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A CENTRAL LIMIT PROBLEM IN RANDOM EVOLUTIONS'

By JosepH C. WATKINS

University of British Columbia

Let {T.},=1 be a sequence of independent and identically distributed
strongly continuous semigroups on a separable Banach space. The correspond-
ing generators {A,},-, satisfy E[A,] = 0. Conditions are given to guarantee
that the weak limit Y(¢) = limit,—e HEf{] T:(1/n) Y,(0) exists, and is char-
acterized as the unique solution of a martingale problem. Transport phenom-
ena, random classical mechanics, and families of bounded operators are the
featured examples.

1. Introduction. Griego and Hersh [7] were the first to employ the term
random evolution. Their ingredients were a stationary Markov chain v(s) with
state space {1, 2, -- -, n} and a set of infinitesimal generators {A‘}. In their work
a random evolution is defined to be a product

(1.1) M(t) = exp(t — 75)A°"N ... exp(rs — 71) A" Vexpr A

where 7; is the time of the jth jump, and N(¢, w) is the number of jumps up to
time t. They suggested this probabilistic tool in order to obtain existence,
representation, and asymptotic theorems and formulas for initial value partial
differential equations of both hyperbolic and parabolic type. Asymptotic theorems
in random evolutions are ideally suited to modeling systems having rapid, but
small fluctuations. These theorems separate into two types. First order theorems,
generalizations of the law of large numbers, state that if the evolution coefficients
are multiplied by 1/n and if the process is sped up by dividing the time parameter
by n, then as n — o, the average of the evolution is propagated by exp t4, where
A is the closure of the average of the generators of the various modes of evolution.
If A = 0, then the first order limit is the identity. In this case if we keep the
fluctuations small, multiplying the evolution coefficient again by 1/n, then we
must speed up the process even more, dividing the time parameter by n% A
second order limit theorem proved in this manner generalizes the central limit
theorem. This paper establishes second order theorems for random evolutions
occurring in discrete time according to independent factors. A

Section 6 details three examples which are typical areas of investigation for
limit theorems in random evolutions.

1. Bounded operators: B is an arbitrary separable Banach space and A(£) is a
bounded operator.
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2. Transport phenomena: B = Co(R%) and A(£) = a(£)-V where a is a
measurable mapping from Z to functions on R?.

3. Random classical mechanics: B = L*(R®N) and A (¢)f = {f, H(£)} where H
is a measurable mapping from = to a family of N particle Hamiltonians.

The case of bounded operators on a separable Banach space B is not motivated
by any specific example, but is introduced to highlight the structures in this
paper free from the additional demands that unbounded operators incur. The
bounded operator case provides a clean theory, relatively free from additional
hypotheses. Besides the assumption that the A(£) are uniformly bounded, we
assume the existence of a Hilbert space H that compactly imbeds in B with the
A (§¢) remaining uniformly bounded. As we shall see, if B is itself a Hilbert space,
the assumption of an additional Hilbert space is unnecessary.

The limit theorems for bounded operators have received attention for the most
part on finite dimensional Banach spaces. The initial results for products of
random matrices were set by Kesten and Furstenberg [10] as first order limit
theorems. More recently, Marc Berger [3] has obtained central limit theorems
for random matrices.

Random classical mechanics arises from the Hilbert space approach to classical
mechanics [14, page 313]. A brief outline of this approach follows.

Starting from a Hamiltonian

(102) H(q1’ c* s dN;5 Py ”'9pN)
we obtain Hamilton’s equations of motion
op _ —0H da; _oH

9t g’ dt  api

Let w(po, qo; t) = (g(t), p(t)) denote the vector in RV that is the solution to
equation 1.3 with initial data q(0) = g, and p(0) = p,. For f € C§(R®N) let

(1.4) (T@®)f)p, q) = f(w(p, g; t)).
Then T'(t) defines a group of operators. By the chain rule,

(1.3)

_4 _ yon Of 9q:  of dp
Af = dt T(t)f|:=0 =Yia 3q; 9t + 3p: ot
(15)
of OH af OH
— oy UOH SR\

6(],' 6p,- 6pi aq,- -

the Poisson bracket. Whenever H is a C' function, the Liouville operator A is
defined on the core C35(R®*) by equation (1.5). The assertion that T'(t) is a
unitary group in L%(R®") is known as Liouville’s theorem. Thus a random
classical mechanics can result from the addition of a stochastic parameter to H.
A becomes a random family of first order differential operators on the phase
space of the N particles.

The following two physical models illustrate transport phenomena.

(i) A particle moves with a certain velocity along an integral curve until it
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collides with another particle; then it changes its speed and moves along another
curve. Both the change in speed and in direction are assumed to be random.

(ii) A paramecium twiddles, that is, it tumbles in place sampling its environ-
ment. It comes out of its tumble in some direction, assumed to be random, and
runs for a certain distance based upon its conclusions about the environment.
Each of these events is taken to be independent and is represented by one of the
operators A (£).

The majority of the effort in the research on random evolutions has been
directed to transport phenomena. The above cited Reuben Hersh review paper
[8] along with the conference proceedings in [13] provide an excellent overview
to this area. Indeed, Mark Pinsky [13] formulates his questions in terms of a
martingale problem. This is the point of view taken in this article.

Random evolutions have been used primarily as a probabilistic method in
differential equations. As a consequence, the limit theorems have been restricted
in scope to showing that the average behavior is propagated by S(t) = exp(tC),
where C is one half of some averaging of the generators of the possible modes of
evolution. As an example of a second order theorem, we consider the Hersh-
Pinsky [9] paper on particle transport. In their example, the transition mecha-
nism was determined by a finite state ergodic Markov chain. A (v(t)) is a random
first order differential operator and 1/n is the time scale for the mean free path
between collisions. The averaging is given by

(1.6) C = limit;_,« -1— J; J(: EA(v(s))A(v(r)) dr ds,

a limit that was presumed to exist. C is a second order elliptic differential
operator. If its closure is assumed to be a generator, then they were able to
conclude that the limit of the average of the random semigroups is S(t).

These second order theorems place the statement that transport phenomena
have a diffusion limit on solid ground. The goal of the authors was to find a
comprehensive theory that included noncommutating families of unbounded
operators, while leaving the stochastic structure that determined the random
variations in the equation of state as general as possible. This method was quite
successful in representing S(t) for a wide variety of structures with independence,
finite Markov chains, or some mixing condition controlling the mechanism that
picks the successive modes of evolution.

2. The assumptions, the results, and the strategy. First we state the
general set up: A is a family of generators of strongly continuous semigroups on
a separable Banach space B, indexed by a probability space (5, Z, u), i.e., A:
(B, Z, u) - ¥(B). In addition,

(1) 2 =Nz Z(A%(§)) is dense in B,
(2.1) and N {exp sA(£)(9D):s>0,t€EE} C 2.
(2.2) (ii) £ — A(£)y is measurable for each y € 2.
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(2.3) (iii) E[| Ayl = [z A(®)y | n(d§) < oo, and
(24) (iv) E| A% = [z A*(&)y || n(d§) < = for each y € 2.
(2.5) (v) |lexp sA(£)|| < M exp «vs for some M, y € R.

(2.6) (vi) EAy = [z A(§)y u(dE) = 0.

Statements (2.3) and (2.4) are the moment conditions on {A (§)}.
On the dual space B*, we assume the existence of a separable subspace &’
with the following properties:

2.7 (@) lyll=sup{(8,y):0€ 2, 6| =1}

(2.8) (i) Neez D(A*(E) C D', N fexp sA*(E)(D'):s>0,EEEC D’
(2.9) (i) E[|A*0]l = [zl A*(£)0 ]| u(d§) < o, and

(2.10) (iv) E||A*0| = [=]| A**(£)0 || u(dE) < o foreach 6 € D ".

Condition (2.7) is a mild condition so that we can determine the norm of an
element from information about its pairing with elements in the dual space. This
condition will be essential in the proof of Theorem 3.1. Conditions (2.8), (2.9),
and (2.10) mirror conditions (2.1), (2.3), and (2.4), and are designed to permit us
to construct a process on B* similar to Y, the limiting random evolution. This
dual process is the key to the uniqueness of Y.

Let A, A;, Ay, --- be a sequence of independent, identically distributed
generators of strongly continuous semigroups as described above. The purpose of
this work is to investigate the limiting behavior of the random evolutions

(2.11) Y.(t) = exp(% A[nzt]> . exp(% Az)expe A1> Y.(0),

where Y, (0) converges weakly to Y (0).
In order to become more comfortable with the notation, we present an example.
For each i, let

4 with probability L
A= dx 2

d . |
T i with probability 3"

In other words, A; = r;,(d/dx) where {r;} is an independent sequence of Rade-
macher random variables. Then exp(sA;) is a semigroup of uniform motion either
to the left or to the right, depending upon the coefficient of d/dx. Let Y,(0) = f
for all n, f € Co(R). Then

[eXsz A1> Y,,(O)](x) = f(x + rlz r1>

[exp(r—ll A2>exp<% A1> Y,.(O)](x) =f (x + % (r, + r2)>.
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Continuing in this manner we find that Y,(t) is given by
[n2t] 1 1 [n2t]
(2.12) =1 exp| A;) Y, (0)(x) =flx + o Yi=1 Ti).

Asn — o, (1/n) 22:?] r; converges weakly to standard Brownian motion B(t).
The limit process Y(t) is

(2.13) Y(t)(x) = f(x + B(¢)).

This will be a good example to keep in mind throughout. The essential features
to notice are:

(i) Each of the random evolutions Y, has its sample paths in a Banach space.
(ii) The sample paths for Y, are right continuous with left limits.
(iii) The limiting random evolution Y is the weak limit of the Y,, and Y has
continuous sample paths.

Thus, we are working with the weak convergence of a sequence of processes in
Dg[0, =) to a process in Cg[0, »). This paper has two major results.

THEOREM 4.1. Given the random evolutions {Y,,} satisfying
(i) conditions (2.1)-(2.8).
(ii) the compact containment criterion (3.1),
(iii) Y,.(0) converges weakly to Y(0).
Then {Y,} is relatively compact in the topology of weak convergence. Furthermore,

any limit process Y lies in Cg[0, ) and for each 6 € ' (defined in (2.7) and
(2.8)).

(4.1) M(t) = (0, Y(t) — Y(0) — % J; J;A2($) Y(s)u(d§) ds)
is a martingale, and M'(t)* — V'(t) is a martingale where

(4.2) V”(t)=J; L(G,A(E)Y(S))Zu(dé) ds.

THEOREM 5.6.  Under the hypothesis (2.1)-(2.10), a (dual) process 0 exists (on
Dg-[0, »)) for each starting point 6 € D’ and satisfies (5.22) and (5.23) (require-
ments much like (4.1) and (4.2), and hence the process Y is unique in law.
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The techniques involved in the proofs are a combination of facts concerning
martingales along with the theory of weak convergence in Banach space. Some
general results in this direction are set in Section 3 and are applied in Section 4
to prove Theorem 4.1. Section 5 uses a duality argument to prove the uniqueness
theorem stated above. These methods apply to justify the following martingale
difference schemes.

Returning to the process Y,(t), we see that

(2.14) ("’ Y(Fﬁ) R (i = 1) B E((“" , A> B )Y”<i = 1))

has zero conditional expectation with respect to F_1/,2 = (A, - - -, Ai-y), the
sigma algebra of information up to time (i — 1)/n® Therefore,

(2.15) M?,(t)=<0, Ya() = Ya(0) — T E(exp(% A)— )n(i ;21»

is a martingale for every § € & ’. By Taylor’s theorem recalling that EA = 0, we
find that,

1 L paesofL
(2.16) E<exp —A I) =55 BA® + 0(n3>.

Placing this into equation (2.15), we have

@17 M) = (o, Ya(t) = Ya(0) — % p EA2Yn<i _21> nl> + 0(%)

n

so if Y, converges to some process Y, and if the Riemann sum converges to the
appropriate integral

(2.18) M(t) = <0, Y(t) — Y(0) - % J; J;AQ(E)Y(S)u(dE) d8>

is a martingale. For continuous processes, the quadratic variation process is
necessary to describe the process Y. The formal calculations proceed, guided by
the construction outlined in the proof of the Doob-Meyer decomposition for
discrete parameter martingales, in order to determine what this process ought to
be. The procedure is straightforward and amounts to creating a process V %(t)
by summing the increments necessary to center M%(t)% In other words, we are
finding a process V /(t) so that M%(t)> — V %(t) is a martingale. At the kth stage,
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The first two terms vanish since A.+; is independent of ,,2 and
E{Ak+1| %/,ﬁ} = EA = 0.

Continuing, we have the above expression equal to

el ()] 2] 2

1
(2.20)

k 2 ]_ 1
- f <"’ A(®) Y(;)) uldg) — + O(F)’

Note that the integral acts only upon A, not upon Y,. Therefore, the quadratic
variation process

@21)  Vi®) =i f (0,A<5>Yn<%>> n(ds)%w(l)
= n n , n

which, if all goes well, converges to

(2.22) VUt) = J: J; (6, A(£) Y(s))*u(d§) ds.

3. A primer on weak convergence in Dp[0, ©). This primer is designed
to lead us to the following theorem.

THEOREM 3.1. Let {Y,} be a sequence of processes with sample paths in Dg[0,
) such that for every e > 0 and t > 0 there exists a compact set K C B for which

3.1) liminf, .. P{Y,(S)EK, for 0 = s st} =1—¢

Then {Y,} is relatively compact with all of its limit points in Cg[0, ®) if and only
if for each § € 2", {(6, Y,)} is relatively compact with all of its limit points in
CR [O, °°)~

2"’ is any subset of B* with the property that ||y | = sup{(8,y):0 € 2, | 0]
= 1}. We shall refer to equation 3.1 as a compact containment criterion. In the
final section of this paper, we shall show how three particular models satisfy this
condition. This section is an adaptation of Billingsley [4] and is close in spirit to
Kurtz [11, Section 4]. A much more complete description of weak convergence
can be found in the forthcoming book by Ethier and Kurtz [6]. The Skorohod
topology on Dg[0, «) is an integrated version of the Skorohod topology on Dg[0,
T) for T < «. Therefore, weak convergence in Dg[0, ®) is precisely weak
convergence in Dg[0, Tk) for a sequence Tk with limitx_... Tk = . Theorem 3.1
will be applied either to a separable Banach space B or to a closed and separable
subset of its dual space B*. In these situations, Prohorov’s theorem assures us
that relative compactness and tightness are equivalent notions. Because our limit
processes are found in Cg[0, ), the convergence is actually uniform on bounded
subsets, i.e., the convergence is on D[0, T') in the uniform topology for each T.
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We begin with a well known characterization of weak convergence and indicate
the steps needed to arrive at Theorem 3.1.

In Cy[0, ) we can use the Arzela-Ascoli theorem to characterize compact sets.
However, the space Dg[0, ) contains functions that have discontinuities of the
first kind and so we must generalize the definition of the modulus of continuity.
Let

w’(y, o, t)
= infic soymax;sup{|y(r) — y(s)|: r, s € [tio1, L), tim, t; € 11}

(3.2)

where 2 (t) is the set of all partitions [[ = {t, ¢, - - - , t,} satisfying
t—t_.1>06 fori=2,3,---,n
(3:3) th=0
t,=t>th-.

It is worth noting that w’ is an increasing function both in ¢ and in § and that
(3.4) w'(x, 8, t) <w'(y, 6, t) + 2 suPo<y=i+s | 2(s) — ()|
by the triangle inequality. The theorem that substitutes in Dg[0, ») for the
Arzela-Ascoli theorem in Cg[0, ) is the following.

THEOREM 3.2. A set A C Dg[0, ) has compact closure in the Skorohod
topology if and only if

(i) for each s = 0, there is a compact set K° C B such that
(3.5) x(s) EK® forall x€A

(ii) for each t>0
(3.6) lim; osup,eaw’(x, 8, t) = 0.

This translates to give

THEOREM 3.3. Let {Y,} be a sequence of processes with sample paths in Dg[0,
). Then {Y,} is relatively compact if and only if

(i) for every ¢ > 0, and s in a dense subset of [0, ), there is a compact set
K°® C B such that

3.7 liminf, P{Y,(s) EKi} =1 —¢
and

(ii) for every ¢ > 0 and t > 0, there exists 6 > 0 such that
(3.8) limsup,_,P{w’(Y,, §,t) = ¢} < e.

The balance of this section will link this characterization of relative compact-
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ness to the characterization in Theorem 3.1. Notice that Theorem 3.1 requires
that the limit points be continuous processes. This may be verified by using the
following criterion:

For y € Dg[0, ©) and u > 0, define

(3.9) J(y, u) = supo=s=u | ¥(s) — y(s =)l
and
(3.10) J(y) = J; e “[J(y, u) A 1] du.

Since J is a continuous function on D3[0, ), we have the following theorem:

THEOREM 3.4. Let Y, Y,, n = 1, be processes with sample paths in Dg[0, o)
and suppose that Y, converges to Y. Then Y is continuous if and only if J(Y,)
converges weakly to 0.

We omit the proof. The next step involves a systematic cataloging of the
oscillation of an element y in Dg[0, «).
Let ¢ > 0 and let ¢y = 7o = 0, and define for each k = 1,

(3.11) T = inf{s > 1 |y(s) — y(rr-1) | = ;}
and
(3.12) o = sup{s <m:lly(s) =yl = %}

with the convention that once 7, reaches infinity, then both 7, and o, stay at
infinity for # > k. This choice yields the fact that (o, 71+1) is the largest open
interval whose closure contains 7, and || y(s) — y(1) || < ¢/2 for all s € (o4, Tr+1)-
In addition, if 7441 — ox > 6 for all k with 7, < ¢, then w’(y, §/2, t) < ¢. The
conclusion one can make is

LEMMA 3.5. Let {Y,} be a sequence of processes with sample paths in Dg[0,
). Let 7} and o} be defined in the manner above. Then for every ¢ > 0 and t > 0
there exists 6 > 0 such that

(3.13) limsup, .« P{w’(Y,, 6, t) = ¢} < ¢
if and only if for every e > 0 and t > 0 there exists 6 > 0

(3.14) limsup,_,«Supr=oP{7is1 — of < 6, TR < t} < e.
The next link gives us a means of estimating this probability.

LEMMA 3.6. Let Y be an adapted process with sample paths in Dg[0, «). Let
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M(t) be the set of all stopping times bounded by t. For n > 0, let
3.15) C(n) = SUP-em+2nSUPosus2n E{8UPo<i<snc | Y(r + u) = Y(7)|
X[ Y(r) = Y(r = v)[I}.
Then for each ¢ > 0 and v € M(t + n)
P{SUPOSusn 1Y(r+u) - YD) = ;
(3.16)

SUpPo<y=or-l Y(7) = Y(= — )| = %} < 1005;(77).

The left hand side of equation (3.16) with 7 = 7} A ¢t bounds
(3.17) Pt — ok <n, 7k S t}

uniformly in k. With this in mind one can establish:

THEOREM 3.7. If for every ¢ > 0 and every s in a dense set of [0, ) there
exists a compact set K* C B such that

(3.18) liminf, ..P{Y.(s) EK{} =1 —¢,
then {Y,} is relatively compact if and only if there exists C,(n) such that
(3.19) E{C.(0)| 3} = E{| Ya(s + u) — Yau(s)| | F 3}
X [ Ya(s) = Ya(s —0) A 1
for all
0<n<l1 Oss<t+2n 0<u=<2y 0=<sv=<3nAs,
where 7 5 = o{Y,(u): u < s},

(3.20) limit,_olimsup, .. EC,() = 0,
and
(3.21) limit,_olimsup,_.E || Y.(y) — Y,(0)|| = 0.

Now all the parts are in place to prove Theorem 3.1.

PrOOF. The sufficiency of the relative compactness of {Y,} is easy to verify.
If F € C(Dg[0, ®)), and § € D', then the function F,(y) = F((6, y)) belongs to
C(Dg[0, »)). Consequently convergence in distribution of a subsequence of {Y,}
implies convergence in distribution for the subsequence {(6, Y,)} with the same
indexing. Also, if Y, a limit point for {Y,}, is continuous, (6, Y) is a limit point
for {(8, Y,)} and (6, Y) is continuous.

If {(0, Y,)} is relatively compact then by the elementary facts on weak
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convergence, {(0, Y,)*} is relatively compact for k =1, 2, - - .. Also, because the
limit points are continuous functions,

(3'22) (01’ Yn)(02’ Yn) = 1/2 {(01 + 02, Yn)2 - (01’ Yn)2 - (02, Yn)2}

is relatively compact. In addition, by equation (3.4), {f(Y,)} is relatively compact
for any f in the closure of the algebra generated by f(y) = 1 and the functions
described in equation (3.22). This set is C(B) by the Stone-Weierstrass theorem.
In short, {(8, Y,)} is relatively compact for each § € &’ if and only if {f(Y,)} is
relatively compact for each f € C(B). In addition, if Y is a candidate for a limit
point of {Y,} and Y has a jump discontinuity, then since the linear functionals
separate points, there exists § € &’ so that (6, Y) has a jump discontinuity.
Therefore, all possible limit points for {Y,} are processes having continuous
sample paths.

For each x € B, f.(y) = | x — y|| is a continuous function on B. Since K is
compact, it is also totally bounded, and hence for each 6 > 0, it contains a finite
set S; so that

(3.24) K C U,es, B(x, 9).
By the triangle inequality, for any y, y’ € K, there exists x € S; so that
(3.25) ly=yl=slly—xl—llx=y"1+2é
For 0<9<1, 0=<s<t+2p O0=su=s2p 0=sv=3y9Asy,
(1 Ya(s + u) = Ya(s) | A D([ Ya(s) = Yals —0) [ A1)
< supses, | (Il Yals + u) — x| = |2 — Ya(s) )
X (| Ya(s) = xll = llx = Yals = v) D]
(3.26) + 4(0 + 6% + Iiv,(s)ekstorsome s=t+2q}
< supses,w (| Ya(+) — x|, 5n, t + 3n)
+ 4(8 + 6%) + Iiy,(9ek: forsome s=t+2nl

which we choose to be C,(n). By condition 3.1
(3.27) limit, olimsup,—..EC,(n) = 0.
Also by the same condition
I Ya(n) — Y.(0)]
< supses,| | Ya(n) — x| = [ x = Ya(0) || + 26 + Iivoex

(3.28)

for all positive 5. Therefore
(3.29) limit,_olimsup,—«E || Y.(n) — Y,(0)|| = 0

and the relative compactness follows from Theorem 3.6. [
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Thus we have reduced our work from the investigation of Banach valued
processes to real valued processes. The theorem we shall use to establish tightness
for processes on the line is the following.

THEOREM 3.8. Let {X,} be a family of processes with sample paths in
Dg[0, ) such that for every ¢ > 0 and every s in a dense subset of [0, ®) there
exists a compact set K* such that

(3.30) liminf, ..P{X,(s) €Ki} =1 —s.

Then the following criterion guarantees the relative compactness of { X, }:
For each t > 0, and some (and hence all) r > 0, and for

(3.31) 0<9<l1l O0=ss=st+2 0=su<2y
there exists C,(n) such that

(3.32) E{C.(n)| 1} =z E{| Xa(t + w) — X.(O)|"| F1
and

(3.33) limit,olimsup,_.EC,(3) = 0.

This theorem follows easily from Theorem 3.7.

4. Tightness theorems. The goal of this section is to establish the exist-
ence of a limiting random evolution. We state precisely the assumptions in the
following theorem.

THEOREM 4.1. Given the random evolutions {Y,} (defined in (2.11)) satisfying

(i) conditions (2.1)-(2.8),
(ii) the compact containment criterion (3.1),
(iii) Y,(0) converges weakly to Y (0).

Then {Y.,} is relatively compact in the topology of weak convergence. Further-
more, any limit process Y lies in Cg[0, ) and for each § € 2’ (defined in (2.7)
and (2.8)),

(4.1) M'(t) = (0, Y(t) — Y(0) — % J; J;AZ(E)Y(S)#(di) ds)
is a martingale, and M"(t)* — V(t) is a.martingale where

(4.2) V”(t)=J; L(H,A(f)Y(s))%(dE) ds.

The result will follow from a sequence of four lemmas. The first, Lemma 4.2,
asserts that any possible limit resides in Cg[0, ). This places us in the setting
for which we can apply Theorem 3.1. In Lemma 4.4, we prove that {(0, Y,)} is
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relatively compact for each § € &’. Now, we can conclude that {Y,} is relatively
compact. Because M’ is a martingale, the conditional moments are easier to
estimate. This is the role of Lemma 4.3. Lemma 4.5 checks the validity of
statements (4.1) and (4.2). Because Y(s) is not necessarily in N Z(A%(§)), (4.1)
and (4.2) must be viewed in the weak sense.

LEMMA 4.2. J(Y,) converges weakly to zero.

PROOF. In this situation, Y, jumps at time k/n2, k=1, 2, - - -. Therefore,

() -5
(lows ) )5 |

Then for each ¢ > 0, there exists a compact set K so that (3.1) holds.

J( Yn, t) = SUDPg<n2

(4.3)

= SUPk<n2

(4.4) (Y, t)Ix, < SUDk<n2SUPyek,

.

<exp ,ll Ap — I)y

Because K is compact, we can choose a finite set of elements S; from N Z(A(§))
so that

J(Y,, t) Ik, < SUpPk=n2SUpP,es,

<exp%Ak—I>y ” + 6

(4.5) < SUPk<n%SUDyes, + 6

1/n
f Arexp sAy ds
0

Me”
- ( : ) supserssupyes, | Any |l + .

Let X, = sup,es,|l Axy |l. Then {X,} is an independent and identically distributed
sequence of positive random variables and

M b
(4.6) J(Y,, t) Ik, S<_Te) SUPr<n2Xi + 6.
Because S; is a finite set, X; has finite second moments. Therefore
. [, e |
4.7) hmlt,l_,mPlM o SUpr<n2 X + 6 > eI =0.

Letting 6 — 0 gives the theorem.

LEMMA 4.3. {M.} is relatively compact for all 6 € Z'.
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PROOF. Let>0,0<t+29,0<k<2n?pandf € Z’. Then

oAy
(4.8) ‘ ' 2
= E{Z?Sll E'{<Mi’,<s + #) - Mn<s +° ;21))

by the martingale property and basic facts on conditional expectations. Each
term in the summand is precisely the type of expression we simplified in equation
(2.20). The result of that calculation was

e R ]

= J: (0, A(%) Yn<s + i — 1)) u(d§) ;}5 + extra terms.

n

Al
9"31

g:ﬂ(i—l)/nz)}' 7?}

F e i=1)/n?) I

In Section 2, we glibly collected these terms as O(1/n). Now we must be precise.
If we write Taylor’s theorem in integral form and let j = [n’%s], then the extra
terms are

1/n .
£l < f <1 - u) (0, A,'+jexp(uA,'+,-)Yn<s +° '21)) du
l 0 n n
LGl (o+57)) )
(4.10) + = —ulE\0, A exp(uA)Y,|s + — du
0 n n
X <0, (exp(% Ai+j) - E<exp %A)) Yn<s + i ;2 1))

plus a second term which results from switching the plus and minus signs in the
terms above. These two terms are handled in the same fashion. We now consider
the first term.

Let ¢ > 0. Choose a compact K whose existence is guaranteed by the compact
containment criterion so that (3.1) holds. The absolute value of (4.10) is bounded

above by
1/n 1
——u)\6, A exp(ud)y) du
0 n

1/n
(4.11) + J(: (rlz - u)E(ﬂ, A%exp(ud)y) du)

(o) o3| e

on the set K,. Choose a finite set S; so that this supremum may be taken over

F Hi-n/my I

E {supyext
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the set S; at the expense of an additional 8. Thus, we may bound these terms by

1/n
1
E{supyes,,< f (;— u>Me*(uon | Ayl + ) du

1/n
+J; <%— u)Me*(E TIRE ) du)
(4.12)

x2Me (161l Nyl + o)l 5‘".21«.'-1)/,12)}

l Me” 2 - l
= ElsuPyES”7 lol(lAyll + E A% | + &)(loll Iyl + 5)[

for each i. By estimating in a similar way, and possibly enlarging S;, the listed
term on the right hand side of equation (4.9) is bounded by

1

(4.13) e E{supyes,,(ll ol Ayl + 6)} .
Collect terms and return to equation 4.8 in order to see that

&l <M:',<s + —’2) - Mii(s)>2| o I,

l n J 7
wig =BG 10114y ]+ EL AL +5)(101 Iy ] + 6)Me”
+ 8ntE{sup,es,| 0 Ayl + 8} = EC,(n).

Thus, we can choose C, independent of n, and
(4.15) limit, _olimsup,_-EC,(n) = 0.

After noting that {E{M}?} is bounded, we see that this theorem follows from
Theorem 3.8. [

LEMMA 4.4. {(0, Y,)} is relatively compact for all € 2.

ProOOF. Choose K so that (3.1) holds, and let > 0,0 <s <t + 217,_r =1,
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and 0 < k < 2n%y. Then

(o5 + 2) - o)
n

- ‘Mﬁ',(s + ;’“5) — M(s)

(4.16) + <0, Y, E<9Xp<% A) - I) Y,,(S + i ;2 1)) ’

< ’MZ(S + %) — Mi(s)

ool e 5]

In the next step, we plan to take the expectation and evaluate the limit superior
as n — . By the previous proposition, the first term will vanish as n — 0. In
other words, )

+ Y5,

Ik,

limsup,.»E ’ (0, Yn<s + ;k§> - Yn(s)>
1 L — 1
(o 2{owe(; 4) =)o+ 52))
+ O(n).

Since K is compact, we can choose S; as outlined in the proposition above. If
us2q9At

limsup,_E | (8, Ya(s + u) — Y,(s))| Ik,

(4.17)

< limsup,—-Elx, Y&

< limsup, .«

- - 0, E(A%exp(rA))Y,|s + —; dr
o n n

< limsup,_«

-Elx Tia

(4.18) +0()

|

1/n
.E{supyesé Sh, J; (rlz - r) | (0, E(A%xp(rd))y) + 6| drl

+ O(n)
< Me"n limsup,_.supyes, (|0 | E|| A%yl + 8) + O(n)
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because k/n% < 7. Hence,
(4.19) limit,_olimsup,_.E | (0, Y.(s + u) — Y,(s))|Ix, = 0.

Therefore, since this inequality holds for all ¢, we have the theorem. 0O
LEMMA 4.5. Foreach0 € ', M'(t) and M"(t)*> — V'(t) are martingales.

PROOF. Recall that

M) = (o, Ya(t) = Ya(0) = BEZ E(exp(% A) - )Yn<i ;21))

(4.20)

i— 1))

n? )
Each of these terms is bounded in expectation, independent of n, by (4.14) and
each term converges to a continuous process. We know that {Y,} is a tight
sequence. Choose a subsequence { Y, } that converges to Y. Then M’ converges
weakly to M" and M’ is a martingale. In a similar manner, one may argue that,
along the same subsequence, V% converges to V' and M’(¢t)2 — V¢) is a
martingale. [

1/n
= (0, Ya(t) — Y,(0) — 37 E(o, f A exp(sA)Yn<

A limiting process Y(t) exists, M describes the average behavior of the limiting
evolution, and V describes the variance about that average behavior. There may
be one, several, or many limiting processes. We would like to incorporate M and
V into a characterization of Y and use this characterization of Y to guarantee
uniqueness. If a similar process exists on the Banach space dual to B, then we
can use M and V alone to secure uniqueness via a duality argument.

5. Duality. The concept of duality is embodied in the following discussion.
We begin with a lemma. (See [5]).

LEMMA 5.1.  Suppose that f:IR* — R is absolutely continuous on lines. Denoting
Vf = (f1, f2), suppose

t i
(5.1) f f |[fi(r,8)|drds<o, i=1,2, t>0.
0 (4]

Then for almost every s

(5.2) f(s,0) — £(0, s) = J; (fi(r, s = r) = fo(r, s — 1)) dr.
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PROOF.
fo f C(firy s = 1) = falry s — 1)) dr ds

=f f fl(s—r,r)dsdr—f f fo(r, s — r) ds dr
(5.3) 0 o vr

= J; [ft—r,r) = £, r)=f(r,t —r) +f(r,0)] dr

t
= J; [f(r, 0) = f(0, r)] ar.
Differentiating with respect to ¢ gives the result. 0O
THEOREM 5.2. Let © and Y be independent measurable processes, Y on a

Banach space, © on its dual space. Let f, g, and h be measurable on the product
space. If :

t
(5.4) f(o, Y(t) - f h(0, Y(s)) ds
0
is a martingale with respect to %, = o{Y(s): s < t} for each 0, and

(5.5) f(®(t),y)—£ g(0(s), y) ds

is a martingale with respect to %, = ¢{0(s): s < t} for each y, then for almost
everyt \ )

E[f(0(t), Y(0))] — E[f(6(0), Y(¢))]

(5.6) t
= E[ J(: g(0(s), Y(t — s)) — h(O(s), Y(t — s)) ds}.
PRrROOF. Set
(6.7) F(s, t) = E[f(O(s), Y(¢))].
Then by the martingale property
(5.8) F(s,t) = F(0,¢) = J; E[g(e(r), Y(¢))] dr
and
(5.9) Fi(s, t) = E[g(0(s), Y(1))].
Similarly,
(5.10) Fy(s, t) = E[h(B(s), Y (¢))].

Now apply Lemma 5.1 to F.
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This theorem holds for ® and Y on any metric space. We now list three
immediate corollaries. The first is the duality identity.

COROLLARY 5.3. Ifg(6,y) = h(8,y) then
(5.11) E[f(0(t), Y(0))] = E[f(0(0), Y(t))].

COROLLARY 5.4. Let Y be measurable and adapted to 7, and v be an %,-
stopping time. Let © be measurable and adapted to %, and ¢ be an %,-stopping
time. Suppose that Y and 1 are independent of %, and @ and o are independent of
Z,, and let

tAT
(5.12) feE A,y - J; h(0(s), y) ds

be an %,-martingale for each y, and

(56.13) f6, Y(EA o)) - fo 8(0, Y(s)) ds

be an Z,-martingale for each 6. Then
E[f(O(t A 7), Y(0))] — E[f(©(0), Y(t A 0))]

(5.14) = J; E[l,,=-,8(0(s), Y((t — s) A o))

— Lii—s<=ah(O(s A 1), Y(t — 5))] ds.

COROLLARY 5.5. Under the conditions of Corollary 5.4 if in addition, g(6, vy)
= h(6, y) then
E[f(6(t A 7), Y(0))] — E[f(0(0), Y(¢t A 0))]
(5.15) t
= J; E[(Ijy<ry = Lit—s=o)h(O(s A 7), Y((¢ — 5) A 0))] ds.

The duality identity can be used in several ways. Usually one must hunt for a
second process so that the identity holds for a large class. The argument continues
as follows:

Let Y be any process for which

(5.186) f(6, Y(t)) - J; h(6, Y(s)) ds

is a martingale. If the duality identity holds, then
(6.17) E[f(0(t), Y(0))] = E[f(©(0), Y(¢))]

for all Y which are dual to 0. If the class of f is sufficiently rich, then there may
be only one process that could satisfy the prescription above. In other words, the
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discovery of a dual process allows us to assert the uniqueness of the original
process.

Focus on any situation in which the sequence {Y,} is tight. Then a limit
process exists and

(65.18)  M'(t) = (0, Y(t) - Y(0) - %J; LA2(E) Y(s)u(d§) dS>

is a martingale with quadratic variation process

(5.19) V"(t)=£ L(O,A(E)Y(S))Zu(df) ds.

No canonical method is known for finding the dual process. However in this
situation, we are extraordinary fortunate, since the dual process arises naturally
on the dual space. Starting again, we recall that

(0, Ya(t)) = (0, I exp % A Yn<0))
(5.20)

n 1
= (n&i‘] exp — Al Yn<0)).

We can recreate the entire procedure, reversing the roles of the Banach space
and its dual. As we do this, we would like the resulting limit process on the dual
to be independent of any limit of {Y,}. We shall do this with the following
definition:

Choose an independent sequence A%, A%, --- each according to u and each
independent of {A;}. Let § € N;ex Z(A**(£)), and define

[n?)

(5.21) 0,(t) = II;-; exp % Ale.
If a limiting process O(t) exists, then we have martingales
1 t
(5.22) M, (@) = <®(t) - 0(0) - 3 J(; LA*z(E)O(S)u(dE) ds, y)

for each y € Nz Z (A%(£)). The quadratic variation process associated to M, is
t
(5.23) V,(t) = fo f_ (A*(£)0(s), y)°u(dE) ds.

THEOREM 5.6. Under the hypotheses (2.1)-(2.10), a process O exists for each
starting point § € 2’ and satisfies (5.22) and (5.23), and hence the process Y is
unique in law.

PROOF. After only a moment of reflection, one realizes that if (2.1)-(2.10)
are satisfied, then, by the symmetry of the assumptions a process © does exist
and satisfies (5.22) and (5.23). The only cause for hesitation would be in deciding
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the applicability of Prohorov’s theorem. However, hypothesis (2.8) asserts that
{0,.(t)} € 2’ and that 2’ is a subset of a complete and separable metric space.
Therefore, the theory in Section 3 applies with trivial adaptation.

Because the increments of the Y, processes are independent, we need only to
prove that the one dimensional distributions converge. Let f € C%(IR), the set of
continuous and bounded functions, having two continuous and bounded deriva-
tives. Then by the It6 Lemma:

F((6, Y(2))) — %J; J;f’((& Y(s)))(6, A*(§) Y(s)) u(dE) ds

(5.24) t
—%J; Lf”((ﬂ, Y(s)))(8, A(¥) Y(s))?u(dE) ds
and
f((0(¢), ) —%f If’((G(S), YI(A*(£)0(s), y)u(dE) ds
(5.25) 0 vE

- ‘21‘ fo L‘ "((O(s), Y))(A*(£)0(s), y)u(dE) ds

are martingales for each § € 9 ’. If we set

20,5 =2 | 10, 900, 2@
(5.26) =

“;‘J;f”((ﬂ, ¥))(0, A(£)y)2u(dE),

then the pair f, g satisfies the conditions of Corollary 5.3 and the duality identity
(5.11) holds. This determines E[f (6, Y(¢))] for each candidate Y for the limiting
random evolution. Finally, by varying the starting point 6, and applying the
Stone-Weierstrass theorem to the collection of functions

(5.27) {Zi=1 fi((0),-)):f; € CE(R), 0, € D"}
we can determine E[F ( Y(t))] for all F € C%(B), and Y is unique in law. 0O

6. Examples. Finally, we must turn to the task of fitting the examples
described in Section 1 into the scheme. As we run down the checklist of
hypotheses, we soon learn that the compact containment criterion is both the
most stringent requirement and the most difficult requirement to verify. In order
to move off square zero, we need to have a ready supply of compact subsets of B.
We shall accomplish this by introducing a Hilbert space H which compactly
imbeds in the Banach space. This notion is not new [2]. For example, a mean
zero Gaussian measure y on a Banach space is uniquely determined by its
reproducing kernel Hilbert space. Because the Hilbert space carries all of the
information about the covariance structure of v, it is capable of assuming a
primary role in convergence theorems on Banach spaces.
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Throughout this section, it will be more convenient to write E for [z-u(df)
and T(¢, t) for exp tA(£). Usually we will not need to refer to ¢ explicitly, and so
its specific mention will be suppressed by simply writing T'(t) = exp(tA). The
notation (-, -)y and || - | y will denote, respectively, the inner product and norm
on H. In each of the three examples, we shall prove a lemma which concludes
that for sufficiently small s

(6.1) E|Ts)fllu=<Q+ Ls®) | f | .
Once we have this, compact containment follows quickly. To be more precise,
PROPOSITION 6.1. For the family of processes {Y,}, and for every ¢ > 0 and

t > 0, if inequality 6.1 holds, then there exists a compact K* satisfying inequality
(3.1), provided that sup,{E || Y,.(0) || 4} is finite.

PROOF. E{ ” Yn<;k§)
= E{SUPII”HH=1<0 Y< )) ‘ Flu-ant }

(6.2) = supyo=1 B {(0 T G) Y"<%>)H
= SuPII"||H=1<0’ Y"(%)),, - H Y"<k"_2 1)

To obtain the final inequality, note that the mapping
(6.3) s— (0, T s)y)

determines a continuous semigroup on R, i.e. multiplication by e**® for some
a(¢) € R. Use the convexity of the exponential, Jensen’s inequality, the indepen-
dence of T(1/n) and j-_,)/2 and the fact that Ea(£) = 0. The conclusion is that
| Y.(k/n?] 4 is a submartingale, hence

-%k—l)/nz}

H

al
J

H

1
Pisupos,=.|| Yals) [ = M} = 2o B[ Ya(D) |

[nzt]L

(6.4) = M exp

_e"ﬁjLEuY(mnHQ

E|Y.0)]x

for M and n sufficiently large. Let K* be the ball in H centered at zero with
radius M. Because the imbedding is compact, K* is compact in B. In addition,
K* satisfies (3.1). 0O

EXAMPLE 6.1. Bounded operators. In the bounded operator case, we have
required that a Hilbert space, as mentioned above, exist and that the set {A(§)}
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remain a bounded set of bounded operators in H. In this setting, we can achieve
the estimate we need.

LEMMA 6.2. In the bounded operator case, (6.1) holds.

PROOF. The proof is an exercise in the calculus for operators and semigroups.

(6.5) Tt)f=f+ J; T(s) Af ds.

Therefore,

IT@fE = IflII%+ fo fo (T(s)Af, T(s’)Af)u ds’ ds

+ 2Re f (f, T(s)Af )u ds
(6.6) 0

= | F1% + 2Re f f (T(s)Af, T(s")Af )u ds’ ds

+ 2Re I} (f, T(s)Af )u ds.

Taking expectations on both sides yields

E|T@WfI% = IIfl% + 2ReE J; J; (T(s)Af, T(s")Af)u ds’ ds

+ 2ReE f (f, T(s)Af)n ds — 2ReE f (f, Af )u ds
(6.7) 0 0

= Il + 2ReE fo J; (T(s)Af, T(s")Af )u ds’ ds

+ 2ReEf0 fo (f, T(s")A%f )u ds’ ds.

We have used the fact that EA = 0. Therefore,

EIT®OfH = 1f1%
t2

(6.8) limit,_o = E(Af, Af )u + ReE(f, A*f)u.

In this case, A is a bounded operator, and so
(6.9) E|ITWOfIH < Ifllk+ 2CE(|A* [u + 1A IR I I %

for sufficiently small ¢t. Taking L =% E(|| A ||y + || A || %) and applying Jensen’s
inequality gives the lemma. [

If the process resides in a Hilbert space, then we may use the following
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argument to establish tightness:

By the lemma above, E || Y,(s)||, 0 < s < t, is uniformly bounded. If we also
know that there is a finite dimensional subspace that contains almost all of the
process up to time ¢, then we can conclude that there exists a compact set K so
that (3.1) holds. Let v be one of the possible initial points for the evolution, and
write

(6.10) T.(t) = 1" exp %A,..

In mathematical terms, what we seek is a projection @ with finite dimensional
range so that

(6.11) Supo=s=Jimsup, ... E | To(s)y — QT.(s)y|I* <e.
Let R be a projection, then
(6.12) E||RT.(s)yI* = (y, ET%(s)RTA(s)y).

This suggests that we make the following definition. For L any bounded operator
on a Hilbert space, let

(6.13) Tn(s)L = ET%(s)LT,(s).

A routine check will verify that 7,(s) is a semigroup. The discrete analog to the

generator is
2 1 * 1
,L =n°E exp,—lA Lexp,—lA - L

(6.14)
=n’E Y, % Zf=ojl! & ij)! AYLAR,
Let o7, = %E (A¥L + LA®*) + EALA. Then
(6.15) A, L — oL = n’E Yi; —l—k Yho 1' i — AYLA*,
n Jj (k= jN

| o4, L — /L | — 0 for every bounded operator L. Since 27, and o/ are bounded
operators || exp(s.Z,)L-exp(so/ )L| — 0 for all bounded operators L and all
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s> 0. Letting 7 (s) = exp(s </ ), we would like to show that 7,(s) — 7 (s). If
this were the case we could return to (6.13) to see that

SUPo<s< iMSUp, o E || T(s)y — QTW(s)y I
(6.16)
= Supo=s=:(y, T (s)(I — Q)y).

In addition,

(0 T = Q) = Timo S (3, 7 " = Q)

= Xi-o % Ym0 27 (’J’) E(y, A¥(I — Q)A™y).

Because || I — Q| = 1, the tail of this sum is bounded in norm by the tail of the
sum for ||y 2exp(3/2)t]|A|. Choose N so that the sum above for n > N is
bounded in norm by ¢/2. Then choose a projection @ so that each of the terms

€

(2¢)"

E(y, A¥(I - @A™ y) <

forn=1,2,-..,N,andj=1,2, ..., n. With this choice for Q,
(6.17) suposs<:(y, T (s)(I — Q)y) <e

and now we can choose K to be a bounded set in the range of Q.
The following proposition will close the argument.

PROPOSITION 6.3. For all s > 0 and all bounded operators L,

(6.18) limit, .|| Z.(s)L — J(s)L|| = 0.

PROOF. Because exp(s</,) — exp(so/), we only need to show that
| Z.(s)L — exp(s/,)L| — 0. This will justify calling o7, an analog to a
generator. Also

| =~
n

(6.19)
s A ) vt ()t
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where w = 2E || A |. Let k = [n?s].
| Zn(s)L — exp(s2Z,) L |

| al)e- ety A()
() #(2)
n&;QL_L
() e-r |

k. o (hei
< <e—k 2]]5;0 ]_'. ejw/nz(k —_ ])e(k /)(.u/n2

_ R
e E}Loj—'ef‘”/"

k/ 2
-k © = pkw/
+ e Zj=k+1j!€w"

k/ : i 1 ,

k 2
=le* ¥ ]_' (k—j)ern

1
21 k+1 oy . (] - k)ejw/n) H Z(?) L-1L H .

For the left sum,
kk+1

Sho & 7 k- ) =
For the right sum,
kj L, k+
Z;;k“"l J_' ejw/n (] k) e(k+1)w/n + k(ew/n —- l)exp(kew/n )

Return to the estimate, and use the Stirling formula.

| Zu(s)L — exp(sZ,)L |

2 2 kk+l 2 2
< e‘k<e’“‘°/" (1 + e“/™) i + k(e — 1)exp(ke“™ ))

sz
n

k&
= (ekw/nz(l + ew/nz)e—k

(6.20) X

k+

k!

i) -t |
n

“/n* — 1)exp(k(e’™" — 1)))

X
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1/2
< (e“‘”(l + e‘”/"z)(i) + ns(e*’”* — 1)exp(n2s(e*’” — 1)))n

Al e

n
s 1/2

- <e""°2<—) + O-exp(sw)) -0=0
2

asn—o. [

X

In the case of bounded operators, &, as defined in (2.2) is equal to B. Therefore,
the hypotheses of Theorem 4.1 are satisfied, and a limit process Y(t) exists with
martingales (4.1) and (4.2). For the uniqueness, we must have a similar situation
available for the dual process before we can apply Theorem 5.6. If B is a separable
Hilbert space, we have shown that such a dual process can always be constructed.
If B is finite dimensional, then all norms are equivalent, and we can always
locate H, and always concoct a dual 0. .

EXAMPLE 6.2. Transport phenomena. In the search for an appropriate
Hilbert space, consider the following line of reasoning for the transport phenom-
ena. A(£) is a first order differential operator. The simplest possible case is in
one dimension with A(¢) = +(d/dx) or —(d/dx), each with probability Y. By
Donsker’s invariance principle, the limiting random evolution is standard Brown-
ian motion. Choosing B = Cy(R) and choosing the Gaussian measure to be Wiener
measure, one obtains the reproducing kernel Hilbert space

(6.21) H= {fe B: f(x) = J; g(y) dy and f gi(x) dx < oo} .

In other words, H is the Sobolev space W2(IR). This points to a choice for H =
W4 2(R?). Letting

o = (a1, ag, + -+, ag) be a multi-index, |a|=a, + az + -+ + ag,
alvl a(vz aud
[ gu—
dx7! 9xy? dxgt’

and | - || be the L?norm, we can develop a definition of W%%(1R?) in the following
way:

DEFINITION 6.4. For |a| < /4, let D°f exist as an element in L*(R") and
denote

(6.22) Il = (= 1 DFIDY2

Then || f| x is a norm. W%%(1R9) is the completion of
{f:D"f eXiStS9 ZI«IS/ " Duf"% < 00}

in the | - | 4 norm.
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This norm induces an inner product
(6.23) (f, 8)r = a1z (D°f, Dg)s.
By the standard theorems for Sobolev spaces [1], if 2/= d, then the identity
mapping

W HRY) — Co(RY)

is a compact imbedding with dense range. This will be our choice for H.

Unfortunately we cannot return to the proof of Lemma 6.2 to secure the
estimate for this situation. The proof breaks down because, in the last step, we

used the fact that A(£) was bounded. For the transport phenomena, we take
advantage of the identity

(6.24) [T@f ()] = [f(v(x, )] = f2(v(x, 1)) = T(t)f*(x)

where v(t, x) is the flow beginning at x and generated by A. In order to make
sense of all that will be written, we must have that T'(, t) is a semigroup on H.
In general, T'(&, t) will not be a contraction semigroup on H. The following
hypotheses will guarantee that {T'(¢, t)} has the desired properties: °

(6.25) A(&)f(x) = a(§ x)Vf(x).

Assume that D“a(£, x) exists as a Lipschitz function with a common Lipschitz
constant for all |a| = 2
Now it is time to move on to the details.

LEMMA 6.5. For the transport phenomena, and f € N,z Z(A%(£)), (6.1) holds.
PrROOF. The proof procedes by induction on the length of «. The induction
hypothesis is
(6.26) E|D’Tf1I3 = (1 D’fII3 + Cst® T1y=x | DFI3)

for all multi-indices 8 having length k, and for ¢ sufficiently small. C; and the
range for which the inequality holds depends only upon the Lipschitz constant.
We shall use 8 < o to mean that 8; < o; foreachi=1, 2, --- d. Let

v(x, t) = (vi(x, t), vao(x, t), - - -, valx, t))
be the flow starting at x with velocity
(6.27) a(x) = (ai(x), azx(x), - -, aq(x)).

Since v(x, 0) = x and % (x, 0) = a(x),

(6.28) v(x, t) = x + ta(x) + t?b(x, t).

The function b(x, t) is bounded and has bounded first derivatives for all x and
for sufficiently small ¢ by the Lipschitz condition on a and its derivatives. Even
though the details are long, the central idea is not difficult. For k = 0, we expand
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T(t)f*(x) in t by Taylor’s theorem. The term of order ¢ disappears since EA =
0, and the derivatives on f for the ¢t* term may be placed on v, and we have
control over the size of v. Therefore, || T'(t)f |l » = (1 + O(t%)) | f | &. For the higher
order terms, we follow the same plan. In these cases, we find that the term of
order t* involves derivatives of f of lower order, and by induction, we have
estimated this term.

For k = 0, there is only the zero index. Apply Taylor’s theorem for f € C2.
After integrating and taking the expectation we have

Ef [T()f(x)]? dx = ffz(x) dx + tEfV[fz(x)La(x) dx
(6.29)

+Efj; (t—s):—;fz(v(x, s)) ds dx.

The middle term on the right side of equation (6.29) vanishes since Ea = 0. For
the rightmost term, let D? denote the Hessian operator, and reverse the order of
integration to obtain

t P 9
EJ; (t —s) fg; v’(x, s)- D*f *(v(x, s)) - 38 v(x, s)
(6.30)
+ Vi (v(x, s)) - 6%5 v(x, s) dx ds.

Focusing on the second term, and isolating one of the summands, we integrate
by parts to obtain

62
- f [axasz vi(%, S)}f *(v(x, ) dx

= C¢ ffz(v(x, 8)) dx = C || T(s)fII3.

The term in brackets is one of the terms that the Lipschitz hypothesis guarantees
us will be bounded uniformly. A similar estimate that uses integration by parts
two times yields the same result for the first term in (6.30). Returning to equation
(6.29) we have,

(6.31)

EIIT(t)fI|§S|1f1|§+206£ (t=$)E|T()fIF ds

= IIflI3 + 2C§ J; (¢ = $)E| T(s)f 1} ds

for all t” > t. Apply Gronwall’s inequality and let t’ — ¢, then
(6.32) E|T@f1? = If13Q + Cst®) = | fII3 + Cst2|If|3.

That handles the case k = 0. To continue, let 3 be a multi-index obtained from
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a by reducing the value from one of the indices by one. For definiteness in
notation during this estimate, assume that 3, = a; — 1. Let 9; denote the partial
derivative with respect to x;. From equation (6.28), we see that

(6.33) O t) =1+t a(x) + 2ubilx, £)
6x1 0x X1
and
9 i} 0
(6.34) vi(x, t) =t — a;(x) + t°0,bi(x, t)
ax dx,
fori=2 , d. Hence,

DT (t)f(x)] = Df (v(x, )] = Tiza DB[(éf)(v(x t)) < vi(x, t )]
Therefore,

E f DIT(t)f(x)]? dx

=E f [ L, DP[T(£)(6:f )(x)] (t % a;(x) + t%9,b;(x, t))] dx
(6.35) +E f DP[T(£)(3:f )(x)]* dx

vom [ 5, [D"[T(t)(aif)(x)] (tgaxx) + £23bi(x, t))]

X DP[T()(3:f)(x)] dx
=A+B+C.

Let’s estimate each term in turn.
2
A=<E f d Y [D"[T(t)(a f)(x)] ( — a;(x) + t%:b;(x, t))]

= Cjt*d Ty (IDP@if)IE + Cst® Tiyi=k [ DB 113)

by the induction hypothesis. C} arise from the bounds on (da;/dx,) and 8,b;. By
possibly increasing C’, we can absorb the terms of order ¢*, and conclude that

(6.36) A = Cit? ¥yy=en E| Df3.
Also by the induction hypothesis
B = | DP@:f)IIZ + Cs Tivi<k EIDY(f) 113

(6.37) ) )
< | D5 + Cs X141k E Df3.
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Lastly, we estimate C using the induction hypothesis and Taylor’s theorem.
C=2tE f T [D”T(t)(aif)(x) (% ai(x)ﬂDﬂT(t)(alf)(x) dx
1

+ CiCst®> Yy < EIIDY(0:f) I3

= 2tE f S DY[af () + te(x, 0)- V0] 1 ()

X DP[8:f (x) + té(x, t) - V(a:if )(x)] dx
+ C;Cst® X1y 1=k EIID(8:1) I3

where ¢ and ¢ arising from Taylor’s theorem are bounded in x and in ¢. Thus

C =2tk f S DX@f)() - ax) D@ ) () d

(6.38) + Ct? f Sim1 (IDP@:f)(x) | V(@uf ) () |

+ | DP@Of ) (x) | IV@if ) (x)| + | V@:f ) (x) | V(8:1f (%))
+ C4Cst® X1y 1=k E | D7(0:1) |13,

The first term vanishes since Eq; =0 foralli=1, 2, ..., d. Sum the terms A, B,
and C to see that

(6.39) EIDT@fI3 = (I1DFI3 + Cot® Xyy121e0 | DFID)
for all multi-indices a.
EIT@Ofk = Zia=-ENIDT@)fII3
(6.40) < Yiai= (IDf 113 + Cat® X1y 1101 | DFIIZ)
=1+ 2L flk

for some constant L. The proof concludes on an application of Jensen’s
inequality. 0O

For the transport phenomena A (¢£) = a(§, x) - V and the set up takes the form

(6.41) (@) La(é, x)u(dg) = 0.

(6.42) (i) 2 D Ci(R?) is dense in B.
For each £, exp sA(£): @ — C¥(RY).

(6.43)  (iid) I lla(&, x) - V| n(dg) < e, and
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(6.44)  (iv) J: I(a(¢, x)- V)’fll u(d) < =, for all f € 2.

In fact, more was assumed by the Lipschitz hypothesis.
(6.45) (v) £ — a(§, x) is a measurable function.
(6.46) (vi) |lexp sa(¢, x)-V| =1.

If 2’ = WY(R?), then 2 has the desired properties. (See [12]). In checking
compact containment for {0, }, note that A* = V - a does not generate a flow since
V. of = a-Vf+ (V-a)f. The estimates above can be modified to include the
potential term V . a by approximating the semigroup as suggested by the Trotter
product formula.

1 1 1
4 -V. =~ - (V. = (a-V)f.
(6.47) exp(n \Y a)f exp — (V-.a)exp - (a-V)f
EXAMPLE 6.3. Random classical mechanics. The notions and estimates re-

lated to the random classical mechanics are quite similar to the transport
phenomena. The compact imbedding is the identity mapping

(6.48) W4(RY) — L(RY), 27 =d.

Here, A(£)f(x) = {f (x), H(&, x)} and the regularity hypothesis is that D*H (¢, x)
exists as a Lipschitz function with a common Lipschitz constant for all |« | =
/ + 1. As for the dual process, A* = —A, i.e., the action of a semigroup on the
dual process is the time reversal of the action of the original process. Because A
appears in statements (4.1) and (4.2) of Theorem 4.1 only through a squaring,
the laws of the limit processes ® and Y are identical. In other words, Y is its own
dual, and therefore its existence implies its uniqueness!
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