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THE BOUNDED LAW OF THE ITERATED LOGARITHM FOR THE
WEIGHTED EMPIRICAL DISTRIBUTION PROCESS IN THE
NON-L.I.D. CASE

BY MiICHAEL B. MARCUS AND JOEL ZINN

Texas A & M University

Using a simple symmetrization procedure, an upper bound is obtained
for the probability distribution of various kinds of weighted empirical distri-
bution processes where the underlying real valued random variables are not
identically distributed. These probability bounds are used to obtain bounded
laws of the iterated logarithm for empirical processes with different kinds of
weighting. They are also used to obtain a one sided version of Daniel’s theorem
in the non-i.i.d. case.

0. Introduction. Using a simple symmetrization procedure for Banach
space valued random variables, we obtain a number of strong limit theorems for
the empirical distribution process. New proofs of some classical results, such as
the exponential bound of Dvoretzky, Kiefer and Wolfowitz [3] are obtained as
well as some new results that are valid when the independent random variables
that occur in the empirical process are not identically distributed. In [1], Bretag-
nolle extends the Dvoretzky, Kiefer, Wolfowitz result to the non-i.i.d. case by
showing that the identically distributed case is extremal and therefore gives an
upper bound for an analogous statement involving independent random variables
which are not identically distributed. We approach the problem of independent
non-identically distributed random variables directly and hence we can obtain
some results which have no analogues in the i.i.d. case.

In what follows {X,}s, will denote a sequence of independent, non-negative,
real valued random variables which are not necessarily identically distributed,
{nx}=1 will denote a sequence of random variables with finite expectation such
that the pairs {(nx, X1)}»=1 are independent in k and {e} will denote a Rademacher
sequence (i.e. a sequence of independent, symmetric random variables taking the
values +1) independent of {(n:, X})}. Also, for a real valued function g(t), t = 0,
let || gl := supe=o | £(¢) | and let Lx = max(1, log x) and L.x = L(Lx). We will now
state some of the main results of this paper.

THEOREM 0.1. Let {c.}n=1 be a sequence of real numbers and a, =
(Bh=1 ciLa(Thor c2))2. Let

0.1) Un(t) = Yi=1 cellix,=0) — P(Xk = t)).
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Then
| % |

n

(0.2) lim sup,_ < o

In the case when {X,} are i.i.d., the compact version of this result, under some
mild regularity conditions on the {c.}, is due to Vanderzanden [12].

THEOREM 0.2. Let y(t), t = 0 be a non-negative, non-decreasing function and
let {b,} be an increasing sequence of positive real numbers with lim, b, = .
Assume that

| Xhor enb(Xi) | _

(0.3) lim sup,—« b
for some \ > 0. Furthermore, assume that
(0.4) lim SUpP,«SUPy(>2x6, b7 W(t) Tiey P(Xe Z t) < B

for some 3 > 0. Then

| ¢(t) Yici Uixeg — P(Xk = 1)) ||
br

(0.5) lim sup,_. < 1120N + 208 a.s.

Theorems 0.1 and 0.2 are actually special cases of Theorem 0.3.

THEOREM 0.3. Let Y(t) be as in Theorem 0.2. Let
Zi(t) = ()l ix,z00 — Emelix=q), Sn = Xh=1 exmef(Xs)
and
Su(t) = Thar Zi(t).

Let {b,} be an increasing sequence of positive numbers with lim,_. b, = © and
assume that

(0.6) lim sup,_. % <\ as.

for some \ > 0. Furthermore, assume that for some § < ®
(0.7) lim SUP,.SUP1<j=nSUP0b7 () | Dot Emelixzal(inwxo 1>z, | < B/2.
Then

[
bn

(0.8) lim sup,_.« < 1120M + 208 a.s.

Essentially Theorem 0.2 and 0.3 state that whenever the partial sums of the
symmetrization of the random variables {n.y(X,)}i-, satisfies a bounded law of
the iterated logarithm with respect to {b,} then so does the weighted empirical
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process formed with {7}, {X,} and y. As is well known, there are many theorems
on the bounded law of the iterated logarithm for real valued random variables,
see e.g. Theorems 7.5.1 [2] and Theorem 1 [11]. Each of these yields a result
about an appropriate weighted empirical process. Of course we also require that
(0.4) or (0.7) holds but, as we point out in Remark 3.1, they are, in some sense,
necessary conditions for (0.5) or (0.8). In applying Theorem 7.3.1. [2] and
Theorem 1 [11] to our Theorem 0.2 or 0.3 it is very easy to see that (0.5) or
respectively, (0.7) is satisfied. We shall go into greater detail on this point in
Section 3. When the {X,} are i.i.d., Theorem 0.2 is subsumed by a result of James
[6]. We shall discuss this further in Remark 4.4.

In Section 1 we obtain bounds on the probability distribution of weighted
empirical processes. Lemma 1.1 is a generalization of the Dvoretzky, Kiefer,
Wolfowitz result. Lemma 1.7 is our main result. It is used to prove Theorem 0.3
in Section 3. Further applications of Lemma 1.7 to Daniel’s Theorem in the non-
i.i.d. case and to generalize some inequalities of Mason [9] are given in Section
4. In Section 2 we slightly extend a useful result of Nagaev and Volodin [10]
which simplifies the proving of strong laws. A necessary condition for the bounded
law of the iterated logarithm for weighted empirical processes is also given in
Section 2. Section 3 is devoted to proofs of Theorems 0.1, 0.2 and 0.3 and to
some examples of when Theorem 0.2 and 0.3 hold. Section 4 is concerned with
applications of Lemma 1.7. In Section 5 we give a new proof of an upper bound
for Daniel’s Theorem in the non-i.i.d. case which is somewhat sharper than some
recent results of van Zuijlen [13], [14], [15].

Our approach to many of the problems considered in this paper was used
earlier in [8] in the study of weak #” norms for sequences of independent random
variables. It was in [8] that the relationship between probability estimates for
these norms and Daniel’s Theorem was first recognized. We would like to thank
Gilles Pisier for helpful discussions about these topics.

1. Some inequalities for the probability distribution of || %, | and
| % || The main result of this section is Lemma 1.7, an inequality for the
probability distribution of &, (defined in Theorem 0.3). This is also valid for %,
(see (0.1)) since %, is a special case of .&,. Nevertheless we begin this Section
by obtaining an exponential inequality for | %, || itself. This is because our proof
in this case is quite elementary and could even be used as a simple proof of the
exponential inequality of Dvoretzky, Kiefer and Wolfowitz (although we don’t
obtain the best constant).

LEMMA 1.1. For %,(t), t = 0 as defined in Theorem 0.1 and for all A = 0

| 2| =% N
P <(zz=1 B *) = e"p<7>[1 + 232mh e"p<§)]

—\2
1+ 2@)\]exp<—é—).

(1.1)

IA
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PrROOF. We use a symmetrization technique that has been used before by
various authors (see e.g. Lemma 2 [7]). Let Z be a random variable with values
in some complete separable linear metric space B, let ||| ||| be a measurable norm
or pseudo-norm on B and let Z’ be an independent copy of Z. Let E; (Ez') denote
expectation with respect to the measure induced by Z (Z’) and assume that ¢,
¥(0) = 0, is a non-decreasing convex function. Then by Jensen’s inequality and
the fact that E| Z || = | EZ || we get

EP(IZ = 2" ) = EzE»*(| Z = Z" |||
= E(|| Z - EZ' ||) = E#(|| Z - EZ||).

Now let {Y,} be a sequence of independent random variables with values in B
and let {Y}} be an independent copy of {Y,}. Set Z= Y7, Y,and Z’ = 3}, Y;.
By (1.2)

EP(||| Xi=1 (Yo — EY) |I|) = EP(|| Xk (Ye — YR |II)
(1.3) = EP(|I| Zi-1 (Y — YO UI)
S EC(|| Xhcren Ye |l + |l Zk=1 e Yi |l|)

where {¢;} is a Rademacher sequence independent of {Y,} and {Y}}.

To obtain (1.1) it is clearly enough to assume that Y7, ¢ = 1. We use (1.3)
with Y, = clix,>0, Y = cxlix,=y (Where {X{}} is an independent copy of {X,}) and
Y(x) = e’ and get

(1.4) E exp{B| % |} < E exp{B |l X skaI[X,,zt] I+ 81 Xkt ckaI[X’kzt] I

Let us be more explicit about the probability space in (1.4). We can assume
that {X,}, {X}} and {e:} are defined, respectively on the probability spaces (Qx,
Zx, Px), Qx, Zx, Px) and (Q.,, &, P) with corresponding expectation
operators Ex, Ex- and E,. The random variables in (1.4) can be defined on the
product probability space (Qx X Qx X Q., Fx X Fx X Z,, Px X Px: X P,). By
Fubini’s Theorem we can write the right side of (1.4) as

ExEx Eexp{B |l Xi-1 excrlix=all + Bl X1 excrlixi=all}
(1.5) < Ex[E.exp{28 | i-: erCelix, =1 I }]1/2EX’[EceXP{25 | $i-1 ercrlixiza | }]1/2
= ExE.exp{28 | Yi-1 ckaIszt] I,

where we use the Schwarz inquality twice and the fact that {X}} is an independent
copy of {X,}. Let us now fix w € Qx and consider

(1.6) E.exp{28 || Xi-1 excrlixyw=q Il }-

Let { X, (tw}k=1.....» be a non-increasing rearrangement of {X.(w)}s=1,..... Then,
clearly,

(1.2)

(1.7) | Shet excrlixyw=all = SUP1<jcn | Dot exthurCriry |-

Since {e;} and {X,} are independent, {e.(.)} is a Rademacher sequence, i.e., a
sequence of independent symmetric random variables taking on the values +1.
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Thus by Lévy’s inequality, for u = 0,
(1 8) Pelsuplsjsrz | 2£=1 Er(k,w) Crlk,w) | > u]
= 2Pt[| EZ=1 Ex(k,w) Crr(k,w) I > u] =4 exp(_u2/2)a

where, at the last step, we use the well-known sub-Gaussian inequality (see e.g.
Lemma 5.2, Chapter 2 [5]), and the fact that 37, ¢ = 1. It follows from (1.7)
and (1.8) that (1.6)

(x — 28)°

(1.9) <1 + exp(28? J; 88 exp<— T) dx = G(B).

By Chebyschev’s inequality
Pl Z, || > \) = e™™E exp{B || %I}
and by (1.4), (1.5), (1.6) and (1.9) this is
< e G(B).
Letting 8 = \/4 we get (1.1).

REMARK 1.2. Whenc,=1; k=1, .-, n and the {X,} are i.i.d., (1.2) gives the
exponential bound of Dvoretzky, Kiefer and Wolfowitz [3] and when the {X,}
are not identically distributed we get the extension due to Bretagnolle [1].
However, we do not get the best constant in the exponent, i.e., the upper bound
in [1] and [3] is C exp(—2A?) for some constant C. Nevertheless the proof of
Lemma 1.1 should still be of interest because it is completely trivial using nothing
more than the Jensen and Schwarz inequalities. Also (1.7) shows exactly why
these exponential bounds are not a function of the specific sequence {X,}. As far
as we know, for arbitrary {c;}, Lemma 1.1 is a new result.

In order to obtain a bound for the probability distribution of &, (defined in
Theorem 0.3) we use a relation which appears in the middle of the proof of
Lemma 3.4 [8]. For completeness we will include the relation here as Corollary
1.4. It follows immediately from the following lemma which is itself a simple
consequence of summation by parts.

LEMMA 1.3 Let {a:} and {b:} be two sequences of non-negative numbers with
b, = a;, and let {ou}i-, be a sequence of real numbers
(1) If a,/by is non-increasing, then
SUP1=jzn | They k@i | < SUP1<jzn | Thoy aubi].
(ii) If a./by, is non-decreasing, then
SUPi<jen | Thoy @r@r| < 2 SUP1<j<n | Ty crbr].

(iii) Let {6} be a sequence of independent symmetric real valued random
variables. Then for all A = 0,

P(| 3ho1 Orar| = N) < 2P(| $hoy 0kbi | = N).
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PROOF. Let T)= ¥,_, axbi, To = 0. Then

. o ap(Ty = Tw-y) N 1 Qe T
Bhor @ute = Bhoy = = B = = T
= glg j—1 % —_ .a_k+_1
bt T"(bk bm)'
In (i), (ax/br) — (@k+1/br+1) = 0. Hence
| Dhoy arts| < supi<<i| T, | [% + Yt <g’f - %)]
j k k+1

a
™ Supi=/=j | T/ | < supi=/=a| T, |.
1

In (ii), (ax/by) — (@r+1/br+1) < 0. Therefore

i a; i-1 [ G a
| Bhes cra] = SUP1=/5i | T | [;' + 3 (— - ;)]
J k

br+1
a; Qa; a;
= supi<,=j| T ||:_j+(_j_—>]52311ps <l T/|.
1=r<j| 1, b, b b 1=/ ’

For (iii) choose a permutation {w(k)}?-; on [1, .- -, n] such that a,u)/b.w is
non-increasing. Then, by (i)

| $het Ority @ity | = SUP12jzn | Thy Orcir b |
and consequently
P(| ¥iz1 Orar | = N) = P(| k=t Ori@riey | = N)
< P(sUPisj=n | They Orimbein | = N).
By Lévy’s inequality, this is
< 2P(| X1 Oxiybeiy | = N) < 2P(| Xkt Okbi| = N).

COROLLARY 1.4. Let {Y,}i-, be independent, non-negative random variables

defined on some probability space (?, Z, P), w € Q. Let w(k) = w(k, w), k = 1,

.- -, n be a random permutation on [1, - - -, n] so that { Y.}k is a non-increasing
rearrangement of {Y,}. Let {a;}i-, be real numbers. Then

(1.10) SUPi<jzn | Yaij) Thot Qi | < 2 SUP1<jn | Dy i Yoy |-

PrOOF. Clearly for & = j, Y, = Y., and Y,/ Y. is non-decreasing.
Therefore by Lemma 1.3 (ii)

Yo | Shot ey | = 21 Bhey @i Yo | < 2 SUP1<jen | Dhey @i Yot |-

The inequality in (1.10) follows immediately.

We now obtain an upper bound for the probability distribution of %,
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LEMMA 1.5. Let {X,}, {nk}, S., S and Y(t) be as in Theorem 0.3. Assume that
64672 Y0y En*(X:) < 1. Then for A\, 6 >0
8P[|S.| > (A\/4)]
1 — 64672 iy Eni®(Xe)

(1.11) P[sup,<j<n | Sl >X+6]=<

PROOF. Let Z,Z’ and ||| || be as in Lemma 1.1. Then
(1.12) PUZII>A+&PUIZl <8)<P(|Z=2" || >N.
Therefore, taking Z = { &}, and ||| Z || = supi<j=. || S|l in (1.12) we get
P(supi<j<n || S >\ +8)

(1.13) - P(SUD;<j<nSUP.o | Y(t) Ti_, el ix=0 = nelixi=0) | > N)
= 1 — P(supij<n || A > ) '

The term in the numerator on the right in (1.13) is clearly equal to
(1.14) P(supy<j<nsupPso | ¥(t) Thoy ex(nilix,=q — ﬂéI[x;zt]? | >\
< 2P(supi<j<nSUPiso | ¥(t) iy exnelix,=n | > M/2)
which by Lévy’s inequality
(1.15) < 4P(supeso | Y(8) Thet exnelix=a | > M2).

Note that in the above we take {n;, X} to be independent copies of {n:, X} just
as we did in the proof of Lemma 1.1.

Let {X,x}i-: be a non-increasing rearrangement of {X,}i-,. Then since ¢ is
non-decreasing

(1.16) sup;=o | Y(t) Dicy exnelixeen | < SUPi<jcn | W(Xn(i) Theo ExtirMaiiy |
=< 2 SUPi<jzn | Dhey Ext) Mt W(Xaiw) |
by (1.10). By (1.16), (1.15) is
< 4P(supyzjzn | They ent Mo ¥ (Xeaw) | > M4),
which by Lévy’s inequality
= 8P(| Tt ex e ¥ (Xaw) | > M4) = 8P(| Ticy exmet(X0) | > N/4).
We next consider the denominator in (1.11). By Chebyshev’s inequality
(117) P(supije | 1 > 8) < 6 E(supi=jen | 1),
By (1.3) with ©(x) = x2 we get
E(supisjen | F1I%) < 4E(supi<jznsupeso | ¥(t) Tioy enelixza |?)
< 8E.(supeo | ¥(t) X1 exnelix,=a1?)
where, at the last step, we use Lévy’s inequality. By (1.16) the last term in (1.18)
< 32E.(SUpi<j<n | Thet extny M ¥(Xaw) 1)

(1.18
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and finally, using Lévy’s inequality yet again, this is
< 64E.(| Yio1 exne(Xi) 7).
Taking expectation with respect to (5., X,) and using (1.17) we get
P(supi<j=n | A1 > 8) = 6467°E(| Tizr exmep(Xi) |%)

and this completes the proof of the lemma.

REMARK 1.6(a). If we take ¢(t) =1 and n. =c, 1 < k < n for ¢, as in Lemma
1.1 then Lemma 1.5 gives, in analogy with (1.1),

P((’i%%l)m > *) =< C exp(—al’)

for constants C and «, although « will be quite a bit smaller than %.

REMARK 1.6(b). Lemma 1.5 holds with sup;<, | % || replaced by
I () Tict [nelix= 1 — Emelix= a1l

and n replaced by o wherever else it occurs in the statement of Lemma 1.5. This
is because all the sums involved in Lemma 1.5 are Cauchy.

The next lemma is useful when Eniy*(X,) does not exist.

LEMMA 1.7. Following the notation of Lemma 1.5 let \, 6, 8 > 0 and let y be
such that

(1.19) 64677 Yi-1 Eni (X nwxpi=v < 1.
Furthermore, assume that

(1.20) SUP1<j=nSUPe-o¥ (1 | They Enilixzoliinpixpi>n | < B-
Then

Plsupi<j<n | A1 > X+ 6 + 28]

(121) _ 8P[| $s eumd (X imixpen | > N4]
T 1 — 6457 Yiet Enid (X npxp 1=y

+ P[supi<k<n | m:¥(Xi) | > 7]

Proor. Let
nk = Melimgxgi=es Mk = Melimgxpi>v-
By the triangle inequality
Plsupi<j=n || Z 1 >\ + 6 + 28]
(1.22) < P[supi=jz, | ¥(8) Yi_y (nilix,=n — Enklix,=0) | >\ + 6]

+ P[SuPlsjsn ” ‘P(t) 2j=1 (Tlllle[szt] - Ené'l[x,,zq) ” > 216]



WEIGHTED EMPIRICALS IN THE NON-IID CASE 343

We apply Lemma 1.5 to the first term on the right in (1.22) and see that it is

< 8P[| Xkt e X ijnpixpi=vi| > (A/4)]
T 164677 Tio Eniv X ik i=

Now since

SUP1=j=,SUP:>0¥(2) | Ej=1 Enilix=n| =8

by hypothesis, the second term in (1.22) is bounded by P[sup; | n# | > 0] and this
is the last term in (1.21).

REMARK 1.8. If sup, | n:¢(Xx) | < v then (1.21) is the same as (1.11). If not,
we must deal with the condition (1.20). In some sense this is a necessary condition
(see Section 2). In the special case that supy | n.| < 1 we can replace (1.20) by

(1.23) Supy >, ¥(t) Yh-1 P[Xk = t] < B.
To see this note that in this case (1.20)
(1.24) < max{supy=,¥(t) ior Elix=alipxpsvs SUPyo=¥(t) ZZ=1. P[X;, = t]}.
Let t, = sup{t:¢(t) < v}. If Y(t,) > v then
supy =, ¥(t) Xi=1 Elix,z0l x>
= v ka1 PIXk = &] = supyo=,¥(8) Xi-1 PlXi = t].

(1.25)

If Y(¢) < 7 then
Supy (=, ¥(t) Yho1 Elx=0liyxp>v
<% ZZ=1 P[Xh > to] < supwby\l/(t) ZZ=1 P[Xk > t].

Using (1.24), (1.25) and (1.26) we see that (1.23) implies (1.20) when supy | 7 |
=1

We now consider the case in which 5, = 1 for all k and give a version of
Lemma 1.7 involving infinite sums.

(1.26)

LEMMA 1.9. Following the notation of Lemma 1.5 let n, = 1 for all k and
assume that Yj-1 P(X, = t) <o forallt > 0. Let \, 5, 3> 0 and let v be such that

(1.27) 6467% Yim1 EY (X yxp=n < 1
and
(1.28) Supy>,¥(t) i1 P(X, = t) < B.

Furthermore, assume that for every ¢ > 0 there exists an n(e) such that for n, m =

n(e)
(1.29) SUpy (>, Y(t) i, P(X, = t) <e.
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Then
Plsupeo | ¥(t) Yim1 Uixezg — P(Xe = 8)) | > N + 6 + 20]

(1.30) ~ 8P i e (X yixpi=m | > (M/4)]
T 01— 64677 3 Y X v =)

+ Plsup;<k<=¥(Xi) = 7]

PrOOF. The lemma is a corollary of Lemma 1.7 with (1.20) replaced by
(1.23). For some ¢ > 0 let A = § = 8 = ¢/4 in Lemma 1.7. By (1.27) we can find
an n,(e) so that for n, m = n,(e)

1024

82

oy Ele(Xk)Iw(Xk)Sv] =e

It follows by Chebyshev’s inequality that for n, m = n,(¢)
P(| Zitn en¥(Xi)lpxp=vi | > (¢/16)) < (¢/4).
Of course by (1.29) we can find an n,(e) such that for n, m = ns(e)
SUpy(n>,¥(t) Tien P(Xk = t) < (¢/8).

Now note that there is nothing to prove unless P[sup;<;<-¥(X}) > v] <1 and in
this case we have

k-1 PU(X) > v) < oo
Therefore we can find an n;(¢) such that for n, m = ns(e)
Plsupresen¥(X) > 7] = Titn PW(X0) > 7) < e.

Using all these in Lemma 1.7 with (1.20) replaced by (1.23) we have that for n,
m = supi<i<ani(e),

(1.31)  P(supeo | ¢(t) itn Uixza — P(Xk = 8))| > €) =< 3¢/(1 = o).

Therefore, since by (1.31) || &, || is Cauchy in probability, we can use Lemma 1.7
with (1.20) replaced by (1.23) to get (1.30).

2. Necessary conditions for the law of the iterated logarithm. We
begin with a construction and lemma of Nagaev and Volodin [10] which greatly
simplifies the problem of obtaining iterated log laws. Given an increasing se-
quence {b,} fix ¢ > 1 and consider the intervals (0, c], (c, ¢?], (c, ¢®], - - -. From
these discard all intervals for which {b,} N (c*, ¢c**'] = ¢ and relabel the remaining
intervals (c*, ¢**!], r = 1, 2, - -- in such a way that s, < s,+1. (We will assume
that b; > c in order to avoid problems of notation.) Let n, = sup{n:b, €
(c*, ¢**']} and consider the subsequence {b,}. It follows from the definition of
{b,,} that for j <r
(2.1) Z—:’ < ¢,

Given such a sequence {b,} and ¢ > 1 we will refer to the corresponding
subsequence of the integers {n,} as a N-V subsequence.
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Our Lemma 2.1 was proved by Nagaev and Volodin on the real line. We
present it in the setting of linear measurable spaces; however, except for one
point at which we use the Ottavani-Skorohod inequality instead of Lévy’s
inequality our proof is identical to the proof of Nagaev and Volodin. (B, %,
Il - II) is a linear measurable space, where B denotes a real vector space, 4 a o-
algebra of subsets of B and | -| a semi-norm on B if (i) addition, scalar
multiplication and || - | are % measurable operations on B, (ii) there exists a
subset F of the % measurable linear functionals on B such that

x|l =supe-|f(x)|, xEB

(property (ii) is not used in this paper). Note that D[0, ©) with the supremum
norm is a linear measurable space. In this case % is the o-field generated by
evaluations.

LEMMA 2.1. (B, %, || - ||) is a linear measurable space. Let {Y,} be a sequence
of independent random variables with values in B, S, = Y-, Y, and {b,}, b; > 1,
an increasing sequence of positive numbers with lim,_..b, = «. Then, if

(2.2) lim sup,_.« " i” " <a

we have

(2.3) lim,_P(|| S, || > ab,) =0

and, for the N-V subsequence {n,} based on {b,} and ¢ > 1
2.4) %0 P(IS,, — Sa_, | > 2ab,,) < o.
Conversely, if (2.3) and (2.4) are satisfied then

(2.5) lim sup, . " f: ” = (40 + E 1>a a.s.
Furthermore,

(2.6) lim sup,_. I i" | =0 as.

if and only if (2.3) and (2.4) hold for all a > 0.

ProOOF. That (2.2) implies (2.3) and (2.4) is completely elementary. Fix
¢ > 1 and consider the corresponding N-V subsequence {n,}. Since b, is increasing

Il Sn, = Sh_, | < I S, |l + | Sn,_, II‘
bnr bnr bnr-l
Hence
2.7 lim sup, .. ISn, = Sl _ 9 Jim SUDe 1 -

b, bn

Since {(|| S., — S.,_, )/bs}i=: are independent random variables we see from (2.7)

r
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and the Borel-Cantelli Lemma that (2.4) is satisfied. Also, since

P(n Sl a) g P(Supman ISa1 a)

we see from (2.2) that (2.3) holds.
We now show that (2.3) and (2.4) imply (2.2). Let

S, = S,

T ==

By (2.4) there exists a random integer j, < ® a.s. such that || T} || < 2a for j = j,.
Therefore on a set of measure one

ISe I 11Sn_, |l . by 1Se I 20, . .,
b = b, + Y=o b, I Tl < _b,:_ + i €77
by (2.1). It follows that
. I Sn, |l 2a
(2.8) lim sup, .. _bn, =< -1

We now use a norm version of the Ottaviani-Skorohod lemma. Let

ISs — Sn, I
b )

U, = max,  <n<n,

r

We have

P( ” Sn, - Sn,_l " > 2abn,)
- maxn,_1<nsn,P( I Sn, =Sl > 2abn,) )

P(U, > 4a) < 1

Clearly for n,_; < n < n,
P(I| S, = Sull > 2abs) = P(I| S, | > abs,) + P(I S, |l > aby).
Therefore, by (2.3)
lim,_.max, _,<nzn P(I| Sn, — S, || > 2ab,) = 0
so we can find an r, such that for r = r,
P(U, > 4a) < 2P(|| S,, — S,,_, || > 2ab,).
It now follows from (2.4) that

¥, P(U, > 4a) < o.
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Therefore, for n,_, < n < n, and r sufficiently large

[Sul _ b, IS0 = Sl b

oy [1Sn |l
b b b,

b, by

r r~1

(2.9)

< cU,+"—S"LlJ < (40 + ci 1)a a.s.,

-1

where we use (2.8) and the fact that {b,} is an N-V subsequence.

We also see from (2.9) that if (2.3) and (2.4) hold for all a > 0 then we get
(2.6), whereas (2.6) implies that (2.3) and (2.4) hold for all @ > 0 since this is
contained in the fact that (2.2) implies (2.3) and (2.4).

In the next theorem we obtain a necessary condition for the law of the iterated
logarithm in the case 5, = 1 for all k = 1, i.e. in the setting of Theorem 0.2. This
shows that in some sense (0.4) is a necessary condition for (0.5) (and similarly,
(0.7) is a necessary condition for (0.8) in Theorem 0.3). Note that

sup:so | Y(t) Xi=1 (Uix,=n — P(X = 1)) |

(see (0.5)) is identically zero if each of the X, is equal to a constant with
probability 1. This degenerate case is ruled out by (2.10) below.

THEOREM 2.2. Using the notation of Theorem 0.2 assume that
(2.10) lim sup,«sup-oP[X,=t] <1 -6
for some 6 > 0 and that
(2.11) lim sup,.b;" | ¥(t) -1 Uix=g — PXx = t)) || = X\ as.
Then, it follows that

X, 4\
(2.12) lim sup,_« V(Xo) < — as.
b, 1)
and for any p > 67}
(2.13) lim SUP,—SUPy(e)>arss, 07 W(E) Th-1 P(X) = t) < A

Proor. Let
Tn(t) = Y(t) Yk=1 Uixzg — P(Xi = 1))
and #,(t) = Z,(t) — F.-.1(t). Then, since
bt | 71l = 021 Tl + bt | Foa
it follows from (2.11) that
(2.14) lim sup,_.b.'|| Z. || < 2\ as.
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Note that
| Z. 1l = supi=x, | #Z:(t) | V supesx, | Za(t) |
= Y(X,)[(1 — P(X, = t)) V P(X, > t)] = (6¢(X,.)/2).

Therefore, (2.12) follows from (2.14) and (2.15). We now obtain (2.13). By (2.12)
for any p > 677, for a.a. w there exists ny = ng(w) such that

¢(X )

(2.15)

<4 p forall n = ny(w).

Now choose n; = n,(w) = no(w) such that

mMaXg<p, ‘p(b Ll = 4)p.
Then, for n = n,
mas,.. ap(xk) ][ o — ¢(xk> — \b(;ck)}
{ M s MaAXp<k<n ¢(£fk)} = 4A

It follows that for n = n,,
SUPy>arb, On W) | Thot Uixog — P(Xe = 1)) |
= SUPy(>anib, On Y(t) Tie1 P(Xi = t),
since for n = n, and k < n, Y(X,) < 4\pb, and so
SUPy(t)y>anpb, k=1 Iix,=0) = 0.
Using (2.11) and (2.16) we get (2.13).

3. Proofs of Theorems 0.1, 0.2, and 0.3. Theorems 0.1 and 0.2 follow
from Theorem 0.3. Nevertheless we will begin with a proof of Theorem 0.1 based
on Lemma 1.1. Then we will obtain Theorem 0.3 as a consequence of Lemma 1.7
and remark on why it implies the other two theorems.

Proor oF THEOREM 0.1. If Y7, ¢; < o, then it follows immediately
from Lemma 1.5 that lim sup,_ .| %.| < o a.s. Therefore assume that
lim, . Y71 ¢i = ». Let ¢ = e, and for {a,} as defined in Theorem 0.1, construct
the associated N-V subsequence {a, }.

By Lemma 2.1, (0.2) will hold if there exists a A > 0 such that

(301) 2;.;1 P( Il %n, - %n,_l ” > 2>\an,) <o
and
(3.2) lim,_.P(|| %.| > A\a,) = 0.
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By Lemma 1.1 with %, replaced by %, — %,,_, we have
P( ” %n, - %n,_l " > 2>\an)

(3.3) [ A2 1
< [1 + V2raN(Ly(3pz, ci))‘/z]exp]— 0] Ly(¥i, c%)J .
Recall that
n. = sup{n:((Ti-1 c)La(Tio1 c2))V? € (e, e}

This implies that
2s, < L(Xizy k) + La(Thzy k) < 2L(Tkioy ck)

and consequently, since s, = r, that
Lr < Ls, < Ly(X7, c3).

Therefore since x exp(—x2/2) decreases for x = 1, the right side of (3.3) is, for
A>1,

=1+ 4«/%A](Lr)1/2exp{ — %L’}

which is summable in r for A > v2. Thus we get (3.1) for A > V2.
Using Lemma 1.1 again we see that

2
P(| %l > Nax) < [1 + Nﬂx}exp{ - % Ly(3fn c%)}
so (3.2) holds for all A > 0. This completes the proof of Theorem 0.1.

PRrROOF OF THEOREM 0.3. Given {b,} let ¢ = 2 and form the N-V subsequence
{b,,}. By Lemma 2.1, in order to obtain (0.8) we need only show that

(3.4) = P(| S, — S|l > 2(112) + 28)b,) < o0
and
(3.5) lim,_. P(|| 4 || > (112X + 28)b,,) = 0.
For ease of notation set I, = {n:n,_, < n < n,}. Also, note that by symmetry
Zkel, CkﬂklP(Xk)
= Zkel, sknk‘//(Xk)I[lnk¢(Xk)152xbn'] + Zhel, 0k’7k¢(Xk)I[lnk¢(Xk)|>2>\bn']

and
e, ek (X nuxisans,) = Zket, exmeW (X[ 1nuxg1>2x,)
have the same distribution. This implies that

P(| Zrer, exme¥ (X nwxpi=2r,)1 | > 27bn,)

(3.6)
< 2P(| Zrer, exne¥(Xe) | > 2)b,).
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The main step in this proof is to use Lemma 1.7 applied to &, — &,  with A
replaced by 8\b,, , 4 by 108\b,, , 8 by Bb, and with v = 2)b,, . In order to satisfy
(1.20) in this case we must have

(3.7 SUP1<j<n,—n,_, SUPo¥(t) | ZZ’;&,ﬂﬂ E"IkI[szt]I[|nk¢(Xk)l>2>\b,,r] | < Bb,,.

This is satisfied for r sufficiently large by (0.7) and the triangle inequality. Thus,
for r sufficiently large

P(|| &4, = 7, Il > (116X + 28)b,,)

32P(| Yrer, exne(Xi) | > 20D,
T 1 — 64(108Xb,,) " Ter, Enid (X inpixpi=2rs, )

+ P(supeer, | ned(Xi) | > 2\by,).

We now show that (3.8) is summable in r. First we use a Lemma of Hoffmann-
Jgrgensen to estimate the sum in the denominator of the first term to the right
of the inequality sign, (Theorem 3.1, [4]). We get

Yrer, Eﬂ%\l/2(xk)1[|nk¢(X,,)|s2>\bn’]
(3.9) = E| Zret, eene¥(Xu) L[ inwixpi<on, ) |?

< 18[t§ + E suprer, | exned(X)[jjngcx1=20,1 7]

(3.8)

where
(3.10)  to = inf{t > 0:P(| Tres, exne¥(X)[npixpi=2rs,1 | > t) < Y2},

By (3.6) and Lévy’s inequality
(3.11)  P(| Zker, exmeb(Xi)[impixpi<ars, 1| > t) < 4P(| Tizy eenap(Xi) | > t).

Using (3.11) in (3.10) along with (0.6) and (2.3) we see that there exists an integer
ro such that for r = ry, ty < \b,,,. Therefore, (3.9)
< 18[(Ab,,)* + (2)b,,)?]
and the denominator in the first term on the right of the inequality sign in (3.8)
=1 — 64(108Xb,,)"*18 - 5(Ab,)* > Y.
Therefore, for r = r,

P(| £, = S, | > (116X + 28)bs,)

< 64P(| Zrer, exneW(Xi) | > 2Nby,) + Trer, P> nep(Xi) | > 27b,).

The first term on the right in (3.12) is summable by (0.6) and Lemma 2.1 applied
to S,. The second term on the right in (3.12) is summable by (0.6), the Borel-
Cantelli Lemma and Lévy’s inequality.

By exactly the same estimate we used in (3.8) for &, — &,  and the

(3.12)
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preceding argument we have, for all n sufficiently large
P(|| S|l > (112X + 28)b,)
=< 128P(| Yk=1 exme¥(Xi) | > 2Ab,) + P(supe=n | ne¥(X) | > 2\b,)

and this goes to zero as n — o by (0.6) and Lemma 2.1.
Thus we have established (3.4) and (3.5). This completes the proof of the
theorem.

PROOF OF THEOREM 0.2. Use Theorem 0.3 with , = 1 for all k along with
(1.23). This gives Theorem 0.2 except that we get 8/2 instead of 8 on the right
side of (0.4). To get B note that because the terms in (3.7) are positive we don’t
need to use the triangle inequality. (I.e. (3.7) follows from (0.4) in this case.)

PROOF OF THEOREM 0.1 AS A COROLLARY OF THEOREM 0.3. Let 5, = ¢, k
=1, --. and let Y(s) = 1 for all s > 0. If we take A > % and b, = a, (for a, as in
Theorem 0.1) we see that (0.7) is identically zero. Thus to obtain Theorem 0.1
we need only show that

| ZZ=1 €xCr |

(S5, 2Ly (31, cd))'?

for some A > 0. This, of course, is a very simple form of the law of the iterated
logarithm for real valued random variables. Since we do not know of any reference
for the fact that (3.13) holds without any conditions on the {c,} we will give a
proof of (3.13). By the subgaussian inequality (Lemma 5.2, Chapter 2 [5]), for

integers p and q,
| X4, exc | —u2>
pl-==2 s <2e — .
<<zz=p e P2

This inequality enables us to use Lemma 2.1 to obtain (3.13) exactly as in the
first proof of Theorem 0.1 given at the beginning of this section. The only
difference is that we consider Y}_; exc;, instead of %,.

(3.13) lim sup,_.« <\ as.

REMARK 3.1. It follows from Theorem 2.2 that some condition like (0.4) is
necessary to (0.5) to hold. Therefore we can not entirely dispense with (0.4).
(The same argument applies to (0.7).) It would be tidy if (0.3) implied (0.4), but
it is easy to see that it does not. Suppose (0.3) holds and that lim, .y(t) = «
(otherwise (0.4) is satisfied). Let X, be defined on Q, and let A, C €, be such
that Prob(A,) = p, where Yi_, pr < ». Define {X,} on @ = ®;-; Q.. Define

JXk on Qk - Ah

X’: = ltk on Ak

where ¢, is some number for which
k\b
Y(t) = —.

DPr
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Then, clearly, {X%} also satisfies (0.3) however for any integer N, if n > N
SUPy (=N, 07 W) They P[X, = t] = Y(t,)P[X, = t,] = n).

Therefore, (0.3) can not imply any condition like (0.4).

We end this section by considering some well known sufficient conditions for
the law of the iterated logarithm for real valued random variables. Using Theo-
rems 0.2 and 0.3 we immediately get results for the corresponding weighted
empirical processes since, as we shall show, in these cases it is completely
elementary that (0.4) or respectively (0.7) is satisfied.

In the examples below we let Y, = ,¢(X}), S, = Yrey Yi, 42 = Y7y EY? and
b?, = 2.;,21L2;?,.

EXAMPLE 1. In Theorem 1, [11], Teicher extends the classical Kolmogorov
LIL. One of the hypotheses of this theorem is: for all ¢ > 0,

(3.14) 12 pY f / x’F; (dx) - 0 as n — o,
n |x|>a,~(Lpf)" 2
We now show that (0.4) follows from (3.14). We have
SUDPy(5)>226, 07 ' W(8) Thet P(Xi = t) < supysan,bn ' ¥(t) Tiei PW(X:) = ¢(t))

b ' Y(t) i1 EYRI v, =0
V()

= SUDy()>2xb,

< Yh=1 EY}QzI[|Yk|22)\b,,]

- 2Ab2 ’
which goes to zero by (3.14), since

b, =4,
and

b, = esj/VLy?, j<n.
ExAMPLE 2. In Theorem 7.5.1 [2], Chung also gives a LIL. One hypothesis

is: forsome 0 <e<land A <

S ElY|S _ A
(Sp EYD2 = (Lo

Proceeding in a manner similar to Example 1, we have

SUPyo>2r0, b7 W(t) Tio1 P(| Yi| = ¥(2))

(3.15)

T E| V4| _ B E| Vi)

< Supy>2n, b Y(L) vi(t) = 4AN%b3 ’

which goes to zero as n goes to infinity by (3.15).
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4. Applications of Lemma 1.7. We need the following well known result
in what follows, which we include for the sake of completeness.

LEMMA 4.0. Let y(t), t = 0 be a non-negative, non-decreasing, left continuous
function. Let a = inf{t:y(t) > 0}. Then there exists a sequence of functions {¥,,(t)}
which are continuous with ¥,,(t) = 0, t € [0, a] and strictly increasing for t > a
such that Y,(t) increases in m and lim,,_.y,(t) = Y(t) for all t > 0.

PROOF. We define ¢ '(u) = inf{s = 0:y(s) > u}. Note that for t >0 and u =
0, ¥ '(u) < t if and only if u < ¥(¢). This shows that for ¢t > 0, Mu = 0:¢ ' (u) <
t} = ¢(t), where A is Lebesgue measure. Let # = 0 be any non-negative random
variable with respect to ([0, »), @) which has a distribution function which is
mutually absolutely continuous with respect to Lebesgue measure on [0, ). We
consider (¥ ', n) as defined on the product space ([0, ®) X [0, »), A X @) and for
each integer m > 1 define

Ym(t) =N X QW+ (n/m) <t}, t=0.

One can check that {{,,} satisfies the conditions stated in the lemma.

Our main result, Theorem 0.3, followed immediately from Lemma 1.7. There
are a number of other interesting results which follow, more or less immediately,
from this lemma. We first consider a one-sided version of Daniel’s Theorem in
the independent (but not necessarily identically distributed) case. This has been
studied by van Zuijlen [13], [14], [15] and independently in [8].

THEOREM 4.1. Let {X,} be independent non-negative, real-valued r.v.’s. Then

Yi1 I [Xg=t]

> ¢ ) = 1030.
it P(X, = 1) >

(4.1) SUpP.>o cP(sup»o

ProoF. Let y(t) = (i) P(X,x = t))™', and note that ¢ is non-decreasing and
left continuous. We now show that for this function ¢ we have

(4.2) Yk=1 SPW(X)) = s) = 1.

To see this let {,,(t)} be a sequence of continuous functions, strictly increasing
in ¢, such that for each ¢, ¥,,(t) increases in m, ¥,(0) = 0, and lim,,_~¥.(t) =
¥(t), t > 0. Such functions exist by Lemma 4.0. By the definition of y¥/(t) we have

SUP>o¥m(t) Yi-1 P(Xr = t) <1
from which it follows that
(4.3) SUpP,>08 Yi-1 P(Wnm(Xy) = 5) < 1.

The statement in (4.2) now follows by monotonicity.
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Now by (4.2) we have
Y
(4.4) Tho1t BV (X yxp=y) < 2 J; Yh=1 SP(Y(Xy) = 5) ds < 2,

and furthermore

P(| k= 8k¢(Xk)Iw(x,,)s«y]| = (v/4)
(4.5)

< 16y~ Tio1 BV (X)IW(X) < v) < (32/).
Next we note that (in the notation of Theorem 0.3)

Yr=1 [Xy=t]

(4.6) S0 =57, = 0

-1

We now apply Lemma 1.7 with y = A = (¢/2) = 3,6 = (¢/2), =1 and 5, = 1.
First assume ¢ = 1024. Then (1.19) and (1.20) easily hold by (4.2) and the
definition of y. Hence, by (1.21), (4.2), (4.5) and (4.6)

ZZ=1 I[Xth]
—_— >
i (S"p‘>" S Pz 8) ¢
(4.60) < P(| %41 >c—1) =P(| %l > A+ 6 + 26)
__®GA 1 _1030
1 — (64/62) 2 A c
For ¢ < 1024
Yi=1 Iix,= 1030
. - - <> =l=—.
(4.6b) P(supt>0 S P(X, = 1) cl=s1= .

Combining (4.6a) and (4.6b) we get (4.1).

REMARK 4.2. Our approach to Theorem 4.1 is essentially that of Corollary
3.5 [8]. In [15] van Zuijlen obtains (4.1) and with a better constant. Our purpose
in presenting (4.1) here is to show that the inequality in Lemma 1.7 is sharp
enough to give these results (except for the constant). In the ii.d. case the
constant is 1 and it seems reasonable to expect that the constant is 1 in the non-
i.i.d. case as well. In Section 5 we will give another approach to this generalization
of Daniel’s theorem and obtain a bound that is a little better than those of [14]
and [15] and discuss further our conjecture about the constant being equal to
one.

In the next Lemma we obtain a bound for the weighted empirical process for
random variables with tail distribution given by the Pareto distribution.
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LEMMA 4.2. Let 0(p) = 0 be a random variable satisfying (for some 0 < p <
o)

(4.7) Plo=N=1AN7P,

and let {01} be i.i.d. copies of 6. Let {a,} be non-negative real numbers such that
Y, af < . Then

(4.8) (Sup»o)\p/"P[Sup»ot" | X (I[a,,akzz] — Plapb. = t]) | > )\])l/p

' < (257cp ) P(SEey aR)P
where p/2 < q < p and c,, = 3”/“(p/(2q — p)).

PROOF. We use Lemma 1.9 with y(t) = t% g, =1,y = A = 6 and X = ax0:.

Without loss of generality we may assume that the {a;} are non-increasing, and
since (4.8) is homogeneous in {a,} we can assume Y-, a% = 1. Note that

k=1 @
sups1t? Yi1 Plapby = t) < supe: _2_%)1_(1_1‘3 =1

Hence (1.28) holds with 3 =1 and A = vy > 1 and clearly (1.29) also holds.
Furthermore

(4.9) P(supxy(aifs) > \) < NP4,

Now consider

)\l/qal:l
2 — 2 2g—p—1
S E@0)* Lo = p i @ f w1 dy
1

< ( b >)\2—(p/q)‘
29 —p

Therefore, for A > (128p/(2q — p))*?, the left side of (1.27) is less than %. Hence
by Lemma 1.9, (4.9), (4.10) and Chebyshev’s inequality we get

P(Supt>ot" | 27:=1 (I[a,,a,,zz] — P(ax0, = t)) I > 2\ + 2)

(4.10)

p

= (16 - 16 2 + 1))\"’/".

Also since 3\ = 2\ + 2, letting u = 3\ we get for u > 3(128p/(2q — p))¥?

257
(4.11)  P(supeot?| Yi=1 (I[akllkzt] — Plabp = t)) | > u) < <3p/q : 2 _pp>u_p/q-
Of course (4.11) is also valid for u < 3(128p/(2q — p))¥” since a probability is less
than or equal to 1. Thus we get (4.8).

If we take a; = --- = a, = n”"; @y4y = --- = 0 in (4.8) we get probability
estimates for i.i.d. sequences which may be useful in constructing confidence
intervals.
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COROLLARY 4.3. Let 0(p) = 6 and {6} be as in Lemma 4.2. Then for p/2 < q
<pandaln=1,

1 1/p
(4'12) (SUP»())\"/"P[SUP»M" W, | Z'I:=1 (I[llkzt] - P(Hk = t)) | > A])

< (257c, )"

or, equivalently

1 1/p
<Squ>o>\"/"P(SUD¢>ot" ; | ZZ=1 (I[akzz] - P[ak = t]) I > >‘>)
(4.13)

(257¢p )P
- n(l/q—l/p) ’

where c, , is given in Lemma 4.2. In particular, if we let U be a uniformly distributed
random variable on [0, 1] and let {U}} be i.i.d. copies of U, then for 2 < q < 1 and
alln=1,

1\ 1 257¢,
(4.14) supx>o)\1/"P[Sup05ssl<;> ; |22=1 (I[UkSS] — ) I > A] = an—qu ’

where c, , is given in Lemma 4.2.

PROOF. Inequalities (4.12) and (4.13) follow immediately from (4.8). To
obtain (4.14) note that when p = 1, (1) = § = 1/U. Using this in (4.13) and
setting t = 1/s we get (4.14).

REMARK 4.4. If g = 1, (4.14) is a special case of Daniel’s Theorem (with a
larger constant). However for 4 < q < 1 the rate of decay of the probability in
(4.14) is faster than \™!, which is the rate of decay in Daniel’s Theorem. Thus
(4.14) can be viewed as a generalization of Daniel’s Theorem in this case and, by
a change of variables, in general. It is not exactly a new result, it is given in
Mason’s Theorem 1 [9], although Mason’s result is a little more restrictive than
(4.14) in that the supremum is not taken over all 0 < s < 1. To obtain Mason’s
result from (4.14) let g = 1 — v.and A = an™". Then for 0 < » < % we get by (4.14)

Plsupo<,=1(1/5)'~'n’{(1/n) | ¥i-1 Tiw,<q — 8) |} > a] = C,a™/"7,

All these observations demonstrate that Lemma 1.7 is interesting even in the
i.i.d. case. It is also interesting to see what Theorem 0.2 gives for i.i.d. uniformly
distributed random variables. In Theorem 0.2 let X, = 1/U, for {U,} as given in
Corollary 4.3 and let b, = (nLyn)"/%. Then (0.4) holds for A > V2 if Ey*(1/U;) <
oo or, equivalently, if

(4.15) f \[/2<l> ds < o,
0 s

If (4.15) holds then, since ¥(1/s) is non-increasing as s increases from 0,
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lim,_os¢%(1/s) = 0. Thus for s < s(e) sufficiently small
(4.16) sp(1/s) < e[Y(1/9)]7".
Letting t = %, condition (0.4) of Theorem 0.2 is satisfied if
lim SUp,—«SUPy(1/5)>25,07 'Y(1/s)ns = 0
which, clearly, is implied by (4.16). Thus we have that if (4.5) holds then
Y(1/s) | Xi-1 T=q — 9) |
(nL2n)1/ 2

This is not as good as James’ [6] result applied to the bounded LIL, but it is
pretty close. (Actually we have a slightly weaker hypothesis on the smoothness
of y.) Of course, it is well known that the bounded LIL for the weighted empirical
process can hold even if the independent real valued random variables do not
satisfy the LIL.

< 1120V2 as.

(4.17)  lim sup,_,«SUpPo<s=)

5. More on Daniel’s Theorem. If {X,} are i.i.d., non-negative, real-valued
random variables, then Daniel’s theorem gives

Yi-1 Iix,=g 1
(5.1 P(su = > \| ==
) D0 Sn” P(X, = ¢) A
(where we define 0/0 = 0). This is easy to prove since
I ')
M. = PX,=1t)

is a martingale. We would like to obtain (5.1) even when the {X,} are not
identically distributed. Considering Theorem 4.1 and the references following it,
the problem comes down to getting the constant 1 on the right in (4.1). Van
Zuijlen [14] has already shown that for all ¢ > 0, for ¢ sufficiently large the
constant in (4.1) can be taken to be 1 + .

Here we obtain an upper bound for the left side of (5.1) when {X,} are not
necessarily identically distributed that gives somewhat sharper bounds than
those obtained by van Zuijlen. Before doing this, however, let us remark that for
X, = ab, for {0,} as in Lemma 4.2 we do get (5.1). This result is given in Remark
3.9 (iii) of [8].

The main result of this section is the following inequality which is a general-
ization of Theorem 3.3 [8].

THEOREM 5.1. Let {X,} and ¢(t), t = 0 be as in Theorem 0.2. Then

k
(56.2)  P(supo¥(t) Yimi Iix,=0= N) < Xima 7%1—, [; supsoyY(t) Yic1 P(Xk = t)] .

PROOF. There is nothing to prove unless Yi—; P(X, = t) < o for all ¢t > 0.
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Therefore we shall assume that this is the case. Let X} = X§ = ... denote a
non-increasing rearrangement of {X,}. We have
P(supeo¥(t) iz Iix=0 = N)
(5.3) = P(sup:ky(X¥) = M) < ¥kt P(W(XE) = Nk)
= Y%, P(at least k of the events {{(X;) = (M\/k)}Z; occur).
By Bonferoni’s inequality this is

[Tho PU(XD) = MR
k! ’

(5.4) < Y

Also, clearly
(5.5) (ME) Xizi PU(X) = ME) < supesot TZ P(Y(X) = t).
Therefore by (5.3), (5.4) and (5.5)
P(supeo¥(t) ¥ie1 Iix,=g = N) ‘
= ¥i1 (/RND(R/ N [supisot Tz PW(X)) = )]

Let a = inf{t:y(t) > 0} and let {,,(t)} be the sequence of functions described in
Lemma 4.0. Clearly (5.6) holds for each y,, and

supeot(Xi1 P(Wm(Xi) = 1)) = supy, >0¥m(t) Tict PWn(Xe) = Yn(t))
= SUPa¥m(t) Tkt PWn(Xe) = ¥n(t))
= SUP>a¥m(t) Lie1 P(X; = t)
< supso¥(t) Y1 P(X, = t).

(5.6)

Thus we have
P(supso¥m(t) Yiz1 Iix=0 = N)

= T (/RN RN [supsoy(t) Tim P(X; = t)]*

and (5.2) follows by monotonicity of y,, in m and the continuity (when finite) of
the right hand side of (5.2).

(5.7

COROLLARY 5.2. Assume that Y-, P(X,=t) <o forallt > 0. Then

s Iixm . 1 (R
(5.8) P(Supt>0 2;::1 P(Xk = t) =Al<1 /\ 2[;:1 k! )\ .

Proor. This follows from Theorem 5.1 by taking y(t) = (3, P(X, = t))7L

REMARK 5.3. The statement in (5.8) is as close as we can come to (5.1). The
sum on the right in (5.8) converges for A > e, but of course, the probability must
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be less than or equal to 1. It is easy to see that (5.8) gives

. 22;1 I[X,,zt] -
oo =\ =1,
llm)\ )\P(Supt>0 27::1 P(Xk > t)

a result which was obtained by van Zuijlen in [14].
Van Zuijlen has given two bounds for the left side of (5.8). In [14] he shows
that it can be taken to be

1 T’ 1
(5.9) X+Tm, A>2

and in [15] that it can be taken to be

2w?
(5.10) m , A>1.

Of course these bounds are meaningless unless they are less than 1 and they are
both greater than 1 for A < 2e. We will show that the bound in (5.8) is smaller
than the bounds in (5.9) and (5.10) for A > 2e. We have for A > 2e

1 o 1(RY 1 [eVo (e 1 e\’
X+2"‘=2k!(i>s>\+<i) 2’°=2<X> =3ty
which is less than both (5.9) and (5.10) if A > 2e.
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