-1 log[max,<j<r{f(—pR + j; — pR + j)}].
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ProoOF. Iterate Proposition 13.

PROPOSITION 15. Let {Y(t)},cz+ be a nonreducible Markov chain with state
space S, and closed communicating class C. Suppose A is a finite proper subset of
Sand A Z C. Then forany a € A, Pr{Y(t) € S\A i0.| Y(0) =a} = 1.

PRrROOF. The proof of this proposition is left to the reader.

PROPOSITION 16. Let {Y(t)}.ez+ be a nonreducible Markov chain on Z with
| Y(t + 1)— Y(¢) | uniformly bounded.
1. Ifforalla€ Z, M >0, N >0,

Pr{Y(t) enters [a + N, ©) | Y(0) = a} =1
and
Pr{Y(t) enters (—»,a — M]| Y(0) = a} < 1,

then lim;_,.. Y (t) = +o a.s.
2. If foralla€ Z, M >0, N >0,

Pr{Y(t) enters [a + N, ©) | Y(0) =a} =1 '
and
Pr{Y(t) enters (—», a — M]|Y(0) = a} =1,

then —o = lim inf,_. Y (t) < lim sup,_... Y(t) = +» a.s. [P].
3. Ifforalla€e Z, M >0, N > 0.

Pr{Y(t) enters [a + N, ©) | Y(0) = a} <1
and
Pr{Y(t) enters (—», a — M]| Y(0) = a} =1,

then lim,_., Y(t) = — a.s.
ProOF. The proof of this proposition is left to the reader.
Return now to the consideration of the RWIRE X(¢).

THEOREM 17. Suppose that u(G’) = 1. Then there are strictly positive con-
stants ¢, and ¢, such that

27 Either P°*{X(t) enters (0, )} =1 as. forall bEZ
(28) or lim sup,_..(log[P¢*{X(t) enters (0, ®)}])/b < —c; as.;
(29) Either P**{X(t) enters (—», 0)} =1 a.s.forall b€ Z,

(30) or lim sup,_..(log[P¢*{X(t) enters (—, 0)}])/b < —c, a.s.

ProOOF. To prove Theorem 17, it is sufficient to prove the first disjunction.
To do this, apply Propositions 12 and 13 in the following manner. For each
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x € Z~, set the transition function Q(x, y) of the above propositions equal to
Pe{X(t + 1) = y| X(t) = x}. Recall that Q(x, x) = 1 for x = 1. Then for a < b,
f(b; a) defined by (22) becomes a random variable with the same distribution as
P¢{X(t) enters [b — a, ©)}. Note that {max,<j<r{f(—pR + j; — PR + j)}}pez+ is a
stationary ergodic sequence of random variables since the {e(z): z € Z} are iid
variables. Combining Corollary 14 and Birkhoff’s Ergodic Theorem gives

lim sup,_..n'log[max,<;j<r{f(0; —nR + j)}]
< lim sup,_.n"! ¥, log[max,<j<i{f(—pR + j; —=pR + j)}]
= E[log(max,<j<r{f(-R + j; —R + j)})] as.

If this last expectation is negative, then (28) holds. If it is zero, then by
Proposition 12, f(0; 0) = 1 a.s. and (27) holds.

COROLLARY 18. Suppose u(G’) = 1.

1. Either a. P{X(t) enters [b, ©)} = 1 for all b € Z, or b. lim,_,.P{X(t) enters
[b, + ®)} =0; «

2. Either a. P{X(t) enters (—o, —b]} = 1 for all b € Z, or b. lim,_,.P{X(t) enters
(—OO, _b]} =0.

ProoF. Each equation follows from the corresponding equation in Theorem
17. The key observation is that since the {e(z)}.cz are iid, for any A C Z and
bez,

(31) Pe{X(t) enters A} =, P**{X(t) enters A + b}.

To prove the “a” possibilities, use (31) and the definition of P. To prove the “b”
possibilities, use the definition of P, (31), and the Dominated Convergence
Theorem.

COROLLARY 19. Suppose that u(G’) = 1. (28) and (30) cannot hold simulta-
neously.
PROOF. Suppose not. If follows from Proposition 15 that
1 < P{X(t) enters (—%, —b]} + P{X(t) enters [b, )}

since for almost every environment X (¢) is nonreducible. However, if (28) and
(30) both hold, the RHS of this inequality goes to 0 as b — o, by Corollary 18.
This is a contradiction.

LEMMA 20. Suppose that u(G’) = 1. Then for all a € Z, (28) implies that a.s.
Pee=*{X(t) enters [a, ©)} < 1 for all x> 0, (30) implies that a.s. P****{X (t) enters
(—o,al} <1 forall x>0.

PrOOF. This follows from (31) and Proposition 12.

Now the proof of the Zero-One Law is easily completed. Refer to Theorem 17.
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By Corollary 19, (28) and (30) cannot occur simultaneously. The proof proceeds
by considering the three remaining possible combinations.

If (30) and (27) hold, then by Lemma 20 for almost every environment the
conditions of Proposition 16.1 are satisfied. Therefore, P¢{lim,_ X (t) = o} =1
a.s. [P], so P{lim, X (t) = o} = 1. This is the first possibility in the Zero-One
Law.

If (29) and (28) hold, then interchanging the roles of right and left in the
paragraph above shows that the third possibility in the Zero-One Law holds.

Finally, if (27) and (29) hold, then Proposition 16.2 shows that the second
possibility in the Zero-One Law holds.

5. The criteria for transience and recurrence. The object of this
section is to give criteria for distinguishing possibilities 1., 2., and 3. of the Zero-
One Law (Theorem 11). The method will be to give criteria which distinguish
the possible combinations in Theorem 17, and the principal result is Theorem
22.

Recall the definition of f;(0; ¥) from (21). Then according to the Markov
property, if y € Z~, then

(32) fi(0; ) = TuezP{X(t + 1) = x}f;(0; x) = Ti-_Le(y; a)fi(0; y + a).

Now, suppose that e(y, —L) > 0. Then (32) can be rewritten as

o 7y = wr 00, a) —e(y; a)
(33) f}(O’y L) a=1-L e(y’ —L)

=Y, AR+ L R+1-a)0;y+ a),

fi0;y + a)

where

(R + 1, k)—e(y,R+1—k)
e(y: _L)

Fory € Z, let A, be the (R + L) X (R + L) real matrix defined by

AR+L k) =

(34) AG R =8G+1,k if 1Si<R+L,
AG k) =AR+Lk) if i=R+L

Notice that A, only depends on e(y; *).
Let f, ;be the (R + L) X 1 column vector whose ath coordinate is

(35) f,;(@) =fi(0;y+R+1-a)
Then for y < 0,
(36) f,i =A% =A, - Ay,
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For example, when L =2 and R = 2,

0 1

|1 | 0
b=l g0 |©  ©7| fo0 |
£,(0: —1) £,(0: —1)

0 1 0 0

0 0 1 0

Ay=10 0 0 1

—e(0;2) —e(0;1) 1 —e(0;0) —e(0; —1)
e(0; —2) e(0; —2) e(0; —2) e(0; —2)

Let r be a positive integer. Let || » | denote the euclidean norm on R’, and let
| M || denote operator norm of an r X r matrix M, with respect to euclidean norm.
If b € R, let b be the element of R™ whose ath coordinate is b°. For example,
when r =4,

b

b2
b3
b4

b=

THEOREM 21. Oseledec’s Multiplicative Ergodic Theorem (Oseledec, 1968;
Raghunathan, 1979; Walters, 1982). Let {M,.}.ez+ be a stationary ergodic sequence
of r X r real matrices on the probability space (2, %, m) and suppose that
E[log* || My||] < . Then there are r constants,

—0=<d <d=<--=d <o,
and a strictly increasing nonrandom sequence of integers,
1=i<p< - - L<pan=r+1l,
satisfying
d,,<d, if ¢=2,3,---,p=r,
di=d; if i;<i, j<ig; (the i, mark the points of increase of the d.);

igey

so that for almost every w € Q:

For every v € R', lim,_.n"log | M,—; - - - MiMyV || exists or is —o;

For g <p, V(g, w) = {v € R": lim,_on""log [ M-, --- MiM,v | = d;} isa
random vector subspace of R” with dimension iz, — 1.

If V(0, w) denotes {0}, then v € V(q, w)\V(q — 1, w) implies that

lim,_n"'log | M,—; --- MiMov | = d;.

The d; are called Lyapunov numbers, and they are a generalization of the logarithms
of eigenvalues.
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It is now possible to state the criteria for recurrence and transience.

THEOREM 22. Criteria for transience and recurrence of RWIRE on Z.
Suppose that E[log(e(0; — L))] > —ox and E[log(e(0; R))] > —. Let {d;}1<i<r+L
be the R + L Lyapunov numbers of the sequence {A_,},ez+, in increasing order.

If dr + dgr+1 > 0 then P{lim,_.X(t) = oo} = 1;

If dg + dg+1 = 0 then P{—o = lim inf, . X(t) < lim sup,_.X(t) = o} = 1;

If dg + drs1 < O then P{lim,_.X(t) = —o} = 1.

REMARKS. Lemma 24 shows that dgp = 0 or dr+; = 0, so the criterion dp +
dr+1 < 0 is equivalent to dr < 0 = dg+,, etc. The condition E[log(e(0; — L))] >
—oo forces e(0; — L) > 0 a.s. and the condition E[log(e(0; R))] > —oo forces
e(0; R)>0a.s.

6. The proof of the recurrence and transience criteria.

LEMMA 23. Suppose that E[log(e(0; —L))] > —. Let V(0) denote
{v.€ R**L: lim,_ ,n"log| Ai_, --- AL;Aev | = 0}.

1. If b is an eigenvalue of A, then b is the corresponding eigenvector.
2. If b is nonrandom and b is an eigenvalue of A, a.s. [u], then

limn_,oon_llog | Ai—n - -+ ALJAcb || =log|b|;

3. V(0) is a random vector subspace of R*** with nonrandom dimension = R.
4. dim[V(0)] = R implies that P**{X(t) enters (0, ©)} =1 a.s. forally € Z.

ProOOF.

1. This follows from the form of A,. See (34).

2. This follows the definition of eigenvector, Part 1, and the fact that the A, are
id.

3. The hypothesis that E[log(e(0; — L))] > — and the fact that the A, are iid
make it possible to apply Theorem 21 to the sequence {A_,},cz+. By definition,
V(0) is a subspace. To see that the dim(V(0)) = R, notice that

{fojlhh <j<R

is a set of R independent vectors contained in V(0). (See (35) and (36)).

4. It follows from Part 2 and the fact that A,1 = 1 that 1 € V(0). So if the
dimension of V(0) is R then 1 and {f,;},<;<r are dependent vectors. (21) and
(35) show that the dependence is given by

1=f0’1+ LI +f0’R.

The result now follows from the definition of the f,;in (35) and Proposition
12.0
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It is easy to show that A;' has the form

8(R,J) —e(y; R —j)
e(y; R)
For the remainder of this section it is assumed that u satisfies E {log(e(0, —L))}

> —oo and Ef{log(e(0, R))} > —», so that Lemma 23 and Theorem 21 apply to
{A_}yez+ and to {AJ ezt

37 AJ'(1,)) = , A, R) =06, k+1) if i=2.

LEMMA 24. Letd, < --.- =dgr <dp+1 =< -+ = dg+L be the Lyapunov numbers
of the sequence of matrices {A_,},cz+. Then either dg = 0 or dg+1 = 0.

PrROOF. Define
gi(0; y) = P*'{X(t) enters [-L, 0) at j} if 0 =<y,
&(0; y) =4(j,) if 0>y.
Then for y = 0,
80 ) = TuezPX(t + 1) = x}g(0; x) = i1 e(y; a)g;(0; ¥ + a).
Therefore

(0 _ g1 0(0,a) —e(y; a)
gJ(O’ y + R) - a=—L e(y; R)

= Y&, By(1, R — a)gi(0; y + a),

g0,y + a)

where
o(R,j) —e(y; R —))
e(y; R) '
Fory € Z, let B, be the (R + L) X (R + L) real matrix defined by
B,G, k)=06(G,k+1) if =2, B,i,k)=B,(1, k) if i=1,
and let g, ;be the (R + L) X 1 matrix whose ath coordinate is given by
g,(a) = g0,y + R — a).

(Note that this construction is parallel to that of f,;and A, in (32)-(36).) Then
B,g,; = 8+, ¥ = 0 (compare with (36)), and B, = AJ' (see (37)). Let W(0)
denote {v € R**%: lim,_.n"'log | B,-; - - - B;Bov| = 0}. Substituting B_, for A,,
g;(0, — y) for £;(0, ¥) and L for R in Lemma 23 shows that dim[ W(0)] is constant
and at least L.

Since B, = A;', Theorem 10.3 of Walters (1982) shows that the Lyapunov
numbers for the sequence {B,},cz+ are —dgir< -+ = —dgp1 = —dp = --- = —d,,
the negatives of the Lyapunov numbers of the sequence {A_,},cz+. Dim[V(0)] =
R implies that dr = 0 and dim[W(0)] = L implies that —dg., = 0. Therefore,
dg < 0 < dg+1, and the result follows from Lemma 23 since A,1 = 1 implies that
some d; = 0.

B,(1,)) =
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The proof of Theorem 11 shows that in order to prove Theorem 22 it suffices
to show

dgr + dr+; > 0 implies (27) and (30),

dr + dr+1 = 0 implies (27) and (29),

dr + dr+; < 0 implies (28) and (29).
The proof of Lemma 24 shows that it then suffices to show

dr + dg+1 > 0 implies (27),

dr + dr+; = 0 implies (27) and (29),

dr + dp+1 < 0 implies (28),

because an interchange of the roles of right and left shows that the proof that
dr + dr+1 > 0 implies (27) is the same as the proof that dr + dg+1 < 0 implies
(29), and that the proof that dg + dg+1 > 0 implies (30) is the same as the proof
that dp + dp+1 < O implies (28). Therefore, the proof of Theorem 22 can be
completed as follows. )

dg + dg.1> 0 implies (27). If dg + dgs1> 0, then dim[V(0)] = R, and so by
Lemma 23, (27) holds.

dr + dr+1< 0 implies (28). Let V’(0) denote
{v € RF* L lim,wn™ | Aj—, - - - ALJAgV | <0}

The condition dg + dgr+1 < 0 guarantees that dim[V’ (0)] = R. Let hy, ---, hg
span V’(0). Each h; is an element of R**L, Let ¢; be the element of R? formed
from the top R entries of h;. For example, if R = L = 1 and h, = [1, 4]‘ then ¢,
= [1]. (* means matrix transpose.)

CLAIM 1. ¢, .- cp are independent. Suppose not. Then there is a vector
h € V’(0) with the property that h # O but the first R coordinates of h are
identically 0. Define h(y) by

(38) h(y) = (R — y + 1)th coordinate of h if y > —L,

_ 8(0,a) —e(y + L; a)
(39) h(y) =X&i-L ey + L, -L)

On the other hand, (38), (39) and a construction parallel to the one found in
(33)-(36) show that for y = —L, h(y) is the last coordinate of A, --- A_;Ach.
h € V’(0), so h(y) — 0 exponentially as y — —o. On the other hand, (39) may
be written as

Yire(y+L;a)h(y+L+a)=h(y+L), y=-L;
or by substituting y fory + L,
Yo-Le(y; a)h(y +a) = h(y), y=<0.

h(y+ L+a) if y=<-L.
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Therefore, h(y) is a bounded function which satisfies
Ye--re(y + L; a)h(y + L + a) = h(y + L),

(40)
y=0 h(l)=---=h(®) =0,
and lim,_.h(—n) = 0.
Now, fix any z € Z~, and let Z(t) be the Markov chainon Z- U {1, ..., R}
which is absorbed at {1, - -- , R} and which has transition matrix Q(y, y + a) =

e(y,a)onZ". Suppose that Z(0) =y <0. M(t) = h(Z(t)) is abounded martingale,
so standard martingale convergence theorems (Ash, 1972; Breiman, 1968), show
that h(y) = 0. Since y was arbitrary, this shows that h = 0, which is a
contradiction. 0

Since the ¢; are independent, there is a vector f € V’(0) with the property
that the first R coordinates of f are 1. A function f(y) which satisfies
(41) re(y;a)f(y+a)=fy), y<0; f1)=---=f(R)=1,

may be produced from f in the same way as h(y) was produced from h in (40),
and f(y) has the property that lim, .., f(—n) = 0 since f € V’(0). Recall the
definition of £(0; y) from (22). £(0; y) is also a bounded solution to (41).

CLAIM 2. f(0;y) = f(y) fory < R. Since f(0; y) =f(y)=1for1 =y <R,
it is sufficient to show that f(0; y) = f(y) for =L < y < 0. Suppose that
f(0; a) # f(a). Let k(y) = f(0; y) — f(y). Let Z(t) be the Markov chain on
{-..,R—1, R} which is absorbed on {1, - - - , R} and governed by the transition
function Q(e; y, y + x) = e(y; x) for y < 0, with Z(0) = a. Let A be the event
that Z(t) is absorbed in {1, ---, R}. Let M(t) = f(0; Z(t)). Then M(t) is a
bounded martingale and so

f(0; @) = E[M(0)] = E[M(x)] = E[M(x); A] + E[M(x); A°]
= f(0; a) + E[M(x); A°].
Therefore
E[M(x); A] = 0.
Next, define the martingale M’ (t) by M’ (t) = k(Z(t)), t € Z*. Then
(42)  f(0; a) — f(a) = E[M’(®)] = E[M'(); A°] = E[M(); A] = 0.
The third equality in (42) follows from the fact that f(Z(t)) converges a.s., and
that on A¢, givenanyn € Z7, Z(t) <ni.o. [
Claim 2 implies that
lim supy—.b~tlog[P**{X(t) enters (0, ®)}] < dr a.s.,
which implies (28) in Theorem 17.

dr + dg+, = 0 implies (27) and (29). First of all, notice that (28) holds iff
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dim[V’(0)] = R. To see this, first suppose that (28) holds. Then £, ;€ V’(0) for
1 =j =< R. Since dim(V’(0)) < R, it must be that dim(V’(0)) = R. For the
converse, see the proof above that dg + dg+; < 0 implies (28). O

Therefore, (28) holds iff dr < 0. Similarly, (30) holds iff dg+; > 0. So, the only
possibility is that dg + dg+, = 0 implies that neither (28) nor (30) hold.

7. Examples. Ingeneral the value di + dg.+,of Theorem 22 is not calculable.
However, there are two facts which make it possible to construct nontrivial
examples of Random Walk in a Random Environment on Z for which dg + dg+1
can be calculated. These facts are

di +dy + -+ + drsr = E[log| det(Ao) |]

(43)
(see Raghunathan, 1979, page 362),

(44) if b is a nonrandom eigenvalue of A, then
log|b| =d; forsome j (see Lemma 23).

(43) guarantees that a particular Random Walk in a Random Environment
can be classified by Theorem 22 if R + L — 1 of the d; can be calculated, for then
one need only subtract their sum from E[log | det(A,) |] to obtain the remaining
d; and then order {d;},<j<r+. in order to apply Theorem 22. Since it is already
known that either dgr = 0 or dg+; = 0, it is only necessary to compute R + L — 2
additional values of d;. For example, if R = L = 1, there is a complete classification
of all RWIRE on Z to which Theorem 22 applies because

_xl [ e(0; 1) ||
d1 + d2 = Ellog e(O; _1) [
(45)
Compare with Solomon, 1975, equation 1.7.

(44) guarantees that if the support of u gives rise to an Ao with R+ L — 1
nonrandom eigenvalues, then R + L — 1 of the d; are calculable. The following is
the main idea in the construction of the examples.

Denote the characteristic polynomial of A, by C(X). Notice that C(X) is a
polynomial with random coefficients. It is already known that C(1) = 0, and
there are at most R + L — 1 additional roots of C(X). Specifying R + L — 1
distinct nonrandom roots of C(X) gives R + L — 1 equations for the coefficients
of C(X), which then may be solved to give all of the coefficients in terms of just
two of the coefficients. Of course, there are restrictions on the roots since the
e(0; j) must be nonnegative, and e(0, L) and e(0; R) must be positive. Consider
the following special cases.

ExXAMPLE 1. L =1 and R = 2. Suppose that e(0; 0) = 0 a.s. Then

e(0; 1) + e(0; 2)] _e(0;2) |
e(0; 1) e(0; 1)

Since M(0) < 0 and M(—1) > 0, M must have a root in (—1, 0). Call this root

CX)=(X- 1){X2 - [ = (X - 1)M(X).

i
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a and let e’(0; j) denote e(0; j)/e(0; —1). Then e’(0; 1) and e’(0; 2) satisfy the

equations
a a+1||e’0;1)| _|a? + 0
1 1 [fe’©2] |-1 1/e(0; -1) |

Solving these equations for e(0; 1) and e(0; 2) gives

(46) e(0; 1) = [a + 1] — [a® + a + 1]e(0; —1),
47) e(0; 2) = [a® + ale(0; —1) — a.

Since e(0; 1) = 0 and e(0; 2) > 0, « and e(0; —1) must satisfy
(48) 0<e-1)<[1+al/le’+a+1]<1.

Having chosen « in (—1, 0), if the measure p is chosen so that e(0; =) satisfies
(46)—-(48), then {di, d;, d3} = {log | «|, 0, E[log(e(0;2)/e(0;—1))] — log | a|}.
However,

e(0; 2) _ o
Og(e(O; — 1)> log |a| = log[ a—1+

1

so dz + d; = E[log(—a — 1 + 1/e(0; —1))]. According to Theorem 22, if (46) and
(47) hold w.p.1 then

)J >0 implies X(t) » +o as. [P],

E[log(—a -1+ 2(0; =)

) ;
E[log(—a -1+ 2 (0; _1)>d =0
implies —o = lim inf X(¢) < lim sup X(t) = + as. [P];

1] o
E[log(—a -1+ 2 (0; 1))_ <0 implies X(t) » — as. [P].

EXAMPLE2. L=2and R =2.
Again, suppose that e(0; 0) = 0 a.s. Then

0; — 2) + e(0; —1)

€ 2
C(X)=(X - 1)<X3 + ) X
_e 1) +e0;2) ., e(0;2 )
e(0; —2) e(0; —2)

= (X - 1)M(X).

M(-1) = (e(0; =2) + e(0; —1))/e(0; —2) and so M(—1) = 0 iff e(0; —1) = e(0;
1) = 0, which is really just the nearest neighbor case, i.e. L = R = 1. To avoid
this well-understood example, suppose that M(—1) > 0. Furthermore, M(0) < 0,
s0 M must have one root in (—1, 0), call it «, and another root in (=00, —1), call
it 8. Let e’(0; j) denote e(0; j)/e(0; —2). Then e’(0; —1), e’(0; 1) and e’(0; 2)
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satisfy the set of equations

-8> B B+1]]|e(0;-1) g® + 6 0
—a? a a+1]|-]e’ ;1) |=]|a®+a?|+ 0

1 1 1 e’(0; 2) -1 1
e(0; —2)
Solving these equations for e(0; —1), e(0; 1) and e(0; 2) gives
P SN o’ + af + B
e(©; 1)_a+ﬁ+1 e(; %b+ a+6+1}
1) = (0 —g)| & T (aB)” + 87 ataf+p
e(0; 1) = e(0; 2)[ at B+ 1 +aﬁ]+a+ﬁ+1’
oy B .
e(0; 2) = atfT1 [1+ e(0; =2)(a + B + af)].

These three formulae become less complicated with the substitutions a = o + 8
and b = af:

1 1-b
(49) e(O; -1) = 'a-+‘1‘ - 6(0, —2)[a + m],
1) = (0 — P Gl Vi b-1
(50) e(0; 1) = e(0; 2)[a+b 1+ a+1]+1+a+1’
b
(51) e(0; 2) = — m [1 + e(0; —2)(a + b)].

Since e(0; 2) > 0, e(0; —2) > 0, and e(0; 1) + e(0; —1) > 0, e(0; 2), @ and b
must satisfy

?::—a—bse(o._2)<a2+a+1—b
(52) or
?:bb—a—b<e(0'_2)5a2+a+1—b.

The inequality (ab + b)/(a+b) —a—b<a’+a+1—breducestoa+b+1
< 0, which is equivalent to (a + 1)(8 + 1) < 0. This shows that every choice of
B < —1< a <0 is possible.

The example now continues parallel to Example 1. The aim is to show that

d(2) +d(3) = E[log[%ﬂ.

The analysis will be in the same spirit as that of Example, 1, but more compli-
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cated. Applying the left hand inequalities in (52), and then (51) gives
e(0;2) _ 1
afe(0; —2) ~ <e<o; et b)/ @+

2—[a+b+<‘f::—a—b)]/(a+1)

__ b B
B a+b_|a|a+ﬁ+aﬂ>|a|'
Similarly,
e(0; 2) _ 1
aBe(0; —2) [e(o; —2)*““’]/ @+ D
<-[a’+a+1—-b+ (@a+b)l/a+1)
=-fa+1]=—-a-1-8<|B].
Therefore,
0; 2
log|a|<log[#;_)2)]<loglﬁl.

Sinced; =0ord; =0, and log | «| <0 <log | 8], it must be that

_zl [ e(0; 2) ]l
d2+d3—EIlog aBe(O; _2) I

Therefore, if (49)-(51) hold w.p.1. then

[ 1
E-log<e(o; _2)+a+B+aﬁ> —log(|la+B8+1]|)>0

implies X(t) —» 4 a.s. [P],

_ ) _
E_log(e(o; =9 +a+ 8+ aB) —log(|la+B8+1])=0

implies —oo = lim inf X(¢) < lim sup X(¢) = + as. [P],

+a+6+aﬁ) —log(la+B8+1])<0

[ 1
E _10g<e(0; -2)

implies X(t) - — as. [P].

8. Hitting times. In the case where R = 1, the expected time for the
RWIRE X (t) to move from 0 to 1 can be computed explicitly. Let
T, = inf{t > 0: X(t) = n}
and
m(z) = Yi-_L ae(z; a).
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THEOREM 25. E{T,} < » if and only if E{1/e(0; 1)} < o and E{m(0)/e(0; 1)}
> 0. Moreover, if E{1/e(0; 1)} < o and E{m(0)/e(0; 1)} > 0, then E{T\} =
E{1/e(0; 1)}[E{m(0)/e(0; 1)}] .

A proof of Theorem 25 will only be given under the additional hypothesis that
e(0; 1) < 1 a.s. This extra hypothesis simplifies the proof by eliminating the
possibility of transient states which do not communicate with the state 1. The
lemmas and propositions used to prove Theorem 25, along with their proofs, can
be modified to allow e(0; 1) = 1 on a set of positive measure.

To prove Theorem 25, let X" (t) be-the process obtained from X (t) by reflecting
X(t) at 1. Given the environment e, X"(¢) has transition function p°(x, y)
satisfying

péx,x+a)=e(x;a)ifx=0and -L<a=<1,p(,0) =1,
pé(x, x + a) = 0 otherwise.

Since the transition mechanism for X" (t) is the same as that of X(t) on (-, 0],
the distribution of the time for X" (t) to return to 1, starting from 1, is the same
as the distribution of 1 + T}.

LEMMA 26. For a fixed environment, the system of equations

(53) () =15

(54) v(y) = a0 (@)P(x, ), ¥ =1
has a nonnegative solution v(*), for which

(55) Ty<1v(y) < oo

if and only if E{T\ | e} < . Furthermore, if E{T\ | e} < « then the solution to (53),
(54) is unique and E{T,| e} = Y,<ov(y).

PROOF. See Breiman, 1968, pages 143-145, and recall that given the environ-
ment, X" (¢) is a Markov chain. O

Suppose that e(0; 1) > 0 a.s. Define the random variables h(n), n € Z by

(56) h©0) =1; h(@)=0,a=1;
— 1) = yLI L elntr-p
(57) h(n —1) ro h(n +r) Yp=rn1 en+rl)’ n =<0.
For n = 0, let %, = csle(n; ), ---, e(0; %)}, the sigma field generated by

fe(n; ), -+, e(0; #)}.
PROPOSITION 27. Forn=<0,h(n—1) € #,.

Proor. Induction.
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PROPOSITION 28. Forn <0,
E{h(n — 1)} = 353 E{h(n + r)} Th-rr1 Efe(0; —p)/e(0; 1)}.

PrROOF. Take expectations of the left and right sides of (57), and use Prop-
osition 27 and the fact that the e(z; *) are iid.

PROPOSITION 29. E{m(0)/e(0; 1)} > 0 if and only if ¥.<cE{h(z)} < .

PROOF. Suppose that E{m(0)/e(0; 1)} > 0. Then, by the definition of m(0),
E{e(0; a)/e(0; 1)} < o for all a < 0. The characteristic polynomial of the equation

— 1) = TL-1 L ,19(03 _p)lA
y(n—-1) =0 y(n +r) Yp-ra El e(0; 1) l
is
, L _ VL L—r ©L Je(O; _p)l,
(58) X re1 X577 Yp=r EI 0 1) |

It follows from the hypothesis E{m(0)/e(0; 1)} > 0 that if p is a root of (58), then
| p| < 1. Therefore, there exists a constant K > 0 and a constant §, 0 < § < 1,
such that E{h(n)} = K6, and so, ¥,<cE{h(2)} < .

On the other hand, suppose that ¥,<0E{h(z)} < . Then, by the definition of
h(-1), E{e(0; a)/e(0; 1)} < o for all a < 0, so by Proposition 28,

Twzo Efh(n)} =1 + Z.uzoEfh(n — 1)}

= L-1 L Jve(O; _P)lA
1+ ZnsO r=0 E{h(n + 7’)} Zp=r+1 El 6(0; 1) [
_ S, [e@; -p)|
=1+ ZnSOE{h(n)} 2£=0 le;=”+1 E] e(O; ];) I
Therefore,
(59) E{ e'g;";)}v SoElh@) = 1,

so E{m(0)/e(0; 1)} > 0.

LEMMA 30. Suppose that e(0; 1) > 0 a.s. Then h(n) is a nonnegative solution
to the system of linear equations

. €0; —a)

fla)=0, az=1; f(-1) =X e 0 1)

f0)=1;
f(n = 1) = f(n)
= f(n) Eg=1

e(n; —a) e(n + a; —a)
e(n; 1) 25=1 f(n + a)

=< -1.
en+a;1)’ "
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PROOF. The proof is left to the reader.

COROLLARY 31. For n < 0 let v(n) = h(n)/e(n; 1), and let v(1) = 1. Then
v(#*) is nonnegative and satisfies (53) and (54). Furthermore, if E{m(0)/e(0; 1)} >
0 and E{1/e(0; 1)} < o then

)1 l.[ | .m© l]_l
(60) TnsoBlo ()} = E\ o1 B0 ) |

and v(*) satisfies (55).

PrROOF. By definition, v(*) satisfies (53), and direct computation shows that
for y =0 and y = 1, v() satisfies (54). So suppose that y < —1. Define u(y) =
h(y)/e(y; 1). Note that for y = 0, u(y) = v(y). Lemma 30 shows that for
y= _1’

v(y) = u(y) = Ye=—1 u(y + ade(y + a; —a) = T,u(x)e(x; y — x)
' = Teott()e(x; y — x) = Tucov(x)e(x; y — x)

= Y=oV (X)P°(x, ¥) = Xi=10(x)D%(x, ¥),

where the last equality follows because p*(1, y) = 0 for y < —1. Therefore, v(*)
satisfies (54).

Proposition 27 shows that E{v(n)} = E{h(n)}E{1/e(0; 1)}. Therefore, Propo-
sition 29 and (59) show that if E{m(0)/e(0; 1)} > 0 and E{1/e(0; 1)} < « then
v(*) satisfies (60) and therefore, (55).

PRrOOF OF THEOREM 25. Ife(0; 1) = 0 with positive probability then Theorem
25 is clearly true. So suppose that e(0; 1) > 0 a.s. [u].

It follows from Corollary 31 and Lemma 26 that if E{1/e(0; 1)} < o and
E{m(0)/e(0; 1)} > 0 then E{T,} = E{1/e(0; 1)}[E{m(0)/e(0; 1)}]* < 0.

On the other hand, if E{T,} < , then Y,<E{v(n)} < by, Lemma 26 and
Corollary 31. The definition of v(*) shows that this implies that E{1/e(0; 1)} <
o and Y.<0E{h(z)} < . Proposition 29 then shows that E{m(0)/e(0; 1)} > 0.0

In the case when R = 1 and E{T,} < « the random variables T+, — T,
n = 0, form a stationary ergodic sequence. This observation gives the following
corollary to Theorem 25.

COROLLARY 32. If E{1/e(0; 1)} < « and E{m(0)/e(0; 1)} > 0, then

T,_ | 1 l.[EI m(0) "]ﬂ as.

lim, .. o E'le(O; DI le©; 1))

PrOOF. Apply Birkhoff’s Ergodic Theorem.

9. Periodic environments. The methods of Sections 3, 4, 5, and 6 apply
equally well to the following type of Markov chain.
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DEFINITION 33. A Markov chain on the integers with transition matrix
P(%, *) is called a Random Walk in a Periodic Environment (RWIPE) if there
exists an integer N > 0 such that for all x, y € Z.

(61) P(x,y) = P(x + N,y + N).

The least positive integer N satisfying (61) is called the period.

A Random Walk in a Periodic Environment with period 1 is an ordinary
random walk.

Let P(*, *) be the transition matrix of a Random Walk in a Periodic Environ-
ment with period N, and let e(x; a) = P(x, x + a). Then e(x; *) is a probability
measure on Z for each x € Z, and

(62) e(x; a) =e(x + N; a)
for all x, a € Z. Fix L > 0 and R > 0. Suppose that for all x,
(63) e(x;a) =0 if a>R or a<-L,

and suppose there are two relatively prime positive integers, a and b, such that
for all x,

(64) e(x;a) >0 and e(x; —b) > 0.

THEOREM 34. The zero-one law for periodic environments. Let X(t) be a
Random Walk in a Periodic Environment with period N, and suppose that (63)
and (64) are satisfied. Then one of the following mutually exclusive possibilities
holds:

1. lim,_X(t) = +x a.s.
2. —oo = lim inf,, X (t) < lim sup,_.X(t) = +» a.s.
3. lim, . X(t) = — a.s.

ProOOF. Adapt the line of argument in Sections 3 and 4 for random environ-
ments to periodic environments. There are two important changes to be made.
To adapt Theorem 17 and its proof, note that the sequence

{maxlsst{f(_pR + j; —pR + j)”peZ"’

is periodic instead of stationary and ergodic, so Birkhoff’s Ergodic Theorem is
no longer needed to prove the theorem. Regarding nonreducibility, (64) insures
that the RWIPE is irreducible and that (16)-(20) are satisfied.

In order to give transience and recurrence criteria, proceed as in Section 5.
Suppose that in addition to (63) and (64),

(65) e(x; R)>0 and e(x; —L)>0
forall x € Z. Let

R+ 1,kR)—e(x; R+1—-k)
e(x; —L) ’

AR+ L, k) =
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and for each x € Z, let A, be the (R + L) X (R + L) real matrix defined by
A, k) =681+ 1, k) if 1=si<R+1L,
A.(G,k)=A, R+ L, k) if i=R+ L.
Let
(66) M= ANy+1ANy+2 s AN(y+1)

for any y € Z. (62) insures that the sequence of matrices {A,},czis periodic with
period N, so M is well-defined. Let

(67) ‘di}15i5R+L

be the logarithms of the absolute values of the R + L (not necessarily distinct)
eigenvalues of M in nondecreasing order.

THEOREM 35. Criteria for transience and recurrence of RWIPE on Z. Let
X(t) be a Random Walk in a Periodic Environment with period N, and suppose
that (63), (64), and (65) are satisfied. Let {d;}<i<r+L be as in (67).

If dg + dgi1 > 0 then Pi{lim, . X(t) = o} = 1;
If dg + dg+y = 0 then P{—o = lim inf, . X(t) < lim sup,_.X(t) = o} = 1;
If dp + dgiy < 0 then P{lim,_ X (t) = —oo} = 1.

PROOF. Adapt the line of argument in Sections 5 and 6 for random environ-
ments to periodic environments. There are two important changes to be made.
Instead of using Oseledec’s Multiplicative Ergodic Theorem one uses the fact
that the matrices A, are periodic. To prove that dr = 0 or dg+, = 0 (Lemma 24)
one must show that if A is an eigenvalue of M with multiplicity n(\) then \™'is
an eigenvalue of A3, .- AT'Ag! with multiplicity n(\). This follows from the
observations that since the A, have period N,

MAG'ARL, -+ AT =1,

and that Aj’AxN; --- A7! and AR, --- AT'Ag! have the same characteristic
polynomial.

REMARKS. It is clear that (64) is not a necessary condition. For example, it
could be replaced by the condition that there be some x such that e(x; a) > 0 for
—L =< a < R and that the period N satisfies N < R + L. The problem of finding
necessary and sufficient conditions for irreducibility and nonreducibility seems
to be very complicated here.

In the case of ordinary random walk, N =1 and M = A,. If C(X) =
det(M — XTI) denotes the characteristic polynomial of the matrix M, then

(68) e(0; —L)C(X) = (-1)FX"[-1 + Ti_r e(0; =) X']
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and
(69) (—1)F+1+1e(0; —L)C’(1) = X1 je(0; j).

Suppose that (63)-(65) hold. Then (68), (69), Theorem 35 and the usual classi-
fication of a random walk as transient or recurrent in terms of the RHS of (69)
combine to show that:

If 3% _, je(0; j) > 0 then C(X) has a single root at X = 1, R — 1 roots of
modulus less than 1 and L roots of modulus greater than 1;

If Y2 _, je(0; j) = 0 then C(X) has a double root at X =1, R — 1 roots of
modulus less than 1 and L — 1 roots of modulus greater than 1;

If ¥ _, je(0; j) < 0 then C(X) has a single root at X = 1, R roots of modulus
less than 1 and L — 1 roots of modulus greater than 1.

APPENDIX

Elementary number theory. Two number-theoretic propositions will be
proved which permit the construction of special nonreducible Markov Chains.

If f: D — D is a function, f™: D — D will denote the n-fold composition of f
with itself. For example, when n = 2, f®(x) = f(f(x)).

PROPOSITION 36. Let a, b, and c be positive integers satisfying

(70) ged(a, b, ¢c) = 1;
(71) a>c.
Let
d, = ged(a, b),
let
D=1{0,1,---,a+b—1j
and let

C={O’d1’2d1’ "‘,a+b—'d1}.

Then there exists a function f: D — D satisfying

(72) f(x) =y implies that y — x € {a, =b, c},
(73) for.each x € D there exists an n such that f"(x) € C,
(74) f(c)=¢,

(75) given ¢, c; € C, there exists an m such that f™(c1) = .

REMARK. (72) implies that f has no fixed points and (75) implies that for
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any c € C, {f9(c),j=1,---,(a+b)/d} =C.

EXAMPLE. a=15,b=10,c=6,C = {0, 5, 10, 15, 20}

21 17 23 19 O
! Il Vol
11-1—-7—-513—-3—>9—>15
!
5
!
16 22 18 24 20
Il Vol !
6 51252 -8 14— 4 —>10
!
0

PRrROOF. Proposition 36 will follow from the following two lemmas.
For x a nonnegative integer and y a positive integer, (x) mod(y) will denote
the least nonnegative integer r satisfying x = ny + r.

LEMMA 37. Let a, b, and c be positive integers which satisfy (70) and (71). Let

(76) dy = ged(b, c),
and define
y(j, n) = (nc + j)mod(b + c)
for .
b+c
(77) enmlon o (2 1]
For fixed j, define
(78) A; = {(j)mod(dz) + kd,: k € B}.
Then
(79) vy(j, *) is a one-to-one map from B onto A;.

ProOOF. To show that this function is into A;, note that for any integer n,
d;| [(nc + j)mod(b + ¢) — (j)mod(d,)].
Therefore, for each n there exists an integer k such that
(80) ¥(j, n) = (j)mod(dz) + kds.
Since ‘
0<y(j,n)=b+c-—-1,
(80) shows that y(j, n) € A;.



RANDOM WALK IN A RANDOM ENVIRONMENT ON Z 557

To show that the function is one-to-one, and consequently onto, suppose that
y(j, n) =y(j, m). Then

(81) (b + ¢) | (nc — me).
(81) implies that
nc — me) b+c\
o (=)o)
(76) implies that c¢/d, and (b + ¢)/d, are relatively prime. Therefore,
b+c
(83) ( A ) In—m].
(77) implies that
(84) In—m| <2
d,

Combining (83) and (84) shows that n = m, so y(J, *) is one-to-one. O
LEMMA 38. If0 < n <d,, then y(nd,, 0) = nd

PrROOF. (70) implies that d, and d. are relatively prime. Therefore, d,d; | b.
If 0 = n <d,, then nd; < b + ¢, and so (nd,) mod(b + ¢) = nd,.

LEMMA 39. If0<=m,n<d,and m # n, then Apg, N Apa, = D.

ProoF. (70) implies that d, and d, are relatively prime. Lemma 39 now
follows from the fact that in the ordering defined by (78), the consecutive elements
of any fixed A,q, are d, units apart and (nd; )mod(d,) = (mdl)mod(dg)lff m=n.
(Compare this with (81)-(84).)

LEMMA 40. UjZ'Aw, =1{0,1, ---,b+c —1}.

PrROOF. From Corollary 39 and the fact that #(4;) = (b + c)/d, it follows
that

(85) HUST Ap) = dz(b ) c>=b+c.

It follows from (78) that
(86) Uiy Arg, C {0, 1, -+, b +c — 1}.
Combining (85) and (86) proves Lemma 40.

ProOF OF PROPOSITION 36. Lemmas 37 and 40 will be used to define a
function f which satisfies (72)-(75).
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Step 1. By Lemma 40, {Au}o<k<q, is a partition of the set {0, 1, ---,
b+ c — 1}. If x € Ay, for some k, then there exists an integer n such that
x = y(kdy, n). Define g(x) = y(kd,, n + 1) for any n € Z such that y(kd,, n) = x.
The definition of y(j, n) and (79) show that for fixed j, ¥(j, n + 1) is uniquely
determined by y(J, n), so this definition of g(x) is unambiguous. For any integers
n and j,

[(n + 1)c + jlmod(b + ¢) — [nc + jlmod(b + ¢) € {c, —b},

s0 g(x) = y implies that y — x = ¢ or —b.

Finally, note that the restriction of g to A, is a one-to-one function onto
Ayq,. Lemmas 37 and 38 show that kd, € A, and consequently that for each
x € Ayg, there exists an m such that g™ (x) = kd, € C. Therefore, for any
x€{0,1, ...,b+ c— 1}, there is an m such that g™ (x) € C.

Step 2. 2z(n) = (na)mod(a + b) defines a one-to-one map from {0, 1, ---,
((a + b)/d;) — 1} onto C. (Change ¢ to a and set j = 0 in Lemma 37.) If x € C,
define f(x) = y if there exists an n € Z such that z2(n) = x and z(n +1)=y.If
x € U A, \C, define f(x) = g(x).

Step 3. Finally, forx € {b +¢, ---, b+ a — 1}\C, define f(x) = x — b. This
finishes the construction since b < b + ¢ guarantees that for any x € {b + ¢,
, b+ a — 1}\C there exists an n such that f™(x) € {0,1, --- b+c—1} UC.

It is straightforward to check that f so defined has the desired properties. 0

PROPOSITION 41. In Proposition 36 (72) may be replaced by
f(x) =y implies that y — x € {—a, b, —c}.

PROOF. To prove that this modified version of Proposition 36 holds as well,
it is necessary to make three modifications to the proof of the original proposition.
Note that the function g defined in Step 2 is invertible, and that f is invertible
when restricted to C. So to prove the modified version, replace g by its inverse
in Step 2, replace f with its inverse on C in Step 2, and in Step 3, for x €
{b+c, -+, b+ a—1}\C, define f(x) = x — a.

PROPOSITION 42. Let {a;}j=1 and {b;}/L, be sets of distinct positive integers
satisfying

a,=a; and b, =b;

(87) gediay, -+, a, by, -, b, = 1.
Let

d = gedia,, b},
let

D=1{0,1,...-,a + b, — 1}
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and let
c'=1{0,d,2d, ---,a. + b, — d}.

Then there exists a function f: D — D satisfying

(88) f(x) =y implies that y — x € {a;}j-1 U {=bj}]Z1,
(89) for each x there exists an n such that f™(x) € C’,
(90) ficn=c,

(91)  given ¢, c; € C’, there exists an m such that f™(c,) = co.
REMARK. Propositions 36 and 41 are special cases of Proposition 42.

ProOF. By induction on N = r + m. If N = 2, Proposition 42 follows from
the construction in Step 2 of the proof of Proposition 36. If N = 3, Proposition
42 follows from Proposition 36 or 41. Without loss of generality (if r =1 < m,
Proposition 41 and its proof may be substituted for Proposition 36 and its proof
in the following argument), suppose that r > 1 and suppose that the result is true
for N — 1. If gcd{as, - - -, ar, by, -+, b} = 1 the proof is finished. So suppose
that

ds = gedfaz, -+, @, by, -+, by} > 1
Let
d, = gedfa,, bn}.
Then (87) implies that
ged{ds, di} = 1.

Substitute ds for d,, ds for ds, a, for ¢ and b, for b in Step 1 of the proof of
Proposition 36. This gives a function g from {0, 1, --- a; + b, — 1} to {0, 1,
.+. a; + b, — 1} with the properties that g(x) = y implies that y — x = a, or —b,,
and that for each x € {0, 1, --- a; + b, — 1} there exists an n such that
g(n)(x) € {0’ d3’ cee, + bm - dS}'

The induction hypothesis applied to {a;/ds}/=» and {b;/d3}™, gives a function f
from {0, d3, 2d3, e, Qr + bm - da} to {0, d3, 2d3, s, Q + bm - da} Wthh
satisfies (88)-(91). So by analogy with Step 2 of the proof of Proposition 36, set

f(x)=g(x) fOl' xE{O, 1’ ""a1+bm_1}\{0’d3»2d3,"’9ar+bm_d3}°
Finally, repeat Step 3 of the proof of Proposition 36 for
x € {a1 + bm, ceeyar + bm - 1}\{0, d3, 2d3, ceeyar + bm - da}. 0

COROLLARY 43. Suppose that u(G*) = u(G®) = 0 and ged ({z # 0: m(z) > 0})
= 1. Let F; be the event defined by (14) and (15). Then Pr{F,} > 0.
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ProoF. Let {a;}/-; = {2> 0: m(z) > 0} and let {b;}/2, = {z > 0: m(—2z) > 0}.
Note that a, = R and b, = L, and the q; and b; satisfy the hypotheses of
Proposition 42. Let f: {0,1, ... , R+ L — 1} - {0, 1, ..., R + L — 1} satisfy
(88)-(91) for this choice of the a; and b;. Let G, be the event that e(x; a) > 0 if
fx) =x+aforx€{0,1, ---, R+ L — 1}. By the choice of the a; and b;, (88),
and the fact that for each x, G, only requires e(x; a) > 0 for one a, G, occurs with
positive probability.

CLAIM. G, C Fy. The key idea here is that if G, occurs and x € {0, 1, - - -,
R + L — 1}, then f(x) = y implies that y € {0, 1, ---, R + L — 1} and
X ~o,r+L-1)Y- Then, since a, = R and b,, = L, if G, occurs (90) and (91) show that
(14) occurs, and (89) shows that (15) occurs. Therefore, G, C Fy.
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