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ON THE PROBABILITY OF LARGE DEVIATIONS
IN BANACH SPACES

By E. BOLTHAUSEN

Technische Universitat Berlin

Probabilities of large deviations for sums of i.i.d. Banach space valued
random variables are investigated when the laws of the random variables
converge weakly and a uniform exponential integrability condition is satisfied.
Furthermore, a discussion of possible improvements of the estimates is given,
when the probability is estimated that the sum lies in a convex set.

1. Introduction. Let B be a real separable Banach space, equipped with
the Borel-os-field % and let P be the set of probability measures on (B, %4). B*
denotes the (topological) dual of B.

Ifue®,® € B*let M(P|u) = [ exp(P(x))u(dx) andif a E B, let h(a|p) =
sup{®(a) — log M(¥ | u): ¥ € B*}. The following result is due to Donsker and
Varadhan [6] and Bahadur and Zabell [3]:

THEOREM 1. If [ exp(t| x|l) u(dx) < o for all t > 0, then
(1.1) if A C Bis closed, lim sup,_.«(1/n)log u*(nA) <— h(A|u).
(1.2) If ACBisopen, liminf, ..(1/n)logpu*(nA)=— h(A|p),
where u*n is the n-fold convolution of u and h(A | u) = inflh(a|u): a € A}.

We shall prove here the following extension:

THEOREM 2. Let u,, u € P, n €N, such that {u,} converges weakly to u and
(1.3) sup, f exp(t| x| )u.(dx) < o holds for all t> 0.

Then
(1.4) if A C B is closed, lim sup,_..(1/n)log u¥(nA) = — h(A | u),
(1.5) if A C B is open, lim inf,_.(1/n)log u¥*(nA) = — h(A | ).

The special case, where the u, are Gaussian, has been treated by Ellis and
Rosen [7] and S. Chevet [4]. In this case (1.3) is automatically satisfied. In fact,
inspection of Fernique’s proof of the existence of exponential moments for
Gaussian measures shows that if u,, n € N, are Gaussian and the u, converge
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428 E. BOLTHAUSEN

weakly, then there are constants a, b, ¢ > 0, not depending on n, such that
pn(fx: | x| = u}) < a exp(—bu? as u=c

From this (1.3) follows (see [8]).

The proof given here is a rather elementary modification of the Donsker-
Varadhan proof. In contrast, the proofs of Ellis/Rosen and Chevet rely on non-
trivial properties of Gaussian measures in Banach spaces.

If B= R and A is an interval, the results which have been obtained are much
better than Theorem 1 or 2 (see e.g. Bahadur and Rao [2] or Hoglund [9]). Partly,
this possibility of improvements depends only on the convexity of A. Although I
have only very incomplete results in this direction, it seemed worth pointing out
how the convexity of A leads to improvements of (1.1) and (1.2). This is done in
Section 4. This has also been investigated by P. Ney [11] in the case B = R".

2. The upper estimate. If v, u € P let k(v |u) be the Kullback/Leibler
information, i.e. k(v | u) = v(log(dv/du)) if v << u and »(| log (dv/du) |) < » and
k(v | p) = o else. We write u(f) for the expectation of f with respect to u. Then

(2.1) h(a|u) = inf{k(v | u): »(id) exists and equals a}.

Here id is the identity mapping B — B (see [6], Theorem 5.2. (iv)). Although
there is in general no ¥ € B* with h(a | u) = ¥(a) — log M (¥ | u), there is always
av € P satisfying v(id) = a and h(a|x) = k(v | n), at least if h(a|u) < .
Furthermore, v is then unique (see Csiszar [5]).

LEMMA 1. Let u,, u satisfy the condition of the theorem and a, € B converge
weakly to a € B. Then lim inf,_,.h(a,|u,) = h(a| ).

PROOF. From (1.3) it follows that for any ¥ € B*

(2.2) lim, o M(? | pn) = M(¥ | p).

Given ¢ > 0, there is a ¥ € B* with $(a) — log M(¥ | u) = h(a | u) — e. Therefore,
if n is large enough, we have h(a,|u.) = Y(a,) — log M(? | u,) = h(a|un) — 2.
This proves the lemma.

' LEMMA 2. Let A C B be closed, then
h(A | w) < lim inf,_.h(A | k).

PrOOF. We may assume that lim inf, ..h(A | u,) < . We select a subse-
quence {n;} with lim; ,oh(A|p,) = lim inf, ..h(A|pu,). Let a, € A satisfy
h(ax| ps) < h(A|pn,) + 1/k and v, € P satisfy k(ve|ps,) = h(ar| po,), v(id) =
ar. From Lemma 5.1 of [6] it follows that the sequence [v.} is tight and
furthermore

lim sup,;.sup;x f
Il ll

X

_lxl m(dw) = 0.

Therefore {a,} is relatively compact. Let a € A be a limit point of this sequence.
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Then by Lemma 1
h(A|p) = h(a|p) = limp_eh(ax | pn) = limi_ch(A | p,) = lim inf, . h(A | p,).

LEMMA 3. If A C B is open and convex, then
p*(nA) < exp(—nh(A|u)).

ProOF. If A is open and convex, then —h(A | u) = lim,_..(1/n)log u*~(nA)
(see [1], Theorem I 4.8). If A is convex, one has the following subadditivity:
p*(nA)u*~(mA) = p*=m((n + m)A). From this, h(A|x) = inf,(—(1/n)log
u*(nA)). The lemma follows.

PROOF OF (1.4) IN THE CASE WHERE A IS COMPACT. Take e >0 and A C
U, U;, where U; are open balls with radius ¢ and center in A. Then

lim sup,—. (1/n) log p¥"(nA) < lim sup,—. (1/n)log ui~(UZ,nU;)
< lim sup,_» (1/n)log (37, ux(nUj)).
< maX;<j<,lim sup,_. (1/n)log ui~(nU;)
< max;<j<,lim sup,.(—h(U;| u,)) by Lemma 3
< maXj=m (—lim infn_,mh((_]jl )
< —minlsjs,nh(l_]jl u) by Lemma 2
= —h(UZ: Tj|p)
< —h(A°|n) where A° is the closed e-neighbourhood of A.

Ife | 0, then h(A°| u) increases to h(A | u), as follows easily from the compactness
of A and the fact that h(a | 1) is lower semicontinuous.

The general noncompact case can now be reduced to the compact case as is
done in [6], by just showing that all arguments there work uniformly in n if (1.3)
is satisfied.

Let u be the n-fold product measure on B" and 6,: B® — I be defined by
0, (21, -+, x,) =(1/n) ¥ 6., where 0, is the one point measure in x.

LEMMA 4. Given any a > 0, there is a compact set C(a) € P (in the weak
topology) with u,(0, & C(a)) = e™™foralln € N.

PrOOF. This follows by a straightforward transcription of the corresponding
result where the u, do not depend on n (see e.g. [1], Lemma I 7.4).

We construct now a sequence 0 = ¢, < t; < - - -, such that for k € N

sup, JII \ exp(k || x [ )ua(dx) < 27

Let f: [0, ©) — [0, ) be such that f(¢)/t is continuous and increasing with
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lim,_.f(t)/t = «© and f(t:)/tx = B — 1, k € N. Then it is easy to see that
[ exp(fllx|)un(dx) <2 foralln. Ifa>0,let Ga) =fr EP: [ f(| x|)v(dx) =
a}. Then

pr(0. € G)) = pr({x € B" Ej=1 f(ll x;ll) > na}
< e—na(un(ef))n < e—na+n.

Let A(a) = {v(id): » € C(a) N G(a)}. C(a) is compact and G(a) is closed in P .
Furthermore » — »(id) restricted to G(a) is continuous. It follows that A(a) is
compact in B. Furthermore

uir(nA<(a)) = un(0, € A(a)) < exp(—na) + exp(—na + n)

(2.3)

=< 2 exp(—n(a — 1)).
If A is closed in B with h(A | u) < o, then
lim sup,_. (1/n) log uk~(nA)
< lim sup,_. (1/n)log(pi"(n(A N A(a))) + 2 exp(—n(a — 1)))
= lim sup,_. (1/n)log uk*(n(A N A(a))) if a>h(A) +1
= -h(A N Aa) |p) = —h(A]|p).
So (1.4) is proved.

3. The lower estimate.

LEMMA 5. Let A C B be open, ¢ > 0, u € P with [ exp(t || x| )u(dx) < o for
all t. Then there is a v € P with a bounded continuous everywhere positive density
g wW.I.t. u, such that k(v | u) = h(A | p) + e and »(id) € A.

PrROOF. We may assume that h(A |u) < o. Then there is a v’ € P with
kE(v'|u) =h(A|u) + eand v’(id) € A. Let g’ = dv’/du. If we put g, = (n A g’)
V (1/n), then [ g, log g.du — k(v | p), f g:dp — 1 and [ x g,(x)u(dx) — v’(id).
By taking the densities g,/[ g, du, we see that there is a bounded density g”,
which is bounded away from 0, such that if dv” = g”du, we have k(v” | u) =
‘h(A|p) + ¢ v"(id) € A. Approximating this density pointwise by bounded
continuous densities which remain bounded away from 0, we arrive at the desired
conclusion.

Let now u, — u as in the statement of the theorem and let g be as in Lemma
5. We put dv, = gdu,/ [ gdu,. Then [ gdu, — [ gdu = 1 and therefore k(v,| u.)
— k(v | un) and »,(id) — »(id).

Given ¢ > 0 there exists N € N, such that if n = N k(v,| u,) = h(A|n) + ¢
and »,(id) € A. If f is the function constructed after Lemma 4, we have
sup,, [ exp(f(]| x ||))v.(dx) < oo and therefore sup, [ f(|l x || )v,(dx) < ce.

PROOF OF (1.5). Let b: ® — B be defined by b(v) = »(id), whenever it exists.



LARGE DEVIATIONS IN BANACH SPACES 431

Then
urr(nA) = pn(6, € b7(4)) = un(. € b(4) N G(a))

for any a > 0. As b is continuous on G(a) and v € G(a) for sufficiently large a,
we have a weak neighbourhood U of » in P, such that b7(4) N G(a) D U N
G(a).

un(0. € 571(A) N G(a)) = pr(0, € U) — ur(6, & G(a))
= pn(0, € U) — exp(—n(a — 1)).
Let U be of the form

U=sfreP:|n(fi) —v(f)| <e -, [ n(fi) —v(fi)| <¢}
where f, -- -, f; are bounded continuous functions on B. As u, is equivalent to
v,, we have
" dv,,
un(@, € U) = exp| — Y7, log . (x;) Jvn(dx),
An l‘n )

where A, = {x € B": | (1/n) Y- fi(x})) —v(f) | <e 1 < i< k).
un(0, € U) = exp(—nk(v| u)) J; exp(— X <10g 3—:’ (%)) — k(v | u)>>VZ(da_c)

= J; iy EXP(nO)exD(=nk (v | w))v7(dx)

= exp(—n(k(v|u) + 6)) vi(A, N B,(5))
where

1 dv,
- =1 log dn, (%) — k(v | u)

B, (%) = {a_c € B™: < 6}‘

and 6 > 0 is arbitrary. Log(dv,/du,) is bounded and has mean k(v,| u,) when
integrated over dv,. As k(v,| p,) — E(v|p) and v,(f;)) = »(f;), 1 = j < k. We
obtain by an application of the Tchebychev inequality that »7(A, N B,(6)) — 1
as n — o, Therefore, we have

lim inf,_.. (1/n) log uf"(nA) = —min(k(v | u) + 5, a — 1).

As a is arbitrary large, é arbitrary small and k(v | u) arbitrary close to h(A | p),
(1.5) follows.

4. The use of dominating points in convex sets. We shall discuss here
how (1.1), (1.2), (1.4), (1.5) can be improved if A is convex. This can be achieved
by the use of so-called dominating points (see P. Ney [11]). Let A C B be closed
and convex. By using (2.1) and the well-known strong convexity of k(v | u) in »
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one sees that h(a|p) is strongly convex. Therefore, if h(A | u) < o, there exists
a unique ao € A with h(ao| u) = h(A | p) and then a unique vy € P with k(vo| n)
= h(A | u) and »o(id) = ao. From Csiszar [5] (2.8) and Theorem 2.2 it follows that
if » € is such that k(v | u) < « and »(id) € A, then

(3.1) v(log(dvo/du)) = k(v w).
3.2) v <K vp.
Let A, = {x = (x1, -+, x,) € B® (1/n) ¥}, x; € A} and p", v§ be the n-fold

product probabilities on B" of u resp. vo.

PROPOSITION 1.
a) p*(nA) = [, exp(— X7-1 log(dvo/du)(x;)) vG(dx),
b) Y, log(dvo/du)(x;) = nk(vo| ) n" — a.s.on A,.

PROOF. a) u*(nd) = u"(A,). It therefore suffices to show that for 1 < j <
n: (A, N {x: (dvo/du)(x;) = 0}) = 0. It sufficestotake j=1. Let ' = A, N {x €
B"™: (dvo/du)(x,) = 0}. If u™(T") > 0, we define a probability measure p on (B, %)
by p(C) = [r(1/n) i1 lc(x;)p™(dx)/u™(T). Then dp/du < (u™(T))~" and p(id) €
A. Therefore, using (3.2), one has p < < »,. Let N = {x € B: (dvo/du)(x) = 0}.
Then

p(N) = f”ll i1 In(x)u"(dx)/u"(T)

1
n

1
=z J: 1n(x1)pu"(dx)/u™(T) =
which is a contradiction.

PROOF OF b). Let I' = {x € B™ (1/n) Y= log(dvo/du)(x;) < k(vo| p)} N An.
If u™(I') > 0, we define p as in a). Then again dp/du < (0"(I'))"" and p(id) € A.
From (3.1) it follows that p(log(dvo/du)) = k(vo| u). This contradicts

dl/o

p(log dvo/dp) = J;}l; 271 log d—” ()" (dx)/p"(T) < k(vo| n).

The propositions may be applied to get upper bounds in the following way: If A
is closed and convex, then

(3.3) w*(nA) = e AW J: exp(— i1 <10g %'f (%) — h(A] u)>>1/3(d3_6)

where T' = {x € B™: ¥, log(dvo/du)(x;) = h(A | p)} and this is

< e f eXp<— ‘ i1 log %) (%) — h(A|n) >V6’(d3_6).
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As an application, we prove the following result. Let
={a €EB: h(a|u) < ®}. x = u(id) €EJ and
=f{\o+(1—-Na:a€J, A€ (0,1]} CJ.

THEOREM 3. If A is closed and convex, xo € A and h(A N J’ | u) < =, then
u*r(nA)exp(nh(A | u))

o

REMARK. It seems likely that the condition h(A N J’ | u) < o is satisfied in
all reasonable cases where h(A | u) < o« although a proof eludes me. It is certainly
satisfied if h(int A) < « or if J — x, is a linear subspace of B, as is true for
Gaussian measures.

va’(da_c)> = o(1).

Y= <10g () — h(A] ﬂ))

PROOF OF THEOREM 3. Log(dvy/du) has expectation h(A | x) under »,. If
h(A N J’ | u) < x is satisfied, there exists a v’ €E P with k(v" |p) < oo, »" ~
and »’ (id) € A. Therefore, it follows from (3.2) that v, > v’ ~ u and therefore

~ u. If log(dve/du) = h(A) vy — a.s. it follows that dvo/du = 1 contradicting x,
& A. Therefore we have »y(log(dvo/du) = h(A)) < 1. The theorem then follows
from (3.3) and the following.

LEMMA 6. LetY,, Y, --- be an i.i.d. sequence of real valued random variables
with E|Y;| < o, EY; = 0, P(Y; = 0) < 1. Then there is a constant ¢ > 0, such
that

E(exp(— | X}<1 Yj|)) = c E|(1/n) £j-1, Y;| forall n.
PROOF. Let f(x) = sign(x)(1 — e~ '*!)(sign(0) = 1). Then f’(x) = e~ '*!. Let
Sn = 2;}=1 ij. Then
E(S.f(S.)) = n E(Y.f(S,)) = n E(Y.(f(S.) — f(Sn-1)))
=n E(Y:f'(Su-1 +0Y,); | Ya|l <= B)

for all 8 > 0, where 6 is a random variable with 0 < § < 1. Now exp(—|x + ¢t|) =
exp(— | x|)e?if | t| = B. Therefore

E|S.| 2 E(Saf(S,) = ne™E(exp(= | Sa-1 DE(YS; | Yal = 8)

E(Y%;|Y.|=PB)isa constant, which is > 0 if 8 is large enough. So the lemma
follows.

REMARKS. In any case
dvo

J | Ess 1<log 4 (%) - h(AIu)>

If one further knows that vo((log(dvo/du))?) < o, it is O(1/vn). This is satisfied

vg(dx) = o(1).
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if A is the closure of an open convex set which is flat at the point at which
satisfies h(a|u) = h(A | n). We recall that a point x € 3 A is called a flat point
if there is a unique closed hyperplane through x which has A on one side. If
y € int A then x € 9 A is a flatpoint if and only if the function g,(z) =
inf{p = 0: z — ¥ € p(A — y)} is Gateaux-differentiable at x. This implies that if x
is flat there is a ¥ € B* such that for all z with ¥(x) = #(z) and ally € int A

34) InfiA>0Ay+ QA —-MNitz+ (1 —-t)x) €A} =0(t) as t—0.

If A is the closure of an open convex set B then B = int A and if x, = u(id) &€ A
then it easily follows that h(a|u) = h(B|u) and if this is smaller than infinity
then the unique point a with h(a|u) = h(A | 1) belongs to d A.

THEOREM 4. If in the above described situation a is a flat point then
w*(nA)exp(nh(A | p) = 0(1/Vn).

PROOF. Asis mentioned above, h(int A | 1) < o, so the conditions in Theorem
3 are satisfied. If y € B is any point with h(y| ;4) < oo, and z satisfies P (z) =
¢ (a) (¥ the above Gateaux-derivative at a) then

h(a) = Mt)h(y) + t(1 — Mt))h(z) + (1 — X)) — t)h(a)
= M&h(y) + t(1 = A($))(h(z) — h(a)) + h(a)

where A(t) is the infimum in (3.4). Using (3.4) and h(y) < o we see that h(z) =
h(a). Therefore

halp) = inf{k(vlu): f‘P(x)v(dx) = ‘P(a)}

and this infimum is attained at v,.

From Theorem 3.1 in [5] it follows that there is a t € R with dv/du =
exp(t¥)/M (t¥). Therefore log(dv,/du) has moments of any order under v, and so
Theorem 4 follows from Theorem 3.

REMARK. In some Banach spaces the condition that all boundary points are
flat is quite strong. E.g. balls have this property in L,-space but not in C[0, 1].
On the other hand, even in C[0, 1], balls have many flat boundary points, e.g. in
the unit ball every f for which there is a unique ¢ € [0, 1] with |f(¢) | = | flo=1
is a flat point (for this and the other facts on flat points used here, see Kothe
[10], Section 26). So the estimate in Theorem 4 might be useful even in such
spaces.
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