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CONVERGENCE OF SUMS OF MIXING TRIANGULAR ARRAYS
OF RANDOM VECTORS WITH STATIONARY ROWS!

BY JORGE D. SAMUR
Universidad Nacional de La Plata

This paper deals with the convergence in distribution to Gaussian,
generalized Poisson and infinitely divisible laws of the row sums of certain ¢
or Y-mixing triangular arrays of Banach space valued random vectors with
stationary rows. Necessary and sufficient conditions for convergence in terms
of individual r.v.’s are proved. These include sufficient conditions for the
convergence to a stable law of the normalized sums of certain ¢-mixing,
stationary sequences. An invariance principle for stationary, ¢-mixing trian-
gular arrays is given.

0. Introduction. Several authors have studied the weak convergence of the
laws of sums of random variables with the hypothesis of independence replaced
by less restrictive properties which are expressed through certain dependence
coefficients (see, for example, Ibragimov and Linnik [12], Billingsley [6], [7],
Tosifescu and Theodorescu [13], Philipp [15]). In this paper we consider certain
mixing conditions (the so-called ¢ and y-mixing) for triangular arrays of random
vectors which take values in a separable Banach space and whose rows form
stationary finite sequences (see Section 1 for the definitions). Our aim is to give
necessary and sufficient conditions for the convergence of the laws of the row
sums of such triangular arrays expressed in terms of the individual random
vectors and, in principle, without moment assumptions. In order to do this, we
depart to some extent from the usual paths in this area and follow the point of
view developed by de Acosta, Araujo and Giné [3] for the case of row-wise
independent infinitesimal triangular arrays. We use some results of that article
through the technique, standard in the dependent case, of grouping random
vectors in suitable blocks, an idea due to S. Bernstein. The framework that we
present for the study of triangular arrays under dependence conditions and
several of our specific results—for example, Corollaries 4.6, 5.8, 5.10 and 6.5—
appear to be new even for the real-valued case.

Section 2 contains some basic inequalities, which are used in Section 3 to
prove results about compactness and integrability.

In Sections 4, 5 and 6 we deal with necessary and sufficient conditions for
convergence in a Banach space to a Gaussian, generalized Poisson or infinitely
divisible law, respectively. In the first two cases, the ¢-mixing condition is
required to hold together with certain restrictions about contiguous random
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vectors; in Section 6, the y-mixing condition is added. For a Hilbert space and
assuming some specified mixing rates, we give sufficient conditions for conver-
gence expressed, as far as possible, in terms of individual random vectors (see
Corollaries 4.5, 5.8 and 6.5; in Philipp [15] there are conditions in terms of blocks
for convergence to certain infinitely divisible laws for ¢-mixing triangular arrays
of real random variables which satisfy different hypothesis from the ones given
here).

From the sufficient conditions for convergence to a Gaussian law given in
Section 4, we can derive a result (Corollary 4.7) which, essentially, is an infinite-
dimensional generalization of a theorem of I. A. Ibragimov for real random
variables (Theorem 18.5.2 in [12]). On the other hand, we show that by applying
methods of de Acosta [2] we can obtain an almost sure invariance principle for
stationary, ¢-mixing triangular arrays (Theorem 4.8); from this, following
de Acosta [2], we can deduce an invariance principle in distribution (Corollary
4.10) which generalizes a result of Eberlein [8].

Section 5 includes a direct theorem of the Poisson type (Theorem 5.6) and the
proof that the classical conditions for convergence to a stable law of the normal-
ized sums of a stationary sequence of independent random variables are still
sufficient for certain ¢-mixing sequences (Corollary 5.10).

1. Definitions and notations. Throughout the paper, B denotes a real
separable Banach space and the random vectors we consider take values in B.

By a triangular array {X,;} we mean a doubly indexed family {X,;:j=1, ---,
jn, n € N} (N the set of nonzero natural numbers) of B-valued random vectors
(r.v.’s) defined on a common probability space (2, & P); we will assume always
that j, — . Given {X,;}, we define #{} = ¢(X,j: h < j < k) (the o-algebra
generated by the indicated set of r.v.’s) for n € N and 1 < h < k <j,. Analogously,
we define for a sequence {X;: j € N} of B-valued r.v.’s the ¢-algebras
Mp(1 < h < k< »)and also #,,(1 < h < k < n) for a finite set {X;, -- -, X,.}.

Given a triangular array {X,j:j=1, - - -, j., n € N} we define the dependence
coefficient

[’I%EHF)

(k) = SuanN,j,,>hmaxlshsj,,—ksupl PE) P(F) ’:

Ee/ﬁ(n) Fe %(n)

1h? h+k,j,?

P(E) > O}‘

(k € N); it follows that ¢(1) < 1 and that {¢(k)} is a nonincreasing sequence.
We say that {X,;} is ¢-mixing if ¢(k) | 0 as k — o (the same letter is used to
denote the coefficient and to name the property). For a sequence {X;} define

[ImEnm

(k) = SuPheNsuPl PE) P(F)

.

Ee M, FE Mhirx, P(E) > 0}

and then the ¢-mixing property for {X;} is defined as above. Given a finite set
{Xi, ---, X,} the numbers ¢(1), - - -, ¢(n — 1) are defined in a similar way.
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For a triangular array {X,;} we define

[ | P(ENF)
Y(k) = SUPnen.j>kMaX1h=i=kSUP ) | DEYP(F) ~

II:

Eeﬁ(n) Fe //{(n)

1h? Rk, jn?

P(E)P(F) > 0}-

(k € N); observe that Y(1) < +o and that {¢(k)} is a nonincreasing sequence.
We say that { X,,;} is ¢-mixing if Y (k) | 0 as k — . Also, we define these notions
for a sequence and the coefficients y(&) for a finite set of r.v.’s. Note that in any
case ¢(k) = ¢ (k).

The last coefficient we will consider for a triangular array {X,,;} is

|P(ENF)
|P(E)P(F)

Y* = SUpnen,j,>1MAX 1 <p<j,—1SUDP

Eeﬁ(n) Fe //{(n)

1h? h+1,j,?

P(E)P(F) > O}'

(this is not a standard notation); we have y* < +o and ¢* = 1 + ¢(1). It is
defined analogously for sequences and finite sets of r.v.’s.

For examples of nonindependent sequences of random variables which are
¢-mixing, Y-mixing or satisfy ¢ * < + o see Ibragimov and Linnik [12], Billingsley
[6], [7], Tosifescu and Theodorescu [13]. There are examples with ¢(n) = O(p")
or y(n) = O(p") where 0 < p < 1.

We say that a finite set {X;, ---, X,} of B-valued r.v.’s is stationary (with
stationary sums) if g(Xl, ey, Xh) = g(Xk.H, seey Xk+h) (y(Xl + ... + Xh)
= L (Xps1 + -+ + Xpen), respectively) for l<h<n 1<k<n-—-h(ifZisa
random vector, <’ (Z) denotes its distribution). A triangular array is stationary
(with stationary sums) if each one of its rows has this property. We have similar
definitions for a sequence of r.v.’s.

Let 4 denote the Borel s-algebra of B. If A € 4, 1, is the indicator function
of A; for a B-valued r.v. X we write X; = XIjxj<s;, X' =X — X;(6>0, || - || is
the norm of B). Sometimes we will denote E[X; X € A] = E[XI xea)]. Given a
triangular array {X,,} we write S = $/o1 X,y if 1 < k < j,, S, = S,j,, Sus =
Yoy Xnjs, SW = Y, Xi; if {X,,;} has stationary sums and p, = £ (X,:) we
write u¥ = £ (S,) (k =1, ---, j,). For a probability measure p on B and
k € N, u* denotes the kth convolution power of u; if v is infinitely divisible,
{v': t = 0} is the associated weakly continuous convolution semigroup. The
symbols ® and * denote the product and convolution of measures, respectively.

We denote by —,, or w-lim the weak convergence of finite measures and by
— p the convergence in probability of random vectors. p is the Prohorov distance
between probability measures on B and we write ¢(X) = E[| X||(1 + | X[)™}]
for a B-valued r.v. X.

For the notions and basic properties of infinitely divisible probability measure,
Gaussian measure, Lévy measure and 7-centered Poisson measure in Banach
spaces we refer to de Acosta et al [3] or Araujo and Giné [5]. If v is a Gaussian
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measure on B, ®, denotes its covariance. Given an infinitely divisible measure »
we will take as its Lévy measure u that one which satisfies u({0}) = 0.

If u is a o-finite measure on B we put C(u) = {r > 0: u({x: | x| = r}) = 0}; if
A € 4 the measure u | A is defined by (u | A)}(E) = u(A NE)(E € A). §, denotes
the point mass at x € B. B’ is the dual space of B and B, = {x € B: || x| < r}
(r>0).

2. Some inequalities for sums of dependent random vectors. Let us
state a simple extension of Lemma (3.5) of Eberlein [8]. The proof involves a
monotone class argument and induction over k.

2.1 PROPOSITION. Let {X,, - .-, X,} be a set of B-valued r.v.’s. Let a,, - - -, ay,
by, - -+, by(k € N) be natural numbers such that 1 <a; < b, <a; < b, < -.- <a
sbi<nuwitha,—b_,=qEN( =2, ---,k) and define &, = Y q,<j=v, Xj(h =1,
.-+, k). Then

| L (&, -, 8)(A) — L(E)® -+ @ L(&)(A)| = (k—1)¢(q)
for every A € B* (the k-fold product o-algebra of B).

The following version of Ottaviani’s inequality can be proved as Lemma 1.1.6
of Tosifescu and Theodorescu [13] (note that it requires ¢(1) < 1).

2.2 PROPOSITION. Let { X, ---, X} be a set of B-valued r.v.’s with ¢(1) <1
and write S, = Y %1 X;. Suppose ¢(1) < a < 1 and let V € B be a symmetric
convex set such that max,<p<,—1P[S, — Sy & (#2) V] <1 — «. Then

P[S. & V for some k=1, ---, n] < (a« — ¢(1))'P[S, & (%) V].

2.3 PROPOSITION. Let {X,, ---, X,} be a set of B-valued r.v.’s with ¢(1) <1
and write S, = Y%, X;. Suppose ¢(1) < a < 1 and let V € & be a symmetric
convex set such that max,<y<,—1P[S, — Sy & (4)V] =1— aand P[S, & (4)V]
< (a = ¢(1))(1 — ¢(1)). Then

P[S. & (4)V]
(@ — ¢(1)(1 — ¢(1)) — P[S. & (A)V]

X PIX; & V] =

PROOF. Define F, =X, €V, -, X, €EV]fork=0,.-.--,n—1and F,=
Q; then F;, € #.1,, for k < n. It follows that

P[X; & Vfor some j=1, ---, n]
=2ka P(Xx & VI N Fy)
= Yi-1 (P(Fy) — ¢(1))P[X, & V] [
=z (P(Fy) — ¢(1)) 2= P[X; € V]
= (1— ¢(1) — P[X; & V for some j]) 37, P[X; & V].
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Now it suffices to note that, writing X; = S; — S;_;, one has P[X; & V for some
J1=P[S. €& () V for some k] < (a — ¢(1))'P[S, & (%) V] by Proposition 2.2. 0O

The following generalization of Lemma 2, page 383 of Gihman and Skorohod
[9] will be useful; the proof is similar to that given in [9] and uses Proposition
2.2.

2.4 PROPOSITION. Let {X,, ---, X,} be a set of B-valued r.v.’s with ¢(1) < 1;
write Sy = Y%, X;. Suppose (1) <a <1, | X;|=Mas.(j=1,---,n) and let t
>0,7€ N. Then, if max;<p<,—1 P[|| S, — Sk || > t/4] = 1 — «, it holds that

Plmax;<p<,| Skl > 2t + (# — 1) M]
= (¢(1) + (@ — ¢(1)'P[I Snll > t/4D(a — ¢(1) P S, | > t/2].

To close this section, we quote three moment inequalities (see Theorem 17.2.3
of Ibragimov and Linnik [12], Lemma 3 of Philipp [15] and page 27 of Billingsley

(7).

2.5 PROPOSITION. Let {X,, ..., X,} be a set of B-valued r.v.’s. Let h, k € N
h + k < n and let & n be real random variables which are 4, and My n-
measurable, respectively. If E| £ |P < w0 and E | n|? < © withp,q> 1and p~* +
q ' =1, then

| E(¢n) — E()E()| < 20P(R)(E| £|7)/P(E | n| )"

2.6 PROPOSITION. Let {X), .-, X,.}, h, k, £ and 1 be as above but with the
only assumption that E| £ | < @ and E | n| < «. Then

|E(¢n) — E(O)E(m)| <= Y(R)E|E|E|n].

2.7 PROPOSITION. Let {X;, ---, X,}, £, n, h be as in the previous proposition
with k= 1. Then | E(¢n)| < y*E|¢|E|n|.

3. Preliminary results. In the following result we use some ideas which
appear in Eberlein [8] (proof of Proposition (3.6)) which in turn is inspired in
Kuelbs ([14], Lemma 1). The second part of the conclusion will be used later (see
Theorem 4.8).

3.1 PROPOSITION. Let {X,;} be a ¢-mixing triangular array with stationary
sums. Suppose that X,, —p 0 and that £ (S,) =, v. Then v is infinitely divisible
and for each p € N we have

~4<’/(Ej€l n,p,O)an’ ] Ejel(n,p,p—l,an) _>w(V1/p)®p’
where I(ny b, k) = {J € : kjnp_l <J = (k + ]-)]np_l}(k = 0’ 1’ P~ 1)

ProoF. Fixp € N. Write I(n, p, k) = [@ux, b.:] (interval of integer numbers)
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and note that it has [j,p™"] or [j,p~!] + 1 elements (here [.] is the integer part
of a real number).

By hypothesis, ¢, = ¢(X,;) = 0 as n — «. Take a sequence {d,} C N such
that d, — «, d,¢, — 0 and d,, < [j.p™] for all sufficiently large n (for example:
d, = min{[j,p7"], [0:"*]}). Now define b = @ + [jup™'] — dn and & =
Y amsi<bn Xnj(R =0, - - -, p — 1); by stationarity of sums we have & (£,0) = --- =
g(gn,p—l) = >\n (SaY)~

Since ¢(S, — Y57} £a) < pdno, — 0 as n — o, it follows that < (X5, £ne)
—,, v. On the other hand, from Proposition 2.1 we obtain for every A € #4”

(3.1) | L (noy + -+ Enp-1)(A) — ARP(A) | < (p — 1)o(d,)
and therefore, for every C € %,
| Z(TP2) E)(C) = AR(O)| = (p — 1)¢(dn)

which goes to zero as n goes to infinity. Then A5 —, v. Hence, by well known
properties of the weak convergence of probability measures, we conclude that
there exists {x,} C B such that {\,*é,,} is relatively compact and then we obtain
the relative compactness of {A2*3,, }, {3,: }, {8} and {\,} successively. But if A
is a limit point of {A,} then A\? = ».

The arbitrariness of p above shows that v is infinitely divisible. To obtain the
second assertion of our statement, fix p and apply (3.1) observing that A\, —,
”l/p and U(ZjEl(n,p,k)an - gnk) = dnaru 0

For a triangular array {X,;: j = 1, -+, j., n € N} with stationary sums we
shall consider the following property:

(*) {rn}CN, rnsjn’ rn/jn_)0=)2}n=1an_>PO‘

REMARK. Theorem 2.1 of de Acosta [2] shows that this property (which may
be described as a strong form of infinitesimality) holds for a triangular array of
B-valued r.v.’s which are row-wise independent and equidistributed and whose
sums converge weakly.

This condition is an hypothesis in many of our statements but it is dropped
in some results in which we give sufficient conditions for convergence (see
Corollary 4.5, Theorems 5.6, 5.7 and Corollary 6.5); next we point out two cases
in which it is verified.

1) Let {X;} be a ¢-mixing stationary sequence and let {a,} be a sequence of
real numbers tending to infinity such that { << (a;' ¥ =, X;)} converges weakly.
If X,; =a,"X;(j=1, ---, n) then the triangular array {X,;:j=1, ---,n;n €
N} satisfies (*)(It can be proved by using Theorem 2 of Philipp [16] and a
theorem of Karamata [12, Theorem A.1.1]).

2) Let {X,;} be a ¢-mixing triangular array with stationary sums such that
X —p0and L (X, + - -+ + X)) is symmetric for k=1, ---,j,, n € N. Then,
if { £ (S,)} converges weakly, {X,;} has the property (*).

This is a consequence of the following fact: let {X,;} be a ¢-mixing triangular
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array with stationary sums such that X,, —p 0 and {£(S,)} converges weakly;
then, if {r.} C N, r, < j, and r,/j, — 0, there exists {x,} C B such that the
sequence {u\~'*4, } is relatively compact and all its limit points are point
masses. To prove this, let » be the limit of {.&(S, )} and take a sequence {r,} as
indicated. Fix p € N; by Proposition 3.1, 5/(2“_"{’ 1X,,) >0 v, Let o, = 0(X.1),
dn = mln{[]np 1] = TIn, [anl/zl} Y 21 1an, Z Z[rj'-ll-pd ]an We have
a(Z“"" ]an - (Y, + Z,)) = d,o, — 0 and, applying Propos1t10n 2.1,

| (Yo + Zo)(A) — L(Ya)+L(Z,)(4)]| = ¢(dn) — 0

for every A € 4. Then u” + < (Z,) —, v'/?. By a well known result, we deduce
that there exists {x,} C B such that {#(’")*5xn} is relatively compact. Let o be a
limit point of this sequence; then a” is a factor of v for every p € N. From this
we conclude that {a”+d, : p € N} is relatively compact for some {y,} C B, but
this implies that a = §, for some z € B (see [5, page 33]).

In view of the two cases described above and Theorem 2.1 of [2] it is natural
to ask if in general: {X,;} stationary ¢-mixing, X, —p 0, < (S,) —,- imply
{X,;} satisfies (*). We have not been able to answer this question.

We shall need sequences of integers with the properties stated in the following
result.

3.2 LEMMA. Let {j,} C N, {0,} C[0, ®) and {¢(n)} C [0, ») be sequences such
that j, — ©, 6, — 0 and ¢(n) — 0 as n — ». Then there exists sequences {p,},
{@n} in N which tend to infinity such that j.(p, + g.)™" — ©, ¢(n)jn(Pn + gn) ™"
g 0, q'lanjn(pn + qn)_l — 0 and qn P;I — 0.

PROOF. Observe that if the last condition is verified, the remaining are
equivalent to j,p;' — ®, ¢(g,)j.pr' — 0 and g,0.j,.pr' — 0. First, we find
sequences {g,} C N and {8,} C (0, ) such that 8, — 0, (j.8.)7'q. — O,
#(g.)B7"' — 0 and g,¢.8," — 0. To do this, take {g,} such that g, — ®, g,0, —
O and g,j ;"' — 0; for example, one can define g, = min{[c;°], [j4]} if 5, > 0 and

= [j%]if 0, = 0 ([-] is the integer part of a real number) with0 <a<1,0<b
< 1. Now define 8, = max{(q,j ;") (¢(q.))", (g.0.)*} where u, v, w are real
numbers in (0, 1). Then {g,} and {B,} have the desired properties and it is
sufficient to define p, = [j.8,] + 1 in order to end the construction. 0

Next, we prove a version of Theorem 2.1 of de Acosta [2] for the ¢-mixing
case; assertion (2) will be repeatedly used combined with some inequalities of
Section 2.

3.3 THEOREM. Let {X,;} be a ¢-mixing triangular array with stationary sums
which satisfies condition (*). Suppose that < (S,) =, v. Then

(1) if {ra} C N, ry < ja, rn/]n — t € R, then ui» —, v,

(2) the set {uP: k=1, ..., j., n € N} is relatively compact and

lim,max;<x<;, p(p, v*in) = 0.
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PrOOF. We only prove (1) because (2) can be deduced from it as in [2].

Let {r,} and t be as in (1). We may suppose that ¢t € (0, 1); otherwise, the
result follows easily from (*). Let {p,}, {¢.} be as in Lemma 3.2 where we have
taken o, = o(X,1) and write &, = [ra(pn + ¢a) "], ki = [(Gn = 1) (Pa + ¢2) 71 (1]
denotes the integer part of a real number); then k;, — ®, k; — ®© as n — .
Define

(k=1)(pp+qp)+p, k(pp+4ap
Enk = X ilaiTiorani Xni and 7o =X —(k—l)(p,.+q..)+pn+1X nj
fork=1, ---, kh,

[ = n .
Mnkp+1 = Zj=kf,(p,,+q,,)+1XnJ’

n  — O rpt(k=1)(py+g,)+p, . n — M ratk(p
= X kD a1 K nj and 7nne = X0 —15'(p,.+q,.)+p,.+1XnJ

p— ”
fork=1, ---, k;,
"o, = N X, ::
Nnky+1 = Zj';r,,+h’,i(p,,+q,,)+1 njs

note that 0 < r, — ku(pn + @n) <Prn+ gnand 0 < j, — r, — k7 (pn + q2) <pa
+ Qn. .
The inequalities

Faj it = (Do + @u)jnt < ki(ky + k2 < rajn (1= 2(pa + @a)int) ™!
show that k%, (k% + k”)™' — t as n — . On the other hand,
0(Sn — Xkn E0 — Thn, E0) < (R + k) gnon + a(mi ki) + 0(nnk)

which goes to zero as n — o by the preceding construction and condition (*).
Then (352, £ + S, £2) —, v. Since L (£1x) = £ (ém) = piP» for each k,
Proposition 2.1 gives

| «C/(Ek =1 gnk + Z =1 EZk)(A) - (ﬂ(p"))k;'+k;:(A)| = jn(pn + qn)—l‘.b(Qn)

for every A € %. Hence (uP)*»**# —, v and then, by Theorem 2.1 of [2],
(RP)en —, ',

We can argue as above to prove that Y=, X,; — Skn £ —p 0 and that
g(Ek 1 &nk) —uv'; then pim vt 0

The following result is a version for the stationary ¢-mixing case of a theorem
of Le Cam [3, Theorem 2.2].

3.4 THEOREM. Let {X,;} be a triangular array with stationary sums which is
$-mixing with (1) < 1 and satisfies condition (*). Suppose that {<(S,)} is
relatively compact. Then for every ¢ > 0 the set {j,.£(Xn1)| B:} is relatively
compact.

PrROOF. By an argument with subsequences we may suppose that < (S,)
—,, v. We will show that (a) sup, j.P[l| Xn1 || > e]<  for every ¢ > 0, and (b) for
every ¢ > 0 there exists a compact set K, such that sup, j,P[Xn. € K{] <.
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To prove (a), fix ¢ > 0, take a such that ¢(1) < « < 1 and let » = min{l — ¢,
(“)(a — ¢(1))(1 — ¢(1)), ¢/4}. Choose to € (0, 1) such that supo<;<,r*(Bi-1.—2-1,)
< n/2 and no € N such that max,<<; p(p®, v*n) < n/2 for n = n, (the choices
of ny and t, are possible by Theorem 3.3 and the fact that », —,, 8, as t — 0); let
{r,} C N such thatr,/j, < to and r,/j, — to. By the definition of p we have for n
=npand k=1, ..., r,

pP(Bis) < v (Bir—g,) + 1/2 < n;
therefore by Proposition 2.3 we obtain
rnP[Xnm€ Bi] < n((a — ¢(1))(1 — ¢(1)) =)' =1

for n = n,. Choosing n, = ny such that t/2 < r./j. if n = n,;, we have
JnP[ X1 € BE] = 2t for n = n,. Then (a) is proved.

In order to prove (b), let ¢ € (0, 1) and take «a as above. Theorem 3.3 implies
that there exists a compact, convex, symmetric set K, such that

SUD1<hs), e (47'K,)°) < min{l — a, e27(a — ¢(1))(1 — ¢(1))}.

Then by Proposition 2.3 we have j,P[X,,, € K{] < ¢ for every n. 0O

3.5 PROPOSITION. Let {X,;} be a triangular array with stationary sums which
is ¢-mixing with ¢(1) < 1 and satisfies condition (*). If {.<£(S,)} is relatively
compact and there exists M such that | X,;|l = M as. (for all n, j) then
sup,E exp(A || S, ||) < o for some X > 0.

ProOOF. From the relative compactness of {.<(S,)} we deduce that of
{uP: k=1, ...,j,, n € N} by an argument with subsequences and Theorem 3.3.
Fix « such that ¢(1) < a < 1 and choose t; > 0 such that

Suplsksj,,,neNﬂi;k)(Bfo/4) < min{l — a, (& — ¢(1))2}-
By Proposition 2.4 one has, for 7, n € N, P[|| S, | > A(to + M)] < o/ Write ¢ =
to + M and take A > 0 such that ae® < 1; then, we have for every n

E exp(A || S, 1) =1+ f NeMP[|| S, || > t] dt < e ¥ Zo(ae™) < . 0O
0

4. Gaussian limits. From now on, given a ¢-mixing triangular array {X,,;}
with stationary sums which satisfies condition (*), we consider sequences {p.,},
{g,.} with the properties of Lemma 3.2 where we take o, = ¢(X,;); also, we write:

k. =[j.(pr. +q.)""] ([.] denotes the integer part of a real number),

Pin,k)={(EN: (k= 1)(pa+ qu) +1=<j= (k= 1)(pn + qu) + Dn}
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and

Q(n, k) ={j €EN: (k= 1)(ps + @) + Pn+ 1 =)= k(p. + @)} if k=
17"'ykny

Q(n, ky +1) ={j E N: ku(pr + ¢x) + 1 =j < Ju},
k= YNjepnnXn f R=1, -, kg,
Nnk = ZjeQ(,,,k)X,,j if k=1, .-, k,+ 1.

This grouping in blocks will be used (always with this meaning) in some
proofs, the first of which is that of the following resulit.

4.1 THEOREM. Let {X,;} be a triangular array with stationary sums which is
¢-mixing with ¢ (1) < 1 and satisfies condition (*). Suppose that £ (S,) —., v.
Then v is Gaussian if and only if j,P[|| X1 || > €] = 0 for every ¢ > 0.

PROOF. Necessity. Assume that » is Gaussian. Arguing as in the proof of
Theorem 3.3(1), we obtain that .#(£.1)* —, v and then ([3, Corollary 2.11])
R.P[| £n1 ]l > €] — O for every ¢ > 0.

Fix ¢ > 0. Choose « such that ¢(1) < @ < 1 and let # = min{l — o, 27}« —
#(1))(1 — ¢(1)), ¢/4}; take to € (0, 1) such that supos,<s,»'(Bi-1.-2-1,) < /2 and
no € N such that if n = n, then p,/j, < to and max,<x<; p(p'?, v*/») < 5/2.
Therefore if n = no and 1 < k < p, we have u%(B¢4) < n and Proposition 2.3
gives, writing ¢ = 2((a — ¢(1))(1 — ¢(1)))7}, the inequality p,P[|| Xn. | > €] <
cP[|| £mll > ¢/4]; then for n large enough we have j,P[|| X.| > ¢ =<
2k, PnP[|| Xn1 || > €] = 2 ckaP[ || £n1 || > ¢/4]. Hence lim,, j, P[|| X1 || >¢] = 0.

Sufficiency. We may suppose that B = R (apply functionals f € B’ to deduce
the general case from this). Let u be the Lévy measure of » and assume that
JnP[| Xn1| = €] — 0 for every ¢ > 0.

For a fixed M > 0, consider the triangular array {X,}; define £, =
EjEP(n,k)anM for k= 1, ceey kn and ﬁnk = ZjeQ(n,k)anM for k= 1, ey, kn + 1. As
in the proof of Theorem 3.3(1) we can obtain that S, » — Yt £,, —p 0 because
O'(anM) = U(an) and {anM} has the property (*) (Wl‘ite 2] =1 anM 2_; 1 an

», X7 and observe that P[| ¥ /=, X7} | > 0] < r,P[| X1 | > M]). Since S{*
—>p 0 we have also that y(g,,l)* - * _%(g,,k) —>, V; moreover, {ZL(Ew)) is
infinitesimal (given ¢ > 0, write max;<p<s, PllEw | >l < P[|én]| > ¢ +
prnP[| Xn1| > M] and note that p,/j, — 0). Now, we may apply the converse
central limit theorem of the independent case [3, Theorem 2.10] to conclude that,
for every 7 € C(p), Dk, L(Ew)| BS > p | BS.

We will prove that u(B¢) = 0 for every ¢ > 0; this will show that » is Gaussian.
Fix ¢ > 0. Let « be such that ¢(1) < a < 1 and take an integer Z = 2; put M =
e(2(2 — 1)) t =¢(27)7. Choose ny = ny (¢, o, ) € N such that

MaXi<k=k,MAXicp(n i) P[| Xjepmn,j=iXnm| > t/4] =1 — «

if n = no (the left member is less than or equal to maxi<;<p P[| Sn:| > t/4] +
pnP[| X,1 | > M] which goes to zero as n — o by the hypothesis and the property
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(*) of {X,;}). Now, let &, be the r.v.’s associated to M as above; applying
Proposition 2.4 to the r.v.’s X,;» and writing a = (a« — ¢(1))"?, one has, for n =
npand 1 <k <k,

Pll &l > ¢]
< PPl Xr | > M1 + (6(1) + aP[| £u| > t/4))*aP[| £u| > t/2].

Arguing again as in the proof of Theorem 3.3 we obtain that & (£,,)* —,, »; then
[3, Theorem 2.10] shows that k., (£,1) | BS —,, u| B¢ for every 7 € C(u). Hence,
by hypothesis and the preceding arguments, we have

u(Bf) < lim inf k. P[| 51| > ¢]
< lim sup,k.p.P[| X. | > M]
+ (¢(1) + a lim sup,max;<p<s, P[| £ | > t/4])
- alim sup, $% P[| | > t/2]

< ¢(1) au((Byo)°)

(A denotes the interior of A). We have proved that for every integer / = 2 it
holds that

u(B2) < ap(1) " u((Bujar )°).
It follows that for any r > 0 and for each integer /# = 2

l

u(B7) = a:qﬁ(l)/’ﬂ/z(él/e)2 L x*u(dx) + u(Bi)] .

First, since ¢(1) < 1 and [ x°u(dx) < % ([3, Theorem 1.4]) we obtain, letting
¢/ — oo, that u(Bf) < au(Bg) for each r > 0. Then, letting r — o, we conclude
that u(B{) = 0 because u(B;:) < « ([3, Theorem 1.4]).0

Next, we give necessary conditions for convergence to a Gaussian measure.

4.2 THEOREM. Let {X,;} be a stationary triangular array which is ¢-mixing
with ¢(1) < 1 and satisfies condition (*). Suppose that < (S,) —, 6,*v, where
2 € B and v is a centered Gaussian measure. Then for every 6 > 0,

(a) ]nP[ ” an " > 6] - 0’

(b) Lim,Ef %S, — ESys) = &,(f, f) for each f € B’,

(C) ~%(Sn - ESn,é) —>uw Y, Si{i) —>p 07 y(Sn,é - ESn,ri) —>w Y and ESn,b -2 in
B.

PROOF. The previous theorem gives (a) which in turn implies that S’ —p5 0
for every 6 > 0 (write P[|| S’ || > 0] = j.P[|| X.1 || > 8]).

Fix 6 > 0. Since S, = S,; + S one has < (S, ;) —, 0.*vy. On the other
hand, {X,;;} satisfies the hypotheses of Proposition 3.5 (to verify (*) write
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Pl Tjmy Xojsl > el = Pl T2y Xuill > €] + roP[ll Xoa | > 6]); by standard
arguments we have then that lim,ES,,; = [x §,*y(dx) = zin B and lim,Ef%(S,.;)
= [f2d(5,*v) =f*(z) + ®,(f, ) for each f € B’. From these facts we can deduce
the remaining conclus'rons. ]

Given a statidnary triangular array {X,;: j =1, ---, jo, n € N}, 6 > 0

and f € B’ we write
Vn(ay f) = anfZ(ané - Ean(S)
+ 2j, 27 E[f (X1 — EXors)f (Xnjars — EXnjars)]-

4.3 COROLLARY. Let {X,;} be as in Theorem 4.2. If ¥, ¢"*(j) < » and

there exists & > 0 such that for every f € B’
Cs; = sup,j.Ef *(Xn15 — EXn15) <

then (b’) lim,V,(8,f) = ®,(f,f) for each f € B'.

ProoF. Fix é and f as in the statement and put Y,; = f (X,js — EXn,a) By
stationarity, we have the equalities (see, for example, Iosifescu and Theodorescu
[13, page 24])

Ef%(Sns — ESns) = E(S, Yo)? = juEYi + 2 305 (o = J)EYm Yajna
= Va5, f) = 2 20T JEYm Yo jua.
But Proposition 2.5 gives (note that EY,; = 0)
| B GEYm Yo | = 207" 227" j62(7)) Ca

which goes to zero as n — ® by the convergence of the series Y,¢"*(j). The
desired conclusion now follows from Theorem 4.2. O

REMARK. Let {X,;} be as in Theorem 4.2. If ¥ %, ¢'%(j) < % then C;;
(defined as in the corollary) is finite for each é > 0 and f € B’; hence, assertion
(b”) holds.

In fact, fixing 6 and f and writing Y,,; = f (X,; — EX,;;) one has by Proposition
2.5 (see above)

Ef*(Sn; — ESns) = joEYi — 4 30127 (o — J)¢*()EYE:

= {1 — 4 2?:1 ¢1/2(j)}anYnl;
to conclude the proof observe that sup,Ef*(S, ; — ES, ;) < .

In the following results, we shall give sufficient conditions for convergence to
a Gaussian law. For any subspace F of B we write dr(x) = inf{||x —y|:y € F}.
If B is a separable Hilbert space we denote d, = dp, the distance to the subspace
F, spanned by {e,, - - -, ex}, where {e;: i € N} is a fixed (but arbitrary) orthonormal
basis of B, when B is infinite-dimensional; if the dimension of B is finite we have
an orthonormal basis {ei, - - -, e,}(n € N) and we put d, = 0 for k = n.
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4.4 THEOREM. Let {X,;} be a stationary triangular array which is ¢-mixing
with ¢(1) < 1 and such that

(1) for some a > 0, the triangular array { X,;. — EX,;.} satisfies (x),

(2) for every e >0, j,P[|| Xn1 |l >¢] — 0,

(3) there exists a sequentially w*-dense subset W of B’ and & > 0 such that

®(f) = lim,Ef %(S, 5 — ESns)

exists for every f € W,
(4) there exist 3> 0, p > 0 and a sequence {F},} of finite-dimensional subspaces
of B such that

lim,sup,Ed%, (S, — ES.s) = 0.

Then (a) there exists a centered Gaussian measure v such that ®,(f,f) = ®(f)
for every f € W, (b) for every + >0, £ (S, — ES,,) =u 7.

ProOOF. We may assume that « = 6 = 8 (this fact is a consequence of (2)).
Given f € W, by (3) we have C;= sup,Ef *(S,,; — ES, ;) < % and by Chebyshev’s
inequality we obtain )

P[lf(Sn,(S - ESn,ri)l > t] = t_2Cf

for each t > 0; then { <L (f(S.; — ES,;))} is relatively compact. On the other
hand, (4) and Chebyshev’s inequality imply that

lim,sup,P[dF,(Sn; — ES,;) >s] =0

for every s > 0. Therefore an application of [1, Theorem 2.3] shows that
{<Z (S, — ES,;)} is relatively compact.

Write Y,,; = X,,;s — EX,;. The triangular array {Y,;} is stationary, ¢-mixing
with ¢(1) < 1 and satisfies (*) by (1). We will prove now that j,P[|| Y, || >¢] —
0 for every ¢ > 0. To do this, note first that EX,;; — 0 in B (we have | EX,,;;| <
n + 6P[|| X, || > n] for each n > 0); next observe that, given ¢ > 0, if n is large
enough to have | EX,.1; || < ¢/2, one has j,P[|| Y. || > ¢] = j Pl X1 || > ¢/2] and
it suffices to apply (2).

Let {n’} be a sequence of integers such that {<(S, ; — ES, ;)} converges
weakly. By Theorems 4.1 and 4.2 applied to {Y,;}, its limit is a Gaussian measure
v with zero expectation whose covariance satisfies ®.,(f, f) = ®(f) for every
f € W (observe that Y,z = Y,;).

In view of the preceding argument, the compactness of { < (S,; — ES,;)}
implies the existence of the desired vy and the convergence to it of the whole
sequence. Since, by (2), S’ —p 0 we have (S, — ES,. ;) =, v and then, using
(2) again, we deduce that (S, — ES,.) —, v for every 7 > 0 (if, for example,
6 <7 wehave | ES, . — ES,;|l < 7j,P[| X, >6]). O

REMARK. If B is finite-dimensional, hypothesis (4) of the previous theorem
may be omitted; a similar remark applies to the next results (and to Theorems
5.7 and 6.4 below).
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The following corollaries give sufficient conditions for convergence expressed
in terms of the individual random vectors and pairs of them. As an additional
hypothesis, it is required that the dependence coefficient ¢(;j) converge to zero
at a certain speed.

4.5 COROLLARY. Suppose that B is a Hilbert space. Let {X,;} be a stationary
triangular array which is ¢-mixing with ¢(1) <1 and Y=, ¢/*(j) < . Assume

(1) for every e >0, j,P[ll Xuill >¢] >0,

(2) there exists 6 > 0 such that for every f € B’

Ci.r = supnjnEf *(Xn1s — EXpis) < 0
and the limit
&(f) = lim,V,(6,f) exists,
(3) there exists 8 > 0 such that
lim,sup,j. Ed#(X,1s — EX,15) = 0.

Then there exists a centered Gaussian measure v with covariance ®,(f, f) =
®(f)(fE B’) such that < (S, — ES,.;) = for every 7> 0.

PrOOF. We suppose that B is infinite-dimensional (otherwise the proof is
simpler). Let (-, -) denote the inner product of B and let {e;: i € N} be an
orthonormal basis.

We will show that the hypotheses of Theorem 4.4 are verified. In view of (1)
we may assume that 6 = 8. Let Y,; = X,,; — EX,j;. First, we prove that {Y,,}
satisfies (x). For this purpose, take {r,} C N such that r, < j, and r,/j, — 0; by
stationarity and Proposition 2.5, writing U,,;; = (Y,;, e;), we have

Ed} (3 Yo) = E(Tiker (X2 Yoj €))) = Tiwer E(T ]2y Unje)?
= Yen(rEUR: + 2 372 (rn = J)E(UniiUs 1))
= (1 +4 372 ¢V raEdi(Yn)
and
Ef¥(35m) Yo) = raEf A(Ym) + 2 375" (ra = J)E(f(Yn1) f(Yrjs1))
< rajt (1 + 437 ¢2())Ciy

for every f € B’. Then, applying Chebyshev’s inequality twice and [1, Theorem
2.3], it follows from our hypotheses that } jz; Y,; —p 0.
Similarly, we obtain the inequality

Edi(Sn,h —ES,.;) = (1+4Y% ¢l/2(j ))and%(Ynl)
which shows that (4) of Theorem 4.4 holds with p = 2. Finally, in order to prove
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that assumption (3) of that result also holds we observe that, for each f € B,
| Ef(Sns — ESns) — Va(s, f)| = | 2827 JE(F(Yn1) f (Y js1)) |
=40 Tt je PG Csy

which goes to zero asn — o0, [

4.6 COROLLARY. Suppose that B is a Hilbert space. Let {X,;} be a stationary
triangular array which is ¢-mixing with $(1) <1 and ¥ 7, ¢'/*(j) < . Assume

(1) E " an "2 < @, Ean = 0,
(2) for every ¢ > 0’ hmn]nE[" an "2 I[|| X,,1||>c]] = 07
(3) for everyf€ B’,

Cf = supnanf2(an) <

and ®(f) = lim,{j.Ef (X)) + 2Jn IV E(f(Xm) f(Xn,j41))} exists,
(4) limgsup,j,Ed}(X,1) =

Then there exists a centered Gaussian measure v with covariance ®.(f, f) =
®(f)(f€ B’) such that £(8S,) —u 7.

PrOOF. We will show that {X,;} satisfies the hypotheses of Corollary 4.5.
Condition (1) of Corollary 4.5 follows from the inequality j,P[l| X.: | > ¢] <
e E[ | Xn1 1% || Xn1 || > €], valid for every e > 0.

Fix now any & > 0. With the notation of (2) of the previous result, we have
C; s = C; for every f € B’ and this implies the first part of that condition. To
verify the second, fix f € B’. Since Ef (X,;) = 0 we have

JnBf (Xn1) = jnEf (Xms — EXp15) = jnBf AX0) + ju(Ef (X00)?
< 2| FI%REL X 1% 1 X || > 8],

which tends to zero as n — «, and
Jn X0 E(f (X)) f (X))
= jn 200 E(f (Xn1s — EXos) f(Xnjsrs = EXn i)
= jn 20 (E(f (X)) (X)) = E(f(Xn1) f(Xnj+1)))
+ jn(jn = D(Ef (Xa13))?
=aqa,+ b, (say).

We will prove that {a,} and {b } both converge to zero. Since Ef (X,;) = 0 we
have

br < (JuEf(X0))* < 7 I FIJEU Xt 1% 1| X || > 8))?
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which goes to zero as n — . On the other hand, observe that
| E(f(Xn1) f(Xnj+1)) = E(f(Xns) f(Xn,j1,6)) |
= | E[f(Xa) f(Xnj+1); | Xor | > 6 or || X, jia || > 6]
= 61 F I ¢GIELN Xar 1% | Xaa | > 81)*(Ef (X))
+ 362N FIP(ELN Xan 1% 1| X || > 61)°
since, for example, one has by Proposition 2.5 (recall that Ef (X,,) = 0)
|E[f (X)) f(Xnje); | Xnall > 8, | Xnjur || = 6]
= 20"PGNELfA(Xm); | X | > 8D VA(ES *(Xo1))/?
+ | E[f(Xa); | X | > 1 E[f(Xm); | Xa || = 8]
= 20 Il 2 GNE Xar 1% | Xor | > 8)*(Ef *( X))/
+ GTHANEN Xan 1% 1 X | > 6])
and the other two terms which are involved have the same bound; then
an < 6] fI(Z52 6G)UREL Xu I | Xar | > 8DV2CH?
+ 3872 FIPGRET Xoa 1% 1| Xar || > 8])°

which tends to zero as n — oo. This implies that assumption (2) of Corollary 4.5
holds with the ® given in our hypothesis (3).

In order to prove (3) of the previous corollary it is sufficient to remark that
Ed} (X — EX,15) = Ed3(Xn5) — d3(EX,15) < Ed3(X,.:1) (to prove it write down
the first member in terms of coordinates).

Now, Corollary 4.5 proves the existence of the desired y and that
ZL(S, — ES,.) =, v for each 7 > 0; but for such a 7 one has [|ES, .| =
17 EXi |l < 77YoE[|| Xa1 1% || Xo1 || > 7] which tends to zero. This completes
the proof. 0

We can deduce easily the following

4.7 COROLLARY. Suppose that B is a Hilbert space. Let {X;: j € N} be a
stationary sequence which is ¢-mixing with ¢(1) <1 and ¥, ¢"/*(j) < ®. Assume
E| X, |2 < and EX, = 0. Then for every f € B’ the sum

®(f) = Ef*(Xy) + 237 E(f(X) f(Xj41))
converges and defines the covariance of a centered Gaussian measure v which

satisfies L (n"2 ¥, Xj) = 7.

REMARK. In the case B = R and without the restriction ¢(1) < 1, Corollary
4.7 was proved by Ibragimov (Ibragimov and Linnik [12, Theorem 18.5.2]) by
different methods. Let us point out, omitting the proof, that by using the result
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of this author and de Acosta [1, Theorem 2.3] one can obtain Corollary 4.7
without the assumption ¢(1) < 1. (The referee has informed us that this result
has appeared in an article by V. V. Malt’tsev and E. I. Ostrovskii (Teor. Veroj.
27 2, June 1982).)

As an application, let us observe that from this result in the Hilbert space case
it is possible to calculate, using an argument in Araujo and Giné [5, page 180],
the limit distribution of the Cramér-von Mises statistic of certain ¢-mixing
stationary sequences of random variables; let us observe that in Billingsley [6,
Theorem 22.1] the limit distribution of the whole empirical process of such
sequences is given under the stronger assumption ¥ 72, j2¢'/*(j) < . The result
that we can derive is this: Let {X;} be a stationary sequence of real random
variables which is ¢-mixing with Y%, ¢"*(j) < «. Assume that X, has a
continuous distribution function F; denote by F, the nth empirical distribution
function of {X;}. Then

5/(” J:w (Fa(x) — F(x))* dF(x)) =y L5 1)

where {n,:k € N} is a sequence of Gaussian real random variables with En, = 0
and

Ennne = 2(hka®) {27 %0 + Y21 E[cos haF(X)). cos knF(Xj11)]
+ Y1 E[cos hwF(Xj.1). cos knF(X1)]}
where 6, =1ifh=%k, =0 if h # k.

Next, we give an almost sure invariance principle. Its proof is carried out by
first obtaining from our Proposition 3.1 an invariance principle in probability
and then deriving from this the desired result; in both steps we use arguments of
de Acosta [2]. The remark that one can deduce, in the independent case, an
almost sure invariance principie from the invariance principle in probability of
de Acosta [2, Theorem 3.1] is due to H. Dehling and W. Philipp. An invariance
principle in probability for stationary, ¢-mixing sequences is given in Philipp
[16, Theorem ﬁ .

4.8 THEOREM. Let {X,;} be a triangular array with stationary sums which is
¢-mixing with ¢(1) < 1. Assume

(1) an —>p 0,

(2) for every ¢ > 0 there exists a > 0 such that

lim sup,max;<rs<ia, Pl Snrll > €] <1 = (1),

8) Z(S.) = v for some Gaussian measure vy.

Then there exist a probability space and two triangular arrays { X ;} and {Y,;}
defined on it such that

(a) L(Xn, ---, Xnj)) = L (X, - -+, Xp;,) for each n € N,

(b) Y, -, Y, are independent, identically distributed with & (Y1) = y'//»
for each n € N,
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(¢) maxi<k<j | Sne — Torll > 0 as.as n —
where S}, = 2f=1 X0y Trw = 2f=1 Y.

SKETCH OF PROOF. As mentioned above, it is sufficient to prove the result
with —p in place of — a.s. in assertion (c) (see [2, Addendum]). Call this
statement (c’).

For the moment, we shall consider for a given p € N the product space B”
endowed with the norm || x ||, = 325 || x; || for x = (%0, x4, - - -, X,—1) € B” and we
shall denote p, the Prohorov distance between probability measures on B?. We
use the notation I(n, p, k) of Proposition 3.1 and write c(n, p, k) =
card I(n, p, k).

For each p € N choose n, € N such that n, 1 ® as p — o and such that n =
"n, implies

pp(g(zjel(n,p,o)xnj, Tty zjel(n,p,p—l)an)’ (’Yl/p)®p) < 1/p2 ‘
and
oo (R 7" Wlin (41)%%) < 1/p?.

This choice is possible by Proposition 3.1.
Fix p € N and n € N such that n, < n < n,,. Then, by a theorem of Strassen
[17], there exists a probability measure \, , on B? X B” such that

Mp(f(x, ¥) € BP X BP: | x — y |l > 2/p*) < 2/p?,

Apomi! = L(TjcrnpoXnj, <5 Dicknpp-1Xnj)
and

Nnporz! = @k P hin

(1, m, are the canonical projections defined on B? X B?). Let o, = <L ( X1, -+ -,
Xnj,), Bn = (¥")®» and define {,,: B’» — BP by {uplys, -+, ¥5,) =
(Zjetinp0 Yir +*+» Djclnpp-n ¥i); one has a,°{r) = Nypomi! and 8,085, =
Anpoms'. By Theorem A.1 of de Acosta [2] there exist a probability space (Q,,
,, P,) and random vectors X}, = (X}, --+, X}; ): @ —> B/n, Y, = (Yp, + -+,
Ynj,,): Qn - Bj,. With y(X,n) = dp, g( Yn) = Bn and -(/(g‘n,p(X:z)y g'n,p( Yn)) =
Amp-

We may consider the triangular arrays {X;}, {Y,;} defined on the product
space of the spaces (2,, &7,, P,). By construction, (a) and (b) hold. Finally, the
proof of (c¢”) is similar to step V of the proof of [2, Theorem 3.1]; Proposition 2.2
must be used and this is possible by our hypothesis (2). 0O

REMARK. If a triangular array satisfies (*) then (1) and (2) of the previous
result are verified. In particular (see 1 of the remark following Proposition 3.1),
one has: if {X;} is a stationary ¢-mixing sequence with ¢(1) < 1 and {a,} is a
sequence of real numbers tending to infinity such that {<(a;' ¥ X;)} con-
verges weakly to a Gaussian measure then the conclusion of Theorem 4.8 is true
for {a,' X;:j=1,---,n,n€ N}.
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Let C = C([0, 1], B) be the Banach space of continuous functions of [0, 1] into
B endowed with the supremum norm and let D = D([0, 1], B) be the space of
functions of [0, 1] into B which are right-continuous on [0, 1) and have left limits
on (0, 1] equipped with the Skorohod topology ([6, Chapter 3]). Given a Gaussian
measure vy on B, we shall denote by W, the associated Wiener measure on (the
Borel g-algebra of) C or D. As in de Acosta [2] the following two results can be
deduced from Theorem 4.8.

4.9 COROLLARY. Let {X,;} and v be as in Theorem 4.8. Then there exist a
probability space (Q, o7, P), a triangular array { X 1} defined on Q and a stochastic
process Z = {Z(t): t € [0, 1}}: @ — C (resp., Z: @ — D) such that

(@) L (X, -+, X5) = L (X, -+, Xuj)s
by ¥ (Z)=W,,
(c) maxi<p<j 1 S7k — Z(k/jx)| —p 0, as n — oo,

— k
where S:,k = 2j=1 X;u

Ifay, ---, a, € B, define p,(a,, ---, a,) € Cand r,(a,, ---, a,) € D by p,(ai,
coey @) () = A + (0t — [Nt (A1 — ) If0 =t <1, ralay, -+ -, @,)(8) =
a[nt]+1 ifO S t< 1, = an ift = 1.

4.10 COROLLARY. Let {X,;} and v be as in Theorem 4.8. Then
ZL(P; (S, -+, Snj)) =u W, in C
and
L(rj (Sny, -+, Shj)) =»w W, in D.

REMARK. The first part of this result generalizes an invariance principle in
distribution of Eberlein [8, Theorem 3.1]. Condition (4) there is our hypothesis
(2) and is a version for the dependent case of condition (3.3) in Kuelbs [14]
(which always holds in the independent identically distributed case as it can be
deduced from [2, Theorem 2.1]).

To close this section, we state a version for random vectors with values in a
Hilbert space of Theorem 20.1 of Billingsley [6] (it can be proved combining
Corollaries 4.7 and 4.10 with the remark following Theorem 4.8) and an arc-sine
law for stationary, ¢-mixing triangular arrays (it follows from the second conclu-
sion of Corollary 4.10 and P. Lévy’s arc-sine law for Brownian Motion).

4.11 COROLLARY. Suppose that B is a Hilbert space. Let {X;} be a stationary,
¢-mixing sequence with ¢(1) < 1 and ¥ %, ¢"*(j) < ». Assume E|| X, ||*> < »
and EX, = 0. Then for every f € B’ the sum ®(f) = Ef*X) +
2 Y%, E(f(Xj+1)) converges and defines the covariance of a centered Gaussian

\



STATIONARY MIXING TRIANGULAR ARRAYS 409

measure vy which satisfies
L(ra(n”V2Sy, n7Y28,, .-, n7Y28,)) -, W, in D,
where Sk = E}LI Xj.

4.12 COROLLARY. Let B =R and let { X,,;} be a triangular array which satisfies
the hypotheses of Theorem 4.8 with a centered, nondegenerate Gaussian measure
v. Let L, = card{k =< j,:S,.. > 0}. Then

y(Ln/.’n) >y A

where a(dx) = 77 (x(1 — x)) 21 1)(x) dx.

5. Generalized Poisson limits. Proposition 3.1 gives conditions under
which the limit of the row sums of a triangular array is infinitely divisible; as in
the independent case, we want to relate the Lévy measure of the limit with the
laws of the individual random vectors (under suitable assumptions). We need a
modification of an inequality in Hoffmann-Jorgensen [11, proof of Theorem 3.1].

5.1 LEMMA. Let {X,, ---, X,} be a set of B-valued r.v.’s with stationary sums
such that ¢(1) < 1; write S, = ¥ %, X;. Suppose ¢(1) < a <1 and let s> 0, t> 0,
u > 0 be such that t > s + u, max <<, P[|| Sk > (t —s—u)/2] =1 — «a and
maxi<k<nP[|| Skl > u/2] =1 — a. Then

P[|| S|l > t] = P[max<j=n || X; || > s]
+ (e = o) Y*PIS, | > (t — s = w)/2]P[I Sa || > u/2].

PROOF. Let M = maXi<j=n " Xj ” y A = [“ Sy ” > u], Ay = [maxlshsk—l ” Sh "
= u, ”Sk” >u] (k=2’ '-',n).Wehave

Pl Sall > t] = PIM > s] + Zk=1 P(Ax N [I1Sn = Skl >t — s — u))
< P[M > s] + Yk=1 ¥*P(AR)P[I| Sn — Skl >t — s — u]
< P[M > s] + y*max <x< P[| S, — Skll >t — s — u]
- P[maxi<g=<n| Sk || > ul.

Now it suffices to apply Proposition 2.2. 0

5.2 THEOREM. Let {X, i} be a ¢-mixing triangular array with stationary sums
which satisfies ¢(1) < 1, ¢* < o and condition (x). Suppose that < (S,) —, v and
that u is the Lévy measure of v. Then, for every v € C(u),

JnZ (X)) | BS =, u| B;.

PrOOF. First observe that, arguing as in the proof of (1) of Theorem 3.3, it
follows that < (&£,1)" —,, v and, by the general converse central limit theorem of
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the independent case [3, Theorem 2.10], k, < (£.1)| Bf —, n| BS for every
7€ C(u).
We will prove that if 0 < s <t then

(5.1) w(B§) < lim inf, j, P[l| Xa1 || > s].

In order to do this, take u and « such that 0 < u < ¢t — s and ¢(1) < a < 1.
Property (*) implies that for n large enough we have

max,<i<p, Pl Suell > (t —s—u)/2]=1—«a
and
max;<k<p, P Sur | > u/2] =1 — o
then Lemma 5.1 gives for such an n that
P[ll & ]l > t] = pu Pl Xu1 | > 5]
+ (@ — o) W*P[l & | > (¢ — s — w)/21P[ll £n1 | > u/2].
Therefore .
w(Bf) < lim inf,k, P[l| £x1 | > t] < lim infuknpn P[1| X || > ]
+ (o = ¢(1) Y *(sup,kn PLI| £mr || > (¢ — s — u)/2])
lim sup,P[ll &1 || > u/2]
= lim inf.j. Pl Xn1 | > 5]

by the independent case and the finiteness of y*.
Now we claim that

(5.2) p(F) = lim sup,j, & (Xa1)(F)

for every closed set F such that d(0, F') > 0. To prove this, take such an F and
lete>0.Forn€N,i=1,---,p,let &l = & — Xui, €= Ci = [Xu E F], Di =
D,; = [£{] € B,]. We have

P[tn € F + B] = P(U?, (C: N Dy))
= Y2 P((C: N Di) N [Mi<j<i(C; N D;)°])
= Y2 P((C:N D) N [Migj<iCi])
=32 {P(C:N D)) = P(CiN Di N [Ui<;<iCiD}
and
P(C; N D; N [Ui1£j<iC;]) = P(C: N [Ur1<;<.C;])
< ¢*P(C))P(Ui5,<iC)) < ¢*pa(P(C1))"
Next, fix h € N. If n is such that p, > h one has fori =2, -- -, p, — h, writing
U=U;=YZX,, Vi=V5i=Y2X,;, VIi=Vi=3k X

j=i+h
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that
P(C; n D)) =2 P(C;N [U;, € BN [V! €B.sl N[V € B.j))
= P(C:N[V! € B.p]) — P(C: N [V € Bs]
N ([U: € Bisl U [VI € Bi)))
= P(C,)P[V! € B.s] — ¢(h)P(C;) — P(C; N [U; € Bs))
— P(C; N [V! € By
= P(C)){1—¢(h)— P[V! €Bs]—y*P[U;E Bijs] —y*P[V{ € Bssl}
= P(C){1 — ¢(h) — (1 + 2¢*)d,}
where 8, = maxi<x<p, P[ || Sux | > ¢/3]; therefore
| Plt. € F + B
= (p, — h = DP(C.)){l — ¢(h) — (1 + 2¢*)é, — ¥*puP(Cr)}.

Now 8, — 0 as n — o by the property (*) (recall that p,/j, — 0) and p,P(C,.)
< p. Pl X1 |l = d(0, F)], which goes to zero as a consequence of Theorem 3.4;
hence

u(F + B,) = lim sup,k,P[¢. € F + B/]
> (lim sup.k.(p, — h — 1)P(Ca1){1 — ¢(h)}
= (lim sup,j.P[Xu € FD{1 — ¢(h)}
for all h € N. By the ¢-mixing condition we deduce that
w(F + B,) = lim sup,j,P[X. € F]

for every ¢ > 0, but this implies (5.2) since F is closed.

To conclude the proof, fix 7 € C(u) and observe that it is sufficient to prove
that every sequence M C N contains a subsequence M’ such that w —
limuep jn-L(Xn)| BS = u| B¢. Let M C N be a sequence; using Theorem 3.4
and a diagonal procedure we obtain a subsequence M’ of M and a o-finite
measure p’ with u’({0}) = 0 such that w-lim,epjn < (Xn)| B = u’| BS for
every 7' € C(u’). Now it is enough to show that w-lim,ey j. < (Xu)| Br =
| B¢ for every v’ € C(u) N C(u’) (since this implies that u’ = u and then the
desired result follows). To prove this, take such a 7’ and observe that by (5.2) we
have that lim,j,P[|| X, || = 7'] = 0 and then

lim sup,en (jn L (Xn1) | BS)(F)
= lim supnem jn-L(Xu)(B,)* N F) < (u| BS)(F)

for each closed set F. It remains to show that lim,enj, < (Xn1)(BS/) = u(B%);
since 7’ € C(u’) the limit in the left member exists and coincides with u'(B?").
By the preceding inequality we only need to prove that u’(B5/) = u(B?); but if
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0<d6<t’anddé € C(u’), (5.1) gives
w(B¢) < lim infaep jn L (Xn)(B5) = u'(Bj)

and the desired inequality follows taking a sequence of such é’s increasing to 7’
because 7’ € C(u’). 0O

The following lemma and its proof were communicated to us by A. de Acosta.
Given a subset A of B, dA denotes the boundary of A and A° = {x € B: d(x, A)
el ife>0.

5.3 LEMMA. Let {X), ---, X,} be a set of B-valued r.v.’s. If A is a subset of B
and ¢ > 0 then

1(X7=1 X a(Tia X)) — Eia XiLa(X5) ||
< 2 35 1 Xil oy (X;) + IB(Xirinj Xi)}.

PrROOF. Fixjwithl<j=<nandwrite Z;= Y ;~; X;. We have
XiI.(Z; + Xj) — X Iu( X)) = X{Ia(Z; + X;)[4e(X;) — Tn(X;) 1e(X; + Z;)};
moreover
I.(Z; + X)) [4«(X;) < In(Z; + Xj)a(X;) + Ia(Z; + X;)acna(X;)
= IBA(Z;) + Lsay(X;)

(note that since B is a normed linear space, d(x, A) = d(x, dA) if x € A°) and,
analogously,

LX) a(X; + Z;) < IB(Z;) + Isa)-(Xj)).

Then | X;Ia(Z; + X;) — X La(X) | = 2 | X; || {Hoa(X;) + IB; (Z;)} for j =
1,---,n 0O

5.4 THEOREM. Let {X,;} be a stationary, ¢-mixing triangular array which
satisfies p(1) <1, ¢* < o0 and condition (*). Suppose that, for eachn € N, &£ (X,,1)
= (1 = M\.(B))dy + \,, where \, is a finite positive measure such that \,(B) < 1
and \,(B;) = 0 for some t > 0 independent of n. Then, if < (S,) —., v and p is
the Lévy measure of v, we have u(B;) = 0 and v = Pois u; moreover, < (S{’)
—, Pois(u | BE) for every 7 € C(u).

PROOF. Assume for the moment that we have proved that
(56.3) ZL(87) - Pois(u | BS)

for every 7 € C(u). If 7 € C(u), 7 < t, we will have that < (S,) = L(S{) —.,
Pois(u | B¢) (observe that P[S, # S] <= j,P[X. # Xu] <j.PI0<| Xl =<
7] = 0) and then v = Pois(u | BS). One can deduce that u | BiN B,  =0if 7,7’ €
C(u) with 7 < 7’ < t (use the uniqueness of the Lévy-Khintchine representation);
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this implies that u(ét) = 0 and » = Poisu. Hence the proof of the theorem will
be done.

Fix 7 € C(u). By similar arguments to those used in the proof of (1) of
Theorem 3.3 and an application of [3, Theorem 2.10] we can deduce from the
weak convergence of {.£(S,)} to » that £ (3%, £nx) —. Pois(u | BS). Also, we
can prove that

k,+1
2 Tieqnr Xnj—p 0

since d(X}1) = ¢(X,1) and the triangular array {X7,;} is stationary and satisfies
(*) (by the inequality P[[| X2, X[l > 0] = (rn/jn)inPlI| Xu |l > 7], (*) is a
consequence of Theorem 3.4). Then (5.3) will follow if we prove that

(5.4) fn (Ere = Tiepmr Xnj) —p 0.
Take ¢ such that 0 < ¢ < 7; Lemma 5.3 gives for eachn € N
I 25, (Erk = Tiermm Xii)l
<235 Viermr I Xnjll Iximespxp<rret (Xn))
+ 2 3 Siermm | Xnj 1 IB(Dicpnn,iri Xui)
=2Y,,+ 2Z,, (say).
This shows that (5.4) holds if we prove that

(5.5) lim, olim sup,P[Y., > 0] =0
and
(5.6) for every ¢>0, Z,,—p0.

Observe that if 0 <e< 7
lim sup,P[Y., > 0]
< limsup,j,Plr —e=<||[Xul|l=7+el=spulxir—e<|x|| =7+ ¢})

by Theorem 5.2 and this implies (5.5) since 7 € C(u).
Ife>0,7>0,s>0and n € N write

P[Z., > 7] = P[max,<j<;, [| X1l > s]
+ P[Zi, Yicptm | Xnjs | IBAZ icpnpyini Xni) > 1)
< P[max;<j<; || Xnjll > s]
+ 7 £, B Xogo I 1B (202, 0y Xoi)
then we have (5.6) if we prove the following two claims:
(5.7) lim,_.lim sup,P[max;<;<; [| X.; || > s] = 0,
(5.8) given ¢ >0 and s > 0, lim,k, X2 E[|| X, | IB:(2%" X.)] = 0.

i=1,i#j
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To prove (5.7), fix « such that ¢(1) < o« < 1. Given § > 0 write 5 =
min{l — «, (o — ¢(1))}, take s > 0 such that

SUPo<t=1 Vt(Bi“s—T'n) <7/2

and n, € N such that

max,<i<j,p (1, v¥in) < n/2

if n = no (possible by Theorem 3.3(2)). Then if n = n, one has by the definition
of p that max,<x<; P[Il Sk ll > s/4] < n and hence P[maxi<j<; || Xujl > s]
< P[max;<x<j, | Sux | > s/2] < & by Proposition 2.2. This implies (5.7).

Now fix e >0and s > 0. If n € N we have forj =1, .-, p,, writing U,; =
lei<ani’ an = 2j<isp,,Xni9 that

E[ " ans " IBﬁ(Unj + an)] = E[ " ans " IB‘ (Unj )] + E[ " ans " IBﬁ/z(an)]

e/2
= 2 ¢*6nE ” ans " ’
where 8, = maxi<k=p, P[ | Sux || > ¢/2], by Proposition 2.7. Hence
kn f;l E[ ” an.s' " IBf(Z?;l,,'#j Xm)] = 2¢*6anE " ans "

which tends to zero since 4, — 0 by the property (*) and sup,j.E | X1, || < « as
a consequence of Theorem 3.4 (note the inequality j.E | X,is | < sj.P[ll Xo1 |
> t]). Then (5.8) is proved. 0

We will need the following result (de Acosta et al [3, Lemma 2.4]); note that
there is no dependence assumption in its statement.

5.5 LEMMA. Let {X,;} be a triangular array. Assume that {3/~ < (X,;)| B}
is relatively compact for some 6 > 0. Then { < (S")} is relatively compact for every
T = 0.

Now we can give sufficient conditions for convergence to certain compound
Poisson measures.

5.6 THEOREM. Let {X,;} be a stationary, ¢-mixing triangular array such that
¢(1) <1 and ¢* < . Suppose that, for each n € N, L (X,1) = (1 — M\(B))do +
\., Where X\, is a finite positive measure such that \,(B) < 1 and \.(B,) = 0 for
some t > 0 independent of n. Assume that there exists a finite measure u such that
John—w u. Then < (8S,) —, Poispu.

PROOF. Observe that {j, < (X,)| B{} = {j.\.} is relatively compact by
hypothesis. Then Lemma 5.5 implies that {.<(S,)} = {<L(SY)} is relatively
compact (P[S, # S¥] = j.\.(B,) =0).

To conclude the proof, it suffices to show that each convergent subsequence
of {<(S,)} has the desired limit. Assume that . (S,) —. v and let u’ be the
Lévy measure of v; by Theorem 5.4 (the inequality P[| Xz, X,j| > 0]
< (rx/jn)jnAa(B) and the hypothesis imply that {X,;} satisfies (*)) we have that
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y'(ét) = 0 (hence u’ is finite) and » = Pois(x’). On the other hand, if r € C(u’)
with 7 < t, Theorem 5.2 gives that j,- \,, = j,» L(X,1)| B =, u' |BS = u'.
Therefore . = u” and » = Poisu. 0O

The following two results give sufficient conditions for convergence to a
generalized Poisson measure. '

5.7 THEOREM. Let {X,;} be a stationary, ¢-mixing triangular array such that
¢(1) <1 and y* < . Assume
(1) there exists a o-finite measure u such that, for every r € C(u),

jn L/(an) I Bfr —w M I Bi,
(2) there exist r > 0 and a sequence {6} C C(n) such that 6 | 0 and
hmkhm sup,,E " Sn,&,, - ESn,bk "r = 0,

(8) there exist 3 > 0, p > 0 and a sequence {F}} of finite-dimensional subspaces
of B such that

limksuand‘F)‘k(Sn,B - ESn,ﬂ) =0.

Then (a) u is a Lévy measure, (b) for every v € C(u), <L(S, — ES,..) =,
¢, Poisu.

PROOF. As a consequence of assumption (1) we have that < (SY) —,
Pois(u | B§) for every 6 € C(u) and lim,(ES,, — ES,;) = lim,ESY), =
[B,x(n| B§) (dx) if 6, 7 € C(p) and & < 7. The first assertion follows applying
Theorem 5.6 to {X%;} (with A\, = < (X,,)| B;) and the second is deduced by a
standard argument (write ESY. = [xIp (x)(j.-<(X,1)| B§) (dx) and note that
the set of discontinuities of the bounded, Borel measurable function (from B into
B)xIp (x) has u | Bi-measure zero). Then we have (see [3, Section 1])

(5.9) if s, 7€ C(pn) and 6 <7, L(S¥ + ES,; — ES,,) —, c,Pois(u| B).

Fix 7 € C(u). We will show first that { (S, — ES,,)} is relatively compact.
Choose 6 > 0 such that 6 < 7, 6§ < 8 and sup,E | S,; — ES,.;||” < o (this is
possible by (2)). Hence we have (Chebyshev’s inequality) that for every f € B’,
{L(f(Sn;s — ES,;)} and then { L (f(S, s — ES, ;))} are relatively compact; the
second assertion follows from the first by the equality S,z — ES.s = (S, —
ES,;) + S — ES{) since assumption (1) implies that {.<£(S{})} is relatively
compact (write S¢; = S — S and use Lemma 5.5) and then {ES{)} is
relatively compact in B (Proposition 3.5 ensures the uniform integrability of
{1 S¢%1}). Now (3) and [1, Theorem 2.3] imply that {.<7(S, s — ES, )} and then
{Z(S,; — ES,;)} are relatively compact. On the other hand, arguing as above
starting from (1) we can obtain that { £ (S + ES,; — ES, )} is relatively
compact. Hence the equality

(510) Sn - ESn,r = (Sn,i) - ESn,B) + (S(rf) + ESn,cS - Esn,r)
shows that {.<(S, — ES,,,)} is relatively compact.
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Suppose that .~ (S, — ES,,) —, v. There is a subsequence {n,} of {n’} such
that if 6, < 7

E " Snk,ﬁk - ESnk,!sk "r < k_l + 1im Suan ” Sn,ék - ESn,bk "r

and p(<L(SP¥ + ES,, s — ES,,.), c.Pois(u|BS,)) < k™! (this is possible by
(5.9)). By (2) we have that S,, 5, — ES.,, ;, —pr 0 as k — » and then (apply (5.10)
with n = n, 6 = &) <L (ST + ES,, 5, — ES,,..) = v. Hence ¢, Pois(u | BS,) —.,
v by the choice of {n:}. An application of [3, Theorem 1.6] gives that u is a Lévy
measure and v = ¢,Poisp.

The relative compactness of {.<(S, — ES,.)} and the above argument imply
the desired conclusions. O

5.8 COROLLARY. Suppose that B is a Hilbert space. Let {X,,;} be a stationary,
¢-mixing triangular array such that ¢(1) < 1, ¥ %, ¢¥*(j) < o and y* < .
Assume:

(1) there exists a o-finite measure u such that, for every € C(u),

Jn L (Xm) | B; =, u| By,
(2) there exists a sequence {8,} C C(y) such that 6, | 0 and
limylim sup,j,E | Xp1s, — EXps, 12 = 0,
(3) there exists 8 > 0 such that
lim,sup,,j, Edi(Xn1s — EXmg) =0

(the d}’s are as in Corollary 4.5).
Then (a) u is a Lévy measure, (b) for every € C(n), < (S, — ES,.) —.,
¢, Poispu.

PRrOOF. As in the proof of Corollary 4.5 we can obtain the inequalities
E|Sw; — ESusl> = (1 + 4 T 6(j)JnEll Xors — EXns 1%,
Edi(Sns — ESnp) = (1 + 4 T721 ¢"2(j))jnEdi(Xns — EXpip)

which show that the result follows from Theorem 5.7. 0O

Let {X;:j € N} be a stationary sequence of B-valued random vectors, {a,} a
sequence of real numbers tending to infinity and {b,} C B; it is known that if
{ZL(ar' (X1 + --- + X,) — b,)} converges weakly and {X;} is ¢-mixing (or even
under a weaker assumption) then the limit is a stable measure (see Ibragimov
and Linnik [12, Theorem 18.1.1] and Philipp [16, Theorem 2]). The following
two consequences of the previous result give sufficient conditions for that
behavior (with a nonGaussian limit).

5.9 COROLLARY. Suppose that B is a Hilbert space. Let o € (0, 2) and let ¢ be
a finite measure on S = {x € B:| x| = 1}; denote u.,, the measure on B induced
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by the product measure r~'~*dr®g through the map (r, x) — rx from [0, ©) X S
onto B. Assume that {X;: j € N} is a stationary, ¢-mixing sequence such that (1)
<1, 35, ¢V4(j) < o, Y* < 0 and such that it satisfies

nZ(n"VX,)| BS =y pa,q | BS
for every > 0. Then p,,, is a Lévy measure and
LV(X + - + X,) — ntVE[Xy; X, € Bye]) =, ¢ Poisp,,.
PrOOF. Let X,;=n""X;forj=1, ---,nand n € N. Corollary 5.8 shows
that it is sufficient to prove that
lim; josup,nE || X lI> =0 and  limgsup,nEdi(X..4) = 0

for some 8 > 0. But as in Araujo and Giné [4, proof of Theorem 4.3] these
conditions can be deduced from the relations

sup>ot*“P[|| X || > t] < o and lim,sup;>ot“Pldr(X;) > t] = 0

which are consequences of the hypothesis. 0

5.10 COROLLARY. Let {X;: j € N} be a stationary, ¢-mixing sequence of real
random variables such that ¢(1) <1, ¥, ¢*(j) < and y* < . Let a € (0, 2)
and suppose that

(1) there exist constants 7, = 0, /, = 0 such that /1 + /> > 0 and

PIX,<-x] _4

llmx_,+oc P[X1 > x] _/2’
(2) for every t >0,

PlIXi|>x] _
TP Xy | > tx]

«

lim
Then there exist constants a,, with a, — %, such that
Aa (X + -+ + X,) — na'E[Xy; | Xi| < an]) = 1 Poispg,,,,.,

where Ka,ry,72 (dx) = a{l—wo)(x) /1| x| T+ I(0,+oo)(x)/2x_l_a} dx.

PROOF. As in Gnedenko and Kolmogorov [10, pages 176-178] we can define
a, such that a, — o and, for each x > 0,

lim,nP[X, < — xa,] = 4 x7% lim,nP[X; > xa,] = 4ox™,
lim;olim sup,na;”E[X1; | Xi| < éa.] = 0.

Now it suffices to define X,, = a%,'X; forj=1, ---, n, n € N, and to apply
Corollary 5.8. O
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6. Infinitely divisible limits. In this section we consider y-mixing tri-
angular arrays.

6.1 LEMMA. Let {X,;} be a stationary, Y-mixing triangular array such that
¢(1) <1and y* <. Assume X,, —p 0, | X,,; | = M ass. (for all n, j) for some M
and that there exists 6 > 0 such that the triangular array {X,;s — EX,;;} satisfies
(*) and { L(S,.,s — ES,;)} is relatively compact. Then

limnE[f(Sn,b - ESn,é)f (szé))] = 0

for everyf € B’.
Proor. Let Y,, = X, — EX,j; for j = 1, ---, j,. Since X,, —p 0 we
have E|| X,1;[| - 0, E| X7 | — 0 (write E|| X7, | = MP[|| X, || > 8]) and

E |Y.|l — 0 as n — o. Theorem 3.4 applied to {Y,;} implies that K =
sup, joE | X%, || < . Next we claim that

C = supn,evmax i<, Ell $it Yol

is finite. To prove this, fix o such that ¢(1) < o <1 and put n = 1 — a. Take x,
> 0 such that

SUPOStSIVt(foo—n)/Z) < 77/2
and ny, € N such that
max k<), p(py, v7/n) < n/2

if n = n,, where u’ = (¥ %,Y,;) (possible by Theorem 3.3). Hence if n = n,
we have

maxi<x<;, P 251 Yol > 2/2] <1 - @

for x = x, and therefore, by Proposition 2.2,

maxi<i<, B | Xjst Yoill = %0 + (@ — ¢(1)7 f P[ll Zin, Yojll > x/2] dx

< xo + 2(a — ¢(1))'E|| Zfil Yoil.

Applying Proposition 3.5 to {Y,;} we conclude that C < .
FixfeB’.Let h€ N;if nissuch thatj,>2h + 1 and i satisfies h + 1 < i
< Jjn, — h write

Uni= 2528 f(Ye), Uni= ZjZlne f(Yo),
V=S f(Y), Vie=Xk,, [(Ya).

Jj=i+
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For n sufficiently large we have
| EIf(SI)f(Sns — ESn)]l
< Y | E[f(X0) Tz F(Ya)]
=< ja | ELf (X)) f (Ya)]
+ X | Ef(X5) Zjri F(Ya)]]
+ Yt NEf(X){UR + Ui + Vi + Vil
+ 20 ey EIf(X0) Zjwi f (Y]
=a,+ b, + ¢, +d, (say).
Moreover

an = ju| Ef(X03) | | f(EXn5)| < I FI’KE | Xus |,
be = X |E[F(XINZZ F(Ya) + Ton,, F(Y01 = 2 hy*|| £ IPCE N X0l

by Proposition 2.7,
o = it ELF(X0)]

AW(ME|U%| + *E |\ UL| +y*E| V| + y(WE| Vi |}
< 2| f I’K{Y*hE| Y |l + C¥(h)}

by Propositions 2.6 and 2.7 and d,, has the same bound that b,. These inequalities
and the remarks made above yield

lim sup, | E[f (S, — BS,»)f(S$)]| = 21| f |2KCy(h)
for every h € N, then the ¢-mixing condition implies the desired result. [

6.2 THEOREM. Let {X,;} be a stationary, y-mixing triangular array which
satisfies ¢(1) < 1, ¢* < = and condition (*). Suppose that < (S,) —. v with Lévy-
Khintchine representation v = §, *y*c,Poisu for + € C(u), where 2. € B, vy is a
centered Gaussian measure and u is a Lévy measure. Then

(a) for every 7 € C(p), j»-L(Xn)| By = p| BS,
(b) for every fE€ B’,

. li n
lims o {1;2 ot } Ef*(Sns = ESns)

= lim, o, ,ecolim,Ef XS, — ES,,) = &(f, f),
(¢c) for every T € C(u),
L(8T) —»uPois(u| B;), L(Sn.,) —w 8, *y*c,Pois(u|B;)
and
ES,.— z in B.
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PrOOF. Theorem 5.2 shows that (a) holds. Fix 1 € C(u). (a) and Theorem
5.6 applied to {X};} imply the first assertion of (c) (note that ¥(Xj;) =
L(Xn1)(B,)oo + L(X.1)| BS). Hence {£(S,,,)} is relatively compact. Let A be
the Lévy measure of a limit point of this sequence; for every 7’ < 7 such that 7’
€ C(A\) N C(u) we have j, L(X,1,)| BS =j,L(X,)| B, N B: and then \ | B
= u | B, N B¢ by (a). Therefore u | B, is the Lévy measure of every limit point of
{-Z(S,,)}.

Now we will prove the following claim: (I) if a subsequence {.¥(S,, )} con-
verges to 6,*% *c,Pois(u | B,) where z € B and v is a centered Gaussian measure
then <(8,,,.") —w 8. *y*c,Pois(u | B,-) for every 7’ > 7 such that 7" € C(u).

In order to prove (I), fix such a 7’ and observe that since {<Z(S,,.-)} is
relatively compact it suffices to show that each one of its convergent subsequences
has the desired limit. Let {.<(S,-.-)} be such a subsequence with limit
8, %y *c,Pois(u| B,’) = 8,,+m*v’ *c,-Pois(u | B,-) where z’ € B, v’ is a centered
Gaussian measure and m = [ g:ng, xu(dx) (we have used an elementary property
of 7-centered Poisson measures; for this and other properties which we will use
we refer to [3]). We have

lim, ES, , =z + f xc,Pois(u | B,)(dx) = 2, lim,-ES,- .- =2’ + m

by Proposition 3.5 (to prove that { X,;,} satisfies (*), write X,;, = X,,; — X}; and
use (a) and the property (*) of {X,;}) and m = lim,- (ES,-,- — ES,-.) by (a);
hence z’ = z. On the other hand, we have for every f € B’ (Proposition 3.5)

lim - Ef XSy, — ESn,) = f f2d[6m+y’ *c, Pois(u| B,")]
=f*m) + &, (f, f) + ff:’d(ulBT»),
lim, Ef (Su, — ESuw,.) = ®;(f, f) + f f*d(u|B.), -

lim, Ef (S7,-) = f*(m) + ff2d(ulBi N B.')

(arguing as above we can obtain that <(S¢).) —,Pois(x| B¢ N B,-)) and the
equality

Ef*(S,.  — ES.,.)
= Ef*(Sn, — ES,,) + Ef*(8%)) + 2E[f(S,. — ES,,)f(S:3)].

Therefore, Lemma 6.1 implies ®.- = &, that is, ¥’ = v. Then (I) holds.

To complete the proof of (c) observe that its third assertion follows from the
second (by Proposition 3.5). To prove it, let {n’} be a subsequence of N such that
L(8S, ) =, 8,+¥*c.Pois(u| B,) where z € B and ¥ is a centered Gaussian
measure; since {.<(S,, ,)} is relatively compact it is sufficient to show that z = z,
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and 4 = v. Take an increasing sequence {7} C C(u) such that 7, > 7 and 74 | ®;
by (I) we have

LSwr) = x5 +¢,Pois(u| B,,) = vy

(say) for every B € N. Hence there exists a subsequence {n,} of {n’} such that
p(ZL(8Sn,.,), v) < 1/k for each k € N. Note that S¥ —p 0 (given ¢ > 0, by
Theorem 3.4 we may choose r > 0 such that sup,j, < (X,1)(B;) < ¢ which implies
that P[||S5¥ | > 0] < ju Pl Xay | > 74] =< ¢ for sufficiently large k) and
¢,Pois(u | B;,) = ¢, Poisu. Then

v =w — lim; £(S,,) = w — lim, Z(8S,,.,) = w — limgy, = 6,y =*c,Poisu

and the uniqueness of the Lévy-Khintchine representation implies z = 2, and ¥
= v. Thus (c) is proved.
Let f € B’. (c) and Proposition 3.5 imply

limnEf2(Sn,~r - Esn,r) = q"y(ﬁ f) + f de(CTPOiS(M'lBr))

for every 7 € C(u); arguing as in [3, proof of Theorem 2.10] we can deduce the
second equality in (b). To obtain the first it is sufficient to show that
lim inf,Ef %(S,; — ES, ;) and lim sup,Ef *(S.; — ES, ;) are increasing functions
of 8. But this follows from Lemma 6.1 and the inequality

Ef*Spns — ESns) = Ef%(Sns — ESus) + 2E[f(Sns — ES,)f (S¥)s)]

0<o<d’). O

We use the notation V,,(3, f) of Section 4.

6.3 COROLLARY. Let {X,;} be as in Theorem 6.2. Assume that either (i)
Y%, ¢*(j) < o and for every f € B’ there exists 6 > 0 such that

Cé»f = SupnanfQ(anb - Eanb) < o,
or (ii) ¥ %, ¥(j) <  and for every f € B’ there exists 6 > 0 such that
, M; ;= sup,ji/*E | f(Xn1s — EXni5)| < oo,
Then for every f € B’

[lim sup,,[

®7) Lmao |y ing, |

Va(8, f) = lim, o ecwlim, Val7, f) = &,(f, f).

PROOF. Let f € B’. First let us observe that conclusion (a) of Theorem 6.2
implies that we may suppose that C;; < « for every é > 0 in (i) and M; ; < « for
every 6 > 0 in (ii).

As in the proof of Corollary 4.3 we have for each é > 0

| Ef %(Sns — ESns) — Va(3, f)| = 403" Ti7" j6"(j)) Cay
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and analogously (but using Proposition 2.6) we obtain the bound
2(j7 Binyt W) M3y
Now we can deduce (b’) from (b) of Theorem 6.2 and (i) or (ii). O

REMARK. Let {X,;} be as in Theorem 6.2. If 7, ¢'/%(j) < % or ¥ {2, ¥(j)
<4 then (b”) holds for every f € B’ (argue as in the remark following Corollary
4.3).

6.4 THEOREM. Let {X,;} be a stationary, y-mixing triangular array such that
(1) <1, Y* < . Assume

(1) for some a > 0, the triangular array { X,j. — EXy;.} satisfies (*),

(2) there exists a o-finite measure u such that for every 1 € C(u)

Jng(an)IBi —w ll'IBi’

(3) there exist a sequentially w*-dense subset W of B’ and a sequence §;, |, 0
such that

®(f) = lim, { i is;jf"} Ef*(Sns, = ESns,)

exists for every f € W,
(4) there exist 8 >0, p > 0 and a sequence {F}} of finite-dimensional subspaces
of B such that

lim,sup, Ed%,(S.s — ES.g) = 0.

Then (a) u is a Lévy measure, (b) there exists a centered Gaussian measure vy
such that ®.(f, f) = ®(f) for every f € W, (¢) L(S, — ES.,..) =, v+*c,Poisu for
every 1 € C(u).

ProoOF. By an application of [1, Theorem 2.3] and using Lemma 5.5 and
Proposition 3.5 we can deduce from the hypotheses that {.£(S, — ES,,)} is
relatively compact for every 7 € C(u) (see the proof of Theorem 5.7).

Fix r € C(u) and write Y,; = X,,; — EX,j., T, = ¥ ', Y,;. Note that EX,,;, —
0 in B by (2) and that {Y,;} satisfies (*) (write Y,; = (X, — EX,,ja)\+ X5+
EX,.,, — EX,., and use (1) and (2)).

Now we prove that

(6.1) Jn L (Y1) | Bs —, 1| Bj
for every 6 € C(u). Fix such a é. If 0 < ¢ < § we have for sufficiently large n
JnP[Xn1 € Bjs.] < joP[Ym € Bi] < j,P[X.: € Bj-.]

since EX,,;, — 0; then (2) implies lim,j, <(Y,,)(B;) = u(B;) because § € C(u).
Similarly, if F'is a closed set and ¢ > 0

lim sup,j.P[Y,1 €EBiNF]l<u (((éa)c NF)+ B,),
which shows that lim sup,(j, . Z(Y,.) | B§)(F) < (u| B$)(F ). Hence (6.1) holds.
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As in the proof of Theorem 6.2 we can prove, using Lemma 6.1, that
lim inf, Ef 2(Sn.s — ES,.;) and lim sup, Ef (Ss,; — ESn ;) are increasing functions
of & for each f € B’. Then (3) implies that

l lim sup, l

2 o—
llim inf, | Bf (Sns = ESns)

(6.2) ®(f) = lim;yo

for every fE€ W.
Next, we show that for each f € W we have

(6.3) lim; o secq {}E f;‘f"} Ef*(Tys = ETns) = &(f).

In order to prove this, fix f € W and observe that by (6.2) it is sufficient to show
that

(6.4) © lim, (Ef*(Ss — ESns) = Ef(Tns — ET,z) = 0

for each 6 € C(u). Let 8 € C(u) and write S, = Sn; — ESns, Tn = Tns — ETns.
Using the Cauchy-Schwarz inequality we obtain

| Ef2(Sa) — Ef*(T)| = ((BfA(S8w)Y? + (Ef*(Tns))*NEf*(Sn = To))?

and moreover we have sup,Ef %(S,) < © and sup,Ef%(T,;) < © (use Lemma 5.5
and Proposition 3.5). By Proposition 3.5 ({(X,js — EXujs) — (Yos — EY,j5)}
satisfies (*)), (6.4) will follow if we prove that S, — T, —p 0. One has

E|8S. = Tall < jrE 1 (Xn1s — EXp15) = (Ynis — EYnu) |
< juBl EXp1r = EXo1s + EY s 15 | Xl < 6, || Yo || = 8]
+ JjnE[| Xm — EXpis + EYnis |3 | Xl <8, | Yar | >8]
+ JuE[l = Yu — EXpis + EY,is |5 1 Xni |l > 6, || Yau |l < 6]
+ JnEU EYms = EXaslls | Xt | > 8, || Yo | > 3]
=a,+ b, + ¢, +d, (say).
Take ¢ such that 0 < ¢ < §; for sufficiently large n we have | EX,,,, || < ¢ and then
an < jn | EXni, = EXpis + E[ X — EXoiss || Yoaull < 0]l
= ju 1 (EXn1 )Pl Yor || > 8] = E[Xoi; | Xoa |l = 0, [| Yar | > 6]
+ E[Xo; | Yol =8, | X || > 611l
< | EXor- 12 PIll Yo Il > 8] + 38j, P[0 — e = [| X[l = 6 + ¢],
b =< 38j,P[6 — ¢ = | Xu |l < 0], |
¢'< 30jn P[0 = | X || = 6 + &),
do = {I EYnis || + | EXais 137 PLI X || > 6]
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Applying (2) we obtain that
lim sup,E||S, — Tl <= 9ou(fx: 6 —e< x| <6+ ¢})

for every ¢ € (0, ) and therefore Lim,E | S, — T, = 0 since § € C(u). As
remarked above this implies (6.4) and thus (6.3) is proved.
On the other hand, we claim that

(6.5) ET,.— 0in B.
The equalities
ET,, = joE[Xn — EXoir; || Yo |l = 7]
= JnB[ X | Yl < 7, 1 X | > 7] = JoE[Xni; [ Xual = 7, [ You | > 7]
+ (EXu)jn Pl Yor | > 7]
and the fact that EX,,;, — 0 imply that
lim sup, | ET,. || < 2(r + u(fx: 7 —e < x| s 7+ ¢})

for every ¢ € (0, 7) and this implies (6.5) because 7 € C(pu).

By the relative compactness of { £(S, — ES,,)} = { £(T,)}, claims (6.1), (6.3)
and (6.5) and Theorem 6.2 applied to {Y,;} we may conclude the proof through
a standard argument. 0O

6.5 COROLLARY. Suppose that B is a Hilbert space. Let { X,,;} be a stationary,
Y-mixing triangular array such that ¢(1) < 1, y* < 0. Assume
(1) there exists a o-finite measure u such that for every + € C(p)
jn ,,(/(an) I B: —>w M I B:—,
(2) one of the conditions (i) or (ii) of Corollary 6.3 holds and there exists a
sequence & |, 0 such that

2() = lim, {}12 fl‘jg"}- Vlow, )

exists for every f € B,
(8) there exists 8 > 0 such that

limksup,,and,%(X,,w - Ean‘j) = 0.

Then (a) u is a Lévy measure, (b) there exists a centered Gaussian measure vy
with covariance ®.(f, f) = ®(f)(f € B’), (¢) ZL(S, — ES,.,;) = v *c.Poisu for
every 7 € C(u).

PrOOF. We will show that the hypotheses of the previous result are satisfied.
Write Y, = X,.;s — EX,,js. We prove that {Y,;} satisfies (*). Let {r.} C N such
that r, <j, and r,/j, — 0. We have, as in the proof of Corollary 4.5,

Edi(X}, Yo) = (1 + 4 352 ¢72() raEdi(Yn1)
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and
Ef(Tin, Yu) = (1 + 4375 () (raljn) Cs s

for each f € B’. If (i) of Corollary 6.3 holds we have by hypothesis (1) that Cg;
< o for each f € B’ (see the proof of Corollary 6.3) and therefore, using (3) and

[1, Theorem 2.3], ¥ ~, Ya; —p 0. In case (ii) holds note that
Edi(Z,r’Ll Ynj) = (1 + 22;;1 lp(]))rnEd%( Ynl)’
Ef*(Xin, Yo) = (1 + 23720 ¢ () (ra/jn) M,

for each f € B’ (use Proposition 2.6) and argue as above. Then (1) of Theorem
6.4 holds.

On the other hand, hypothesis (2) implies (3) of the previous result (see the
proof of Corollary 6.3).

Finally, the inequalities

Ed%(sn,/i - ESn,/i) = (1 +4 2;';1 ¢1/2(j))and%(Ynl)r
Ed3(Sns — ES,p) = (1 + 2 352 ¥(j))jnEdi(Yo)
together with hypothesis (3) and condition (i) or (ii) imply (4) of Theorem 6.4. 0
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