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PROBABILISTIC SOLUTION OF THE DIRICHLET PROBLEM FOR
BIHARMONIC FUNCTIONS IN DISCRETE SPACE!

BY R. J. VANDERBEI

University of Illinois

Considering difference equations in discrete space instead of differential
equations in Euclidean space, we investigate a probabilistic formula for the
solution of the Dirichlet problem for biharmonic functions. This formula
involves the expectation of a weighted sum of the pay-offs at the successive
times at which the Markov chain is in the complement of the domain. To
make the infinite sum converge, we use Borel’s summability method. This is
interpreted probabilistically by imbedding the Markov chain into a continuous
time, discrete space Markov process.

1. Introduction. The probabilistic formula for the solution of the Dirichlet
problem for harmonic functions is well known and has been extensively investi-
gated (see e.g. Dynkin, 1965). A probabilistic formula for the function f which is
biharmonic in a given domain and which is specified by the values of f and Af
on the boundary was discovered by Has’'minski (1960) and independently by
Helms (1967) (see also Athreya and Kurtz, 1973). A more difficult problem is to
specify a biharmonic function f in terms of the values of f and its normal
derivative on the boundary; that is, Dirichlet boundary conditions. Considering
difference operators in discrete spaces instead of differential operators in Euclid-
ean spaces, we investigate a probabilistic formula for the solution of the Dirichlet
problem for biharmonic functions.

For the sake of comparison we begin by discussing the Dirichlet problem for
harmonic functions. Let X,, n =10, 1, - - -, be a Markov chain on a discrete state
space E and let 7 be the first time that X, leaves a set I' in E. Denote by A the
generator of X,,; i.e., Af(x) = ¥,er p(x, ¥)f(y)m(y) — f(x) where p(x, y) is the
transition function for X, and m is a positive measure on E (precise definitions
are given in Section 3).

THEOREM 1. (Dynkin’s formula). Suppose that P,r < o for all x € T. (P,
denotes expectation given that X, = x.) Then for every bounded real valued function
f defined on E,

(1.1) fx) = PA{f(X,) — Zib Af(X,)}, x €E.
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PrROOF. Formally the proof goes as follows:
f(x) = P{f(X.) = Tr-0 lo<i(f(Xps1) — f(Xn))}  (telescoping series)
= P.f(X,) = S0 Pilu<(f(Xp1) = f(X,))  (Fubini’s theorem)
= P.f(X.) = im0 Piluc, AF(X,) (Markov property)
= P{f(X,) - Z?Lo 1oar Af(X0)} (Fubini’s theorem)
= PAfX) = i Af (X))
The proof is made rigorous by justifying the tse of Fubini’s theorem. For this it

is sufficient to assume that f is bounded and P,r <. [

We see from the first step of the proof that formula (1.1) is really a summation
by parts formula.

Suppose now that P,7 < « for all x € I" and that f is a solution of the Dirichlet
problem for harmonic functions:

(1.2) Af(x) =0, x€T,
(1.3) f(x) = P(x), x€ T,

where 9I' = {y & T':p(x, y) > 0 for some x € T} (that is, all points in the
complement of T' which are within one step of I') and ¥ is a given bounded
function defined on dI'. By formula (1.1), wé see that

(1.4) f(x) =P#(X,), x€T U

This proves uniqueness for the Dirichlet problem. Existence is proved by verifying
that the function defined by the right hand side of (1.4) satisfies (1.2) and (1.3).
We then have

THEOREM 2. Suppose that P,r < o fb’r: every x € T and that @ is a bounded
function on dT. Then there exists one and only one function f which satisfies (1.2),
(1.3) and this function is given by (1.4).

Now consider the Dirichlet problem for biharmoriic functions:
(1.5) A%f(x)=0, x€T,
(1.6) f(x) =¥(x), x€ T,

where 92T = 4TI’ U (T U dTI'); i.e., all points in the complement of I' which are
within two steps of I'. In the discrete case, specifying values on the thickened
boundary 92T plays the role of specifying values and the normal derivative on
the boundary. From the above discussion, we see that we need a formula like

(1.7) fx) = P, T {ULf(X,) — V,A’f(X,)}, x €EE,
where
(1.8) U,=0, X,¢&9dT,
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(1.9) V.=0, X,&T

(if we replace A% by A and put U, = 1,-,, V, = l,,, formula (1.7) becomes
formula (1.1)). Then, as before, if f is a solution of the Dirichlet problem (1.5),
(1.6), we see from (1.7) that

(1.10) f(x) = Px Xnoo UnP(X5).

This would prove uniqueness. Existence would be proved by verifying that the
right hand side defines a solution.

Proceeding formally, we find in Section 2 explicit expressions for U, and V,
in terms of the successive times 7; in which X, is in the complement of I':

(1.11) ri=inf{n>7_1: X, €T}, r=-L

After some simplification it turns out that formulas (1.7) and (1.10) can be
written as

(112)  f(x) = P. $imo (-1)Mj{(r; = =) f(X,) + T, (0 — 1) Af(Xn)),

(1.13) f(x) = PP(X,,) — Tio (-1)M;AP(X.)},
where
(1.14) M; = ML, (ri = 120 — 1),

and A is the generator of the time changed process X = X, J = 0. (The process
X is the trace of X, on I'°.) This means that Ah(x) = P.h(X,) — h(x).

It turns out that the right hand sides of formulas (1.12) and (1.13) are generally
not absolutely convergent. In fact, in Section 2, we give an example involving 1-
dimensional simple random walk which shows that formula (1.13) is absolutely
convergent for every choice of the function ¢ if and only if the domain T consists
of one point! Roughly the same holds true for simple random walk in higher
dimensions.

In the case of a symmetric Markov chain (i.e., the operator A is “in divergence
form”), these difficulties can be circumvented by using Borel’s summability
method (see e.g. Hardy (1949) page 80). This has a simple probabilistic interpre-
tation. Indeed, let n,, t = 0, be a Poisson process which is independent of the
Markov chain X,. We show in Theorems 3 and 4 that, subject to a few mild
assumptions (see conditions 3.A, B), formulas (1.12) and (1.13) can be salvaged
by replacing the sum on all j = 0 by a sum from j = 0 to j = », and then passing
to the limit as t tends to infinity (on the outside of the expectation).

Now that the Dirichlet problem for the square of the discrete Laplacian can
be completely studied using simple random walk we can hope that, by refining
the space and making a passage to the limit, the Dirichlet problem for the
Laplacian squared (in Euclidean space) may be studied using Brownian motion.

By using exponential holding times, we can stretch X; into a continuous time
process Y, such that X; is the imbedded Markov chain. That is, X; = Y, where
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the o; are the successive jump times of Y,. Formula (1.13) can now be written as
f(®) = lim o PdP(X,) = Byt (~1)MAP(X, ).

This formula may turn out to be useful for finding a formula for the Euclidean
case.

The problem of finding probabilistic solutions of the Dirichlet problem for
biharmonic functions actually arose out of the author’s attempts to investigate
the potential theory of certain two-parameter Markov random fields. In Section
6, we explain in what sense these fields are Markov and we explain the analogous
boundary value problems. In this general setting, however, almost nothing has
been proved.

2. Formal solution. We start by investigating formula (1.7). Assume for
now that all sums and integrals converge absolutely so that we may apply Fubini’s
theorem. Also, assume that V, is measurable with respect to the o-algebra &,
generated by X,,, m < n, (we will verify these assumptions later). As in the proof
of Theorem 1, we interchange sum and integral, apply the Markov property, and
interchange back to get

x Zn=0 VnAzf(Xn) = Px Z:lc=0 Vn{ f(Xn+2) - 2f(Xn+l) + f(Xn)}

(2.1)

=P, Yimo (Vo = 2V, + Vo) f(X,) — flx),
where
2.2) Voo=0 and Vo, =1.
From (2.1) we see that for (1.7) to formally hold it is sufficient that
(2.3) Vo=2V,.y+ Vo =U,, n=0.

If we impose the requirement that
U,=0 if X,eT,
V.=0, if X,&T

(which is a priori weaker than (1.8), (1.9)) then it is easy to see that the system
(2.2), (2.3), (2.4) has one and only one solution and that this solution satisfies
our measurability requirement: V, € Z,.

(2.4)

LEMMA 1. The solution of (2.2), (2.3), (2.4) is
(2.5) U, = 350 (-1)'1, o Mjs(n = 74), n =0,
(2.6) Vi = =350 (“1)'1, ne Mian = 720), n 20,
where 1; and M; are defined by (1.11) and (1.14), respectively.

From (1.11) we see that r; = j and so the infinite sums in (2.5) and (2.6)
actually terminate after j = n.

PROOF. It is obvious that the functions U, and V, defined by (2.5) and (2.6)
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satisfy (2.4). To check that (2.3) is satisfied let us put W, = V,, — V,,_,. From the
definitions of U, and V, we see that

(2.7) W, = U, — 350 (1)1, _<n<r, M)y,
and so
(2.8) W, - W, =U, = U,y + ¥io (—1)j(11j=n—1 - 17,-_1=n—1)Mj—1-
Now note that
Mj_\(7; = 7j21) = M; + M,
(this is the basic identity satisfied by M; which makes everything work) and so
we can rewrite (2.5) as
29) Un = S50 (~1)/(Lymn = 1) M,
Substituting (2.9) into (2.8) with n — 1 in place of n we get (2.3). [

LEMMA 2. The functions U, defined by (2.5) satisfy (1.8).

PROOF. Suppose that X, € T, X, & T U 9°T and n = 7,. Then by the
definition of °T, j is greater than 1 and 7,; — 7, = 1. Hence M, = 0 and so
U,=0. 0O

It is easy to see that formulas (1.12) and (1.13) are just rearrangements of
formulas (1.7) and (1.10), respectively, with U, and V, defined by (2.5) and (2.6).
We now give an example which shows that the expectation on the right hand
side of formula (1.12) does not exist (see also the remark at the end of Section
3). Let X, be simple random walk on the integers Z (i.e., Af(x) = %f(x + 1)
— f(x) + %f(x — 1)), T be the interval {1, 2, - --, a — 1} and
x(x — a)
1, x&1{0,1, ---, a}.

Note that 9T = {0, a} and 8°T = {—1, 0, a, a +1}. It is easy to check that Af(x)
=1/(a+ 1) for x € T U JT" and so

A*(x) =0, x€T.

-

’ xe{o, 1’ "',a}’

Put
o= inf{jZTj - Tji1 = 1}.

For j<o,f(X;) =0 and, for j = ¢, f(X;) = L. On the other hand, for j > ¢, M;_,
= 0. Hence the right hand side of formula (1.12) becomes

RHS(1.12) = P.(-1)’M,..

However, (—1)°M,_, is not integrable with respect to the measure P,. Indeed, let
((-1)°M,_))* and ((-1)°M,_,)” denote the positive and negative parts of
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(-1)°M,_,. Then
(=1)’M,_)* = Yjzoeven 1112 (ri = 71 — 1)1,

= Ejzo,even {H:;é (Ti - Ti-1 — 1)17i_7i—1>l}17j_7j-1=1’

Applying the strong Markov property and using the fact that 0 and a play
symmetric roles, we can write

(2.10) P.((=1)’M,-1)" = P.1o Yjz2,even ri71Py{r, = 1}
where
r= P()(T] - 1).

Of course Py{r; = 1} = %. Since the function g(x) = P, is the unique solution
of

Agx) =-1, x €T,
gx) =0, «x€r,
it is easy to see that
Py = x(a — x).
Conditioning on the first step, we see that
r=%P,1o = Ye(a — 1).

Hence the geometric series in (2.10) converges if and only if a = 2 which means
that T' contains only one point. In the same way,

P.((-1)°’M,_,)™ = YaP.7o Yjs1,0aa '

which also diverges except when I' consists of one point.
Note, however, that if we write Y%, r/ = 1/(1 — r) we see that the right hand
side of (1.12) is formally equal to

RHS(1.12) = — % 7o S (1)t = — L Py 2 = 2E

-a) B
2 = f(x).

14+r a+1

3. Symmetric Markov chains and the @ operator. Let m be a strictly
positive measure on the discrete state space E; that is, m(x) >0 for all x € E. A
function p(x, y), x, y € E, is a symmetric transition function if

plx,y) =0, ¥, plx, yym(y)=1, p(x,y)=p(y,x).

Corresponding to every symmetric transition function p(x, y), there is a symmetric
Markov chain X = (X,, Zn, 0., P.) defined on a probability space (2, & ). The
connection between X and p(x, y) is expressed by the formula

P X, = y} = p(x, y)m(y).
Let us remind the reader here that 6, is the shift operator; that is, 8, maps Q into
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Q in such a way that
3.1) Xn(0nw) = Xmin(w).

The one step shift operator 6, will be denoted simply by 6. The action of the shift
operator on a random variable Z(w) is defined by the formula

0.Z2(w) = Z(0,w).
The fact that X is Markov means that for every stopping time 7,
(3.2) P.Y0,Z = P,YPx Z

for all %, -measurable P,-integrable random variables Y and all P.-integrable
random variables Z for which P.Z is a bounded function of x.

The one step transition operator P acts on bounded functions according ta the
formula

Pf(x) = P.f(Xy).
The generator A is defined by the formula
Af(x) = (P — Df(x),
where I is the identity operator. If f(x) = P.Z, the Markov property implies that
(3.3) Af(x) = PA0Z — Z},
(3.4) A%f(x) = P{0:Z — 20, Z + Z}.

For any set I in E, the boundary T was defined in Section 1 as the set of all
points y not in T for which p(x, y) > 0 for some x in I'. For the rest of this paper
we consider a fixed set T' which satisfies the following two properties:

3A. T UJT is finite.
3B. P, <w foreveryx €T.

It follows from the Markov property and condition 3B that each 7, is finite a.s.
P, for every x.

The shift operator acts on the stopping times 7; according to the following
simple formulas

[ri—1, Xo€T,

(3.5) b7 = ]‘r,-+1 -1, X T,
(3.6) 0,7 = Tj+k — Tk

We define an operator @ which acts on functions defined on 4T by the formula
(3.7 Qf(x) = P(r, — Df(X.), x €T,

(the right hand side makes sense since 4T is finite and, by 3A, P.(r; — 1)
= P,Px,7o < suprPy70).

The operator Q is closely related to the random variables M;. However, the
70 — 7-1 — 1 = 7, factor in the definition of M; plays a somewhat different role



318 R. J. VANDERBEI

than the other factors so it seems reasonable to introduce the random variables

(3.8) Ni=TlL (ri—7a=1), j=0.
We have then that
(3'9) M = 701Vj9 J = 0’

P.Nf(X,) = Q@f(x), j=0, x€T"

PROPOSITION. @ is a positive semi-definite self-adjoint operator on real
L*T, m).

Proor. Put

_ |fw, zeor,
&) =10" zeor

Conditioning on the possible values of 7,, we can write
Qf(x) = ¥roy nP{ 1k 16X} fe(Xns1) = Tn=1 nPPY'Pf(x)

where Py is the one step transition operator for the process obtained from X, by
killing it at the first exit time from I':

(3.10) Prf(x) = ¥y 1e(@)p(x, Y)1(9)f(y)m(y).
Condition 3B is sufficient to guarantee that the operator
(3.11) Gl‘ = 2§=0 Pt

can be defined on all of L*(E, m). It is easy to check that
G} = Y- nPY,
and so
Qf = PG}Pf..

Since P and G are self-adjoint on L*(E, m), it follows that Q is self-adjoint on
L*(@dT, m) and

(f, QN)or = (fo, PG}Pf.)r = (GvPfe, GrPf)r = 0. O

As a consequence of the proposition, we can diagonalize the operator Q:
(3.12) Q = Yier M,

where A is the (necessarily finite) spectrum of @ and II, is the projection operator
onto the eigenspace corresponding to the eigenvalue \. Since @ is nonnegative,
all the eigenvalues A € A are nonnegative. Having the representation (3.12) is
important because we can evaluate powers of the operator by

(3.13) Q' = 3, NII,.
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REMARK. In the case where X, is simple random walk on Z¢, the largest
eigenvalue A, is roughly proportional to the diameter of the domain T

4. Dynkin’s formula for A>. We are now prepared to formulate and prove
the “salvaged” version of formula (1.12) in the case where X, is a symmetric
Markov chain and conditions 3A and 3B are satisifed.

THEOREM 3. Let u,, t = 0, be a Poisson process which is independent of the
Markov chain X,. Then for every bounded function f and every x in E,

@wn  F@ = limeoPs Bto (L Mi(n = 1o)f(X)
+ T (m = 7 )AF(X).

m=1_,_1

PrOOF. Put
(4.2)  fa(x) = P. Yo (=1)'Mji{(r, — 7-)f(X,) + Eff;i,_l (m — 1) A% (X))

Formula (3.9) and conditions 3A and 3B show that the right hand side makes
sense.

Applying the Markov property and rearranging terms, we get
PxMj—l 271_1 (m - Tj—l)Azf(Xm)

m=t,_;

= PxMj—l Z;‘;Zlfj_l (m - Tj—l){f(Xm+2) - 2f(Xm+l) + f(Xm)}
= PxMj—l{(Tj - Tj-1 T 1)f(er+1) = (7 — Tj—l)f(er) + f(er_1+1)}-

Substituting this into (4.2) and collapsing the resultant telescoping sum, we see
that

(4.3) fa(x) = P(=1)"1oN,f(X, 1) + f(x).
By (3.9),
ProN,f(X,,+1) = P,10Q"Pf(X,)

and so by (3.13), we have
(4.4) PiroN,f(Xr 1) = Zaes N'ParoILPA(X,).
Substituting (4.4) into (4.3) we see that

Yo e (t"/n) falx) = f(x) + Xy e M VPr o ILPf(X,,).
Since the eigenvalues are nonnegative, each term in the sum over \ vanishes as

t goes to infinity. 0

5. The Dirichlet problem. In the introduction we discussed the Dirichlet
problem for biharmonic functions, i.e. functions which satisfy A%*f = 0 in TI.
However, it is not much more difficult to study solutions of the equation A%*f =y
where ¢ is some function defined on I'. We say that a function f is a solution of



320 R. J. VANDERBEI

the (non-homogeneous) Dirichlet problem for A% if
(5.1) A¥=y, in T,
(5.2) f=¢, on I
THEOREM 4. There is one and only one function f which solves the Dirichlet
problem (5.1), (5.2). It is given by the formula
f(x) = lim P, 37y (=1 Mjaa{(7; — 72)P(X,)

(5.3)
+ 2;1;;_1 (m — 7i2)¥(xm)}.

-

PrOOF. Uniqueness follows immediately from Theorem 3. Put

(5.4) g(x) = P, 31, (=1)'Mj(r; — 7,2)9(X,),
(56.5)  h(x) =P, 3, (C1)Min B (m— (X

We will show that, as ¢ tends to infinity, the functions g and h, converge
pointwise and that the limit functions, call then g and h, satisfy

(5.6) A%=0 in T, A*h=¢ in T,
5.7 g=¢ on I, h=0 on I

First we consider g;. Substituting (3.9) and (3.13) into (5.4), we sum the resulting
geometric sum and then the exponential sum to get

1 — g~t1+N
14N

+ Y e VP ILP(X,),
where P is the operator which acts on functions defined on 9T by the formula
(5.8) Pf(x) = P.f(X;), x€ar.

Since each eigenvalue \ is nonnegative, the limit as ¢ tends to infinity exists for
each x and

8(x) = PP(X,) + X Pl — P)P(X.,)

-

(5.9) 8(x) = PP(X,) + X\

1 i X P.r LI — P)P(X,).
Since, for X, € T¢, 7o = 0, it is clear from (5.9) that g satisfies (5.7). To show
that g satisfies (5.6), put
G.(x) =P.Z
where
Z =YY" (-1)’M;_y(z; — 7i-1)P(X5).
By (3.5), we see that, for X, € T'and j = 0, M, = (7, — 1)N,. Hence
(5.10) 02 - Z = —P(X,) = Y1 (=1)'Niy(r; — 71-)P(X,), Xo € T\
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On the other hand, for X, &€ I" and j = 0, éM; = N;;,. Consequently,
(6.11) 0Z — Z = —P(X,) = T2 (-1)'Njaa(rj — 7-)9(X.), Xo € T.
Combining (5.10) and (5.11) we have
0Z — Z = —9(X,) — T} (-1)’Njaa(7; — 71-)P(X,)
+ 1xer(—1)"No(7pn — 7)P(X,, ).

PutZ’' =0Z — Z. Then 6,Z — 20,Z + Z =0Z' — Z'.For X, €T and j = 0, it
follows from (3.5) that N; = N; and so

0Z' — Z' = 1x,er(=1)"Nu(ps1 — 1)P(X, ).
By (3.3), we see that
A’Gr(x) = (=1)"P1ie(X)No(7pn — 72)P(X,,,)-
It follows from (3.9) and the Markov property that
A’G,(x) = (-1)"P1«(X))Q"(Q + P)P(X)).
Using the spectral representation (3.13), we get
(5.12)  A%(x) = 3, et /n)A%G,(x) = T e TVP1L(X)IINQ + P)P(X)).

It follows from condition 3A that A? is a finite difference operator. Hence A%g(x)
= lim,_,.A2g,(x) which, according to (5.12), vanishes.
We now turn our attention to the function h. Using the fact that

P, Y2l my(X,,) = PG¥Y(x), x € I,
it follows from the Markov property that
1 —_ e—t(1+)\)

ho(x) = P, ¥70=6 (m + 1)Y(Xm) — I EERT

PxT()H)\PG%¢(XTO).
Hence the limit as t tends to infinity exists and we have
1
h(x) = P, Z:T(l);é (m + DY(Xn) = 2 m PxTOHAPG%‘E//(XTO)-

To show that h satisfies (5.6), put
H,(x) = P.Z
where
Z = Yo (1M Ti5 (m = 1) Y(Xn).
Again, using (3.5) and (3.8), we have
Z'=0Z - Z =355 y(Xn) — Tia (“1)'Niwt Ti20 | (m = 7,2)9(X)

+ (=1D)"1( XN, Tt (m = 7)Y Xn).

m=r,
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Hence, for X, €T,
0.Z — 20,Z +Z =0Z" — Z'
= Y(Xo) + 1(X)(—=1)"N, Tt (m — 7)Y(Xn).
By (3.3), we see that
A’H,(x) = Y(x) + (=1)"Plr(X))N, Tipt ! (m — 7)Y(Xo).

Arguing as we did for the function g, we see that the contribution from the second
term above goes to zero and so we have

A%h(x) = lim,w Yo € (t*/n!)AH,(x) = ().

That h = 0 on I follows from the fact that, for X, € I, 7o = 0 and M; = 0 for
j>0.0

6. Random fields and boundary value problems. In this section we
discuss two-parameter random fields and the boundary value problems associated
with them. As mentioned in the introduction, very few results have been obtained
in this setting and it seems like an interesting area for future investigation.

We say that a random field X,,, n = (n,, n,) € N?, with state space E is Markov
if there exist linear operators A; and A, such that

(6.1) P{f(Xn+e) | Zn} = Aif(Xn) as. Py

where e; = (1, 0), e; = (0, 1) and #, is the ¢-algebra generated by X,,, m < n
(which means m, < n; and m, < n,). The analog of formula (1.1) is

(62) f(x) = Px Zn {Unf(xn) - VnAlAZf(Xn)}
where
(6.3) U,=0 when X,€T and V,=0 when X,€&T.

Proceeding as usual, we interchange sum and expectation, apply the Markov
property (6.1), and interchange back. We then see that formula (6.2) formally
holds if

(64) Vn - Vn—el - Vn—ez + Vn—el—ez = Un, n e N27
where we have put

(6.5) Vio-1=Voin, =0, n,n =0,

V—l,—l = 1.

The system (6.3), (6.4), (6.5) has one and only one solution and this solution
satisfies V, € “#,.
Suppose that f satisfies

(6.6) AAyf(x) =0, x€T,
6.7) flx) =¥(x), x&T.
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Then (6.2) shows that
(6.8) f(x) = P, ¥ UyP(X,).

This would prove uniqueness for the problem (6.6), (6.7) and existence would be
established by verifying that (6.8) defines a solution. Of course, as before, we
need to make sense of formulas (6.2) and (6.8) (absolute convergence is probably
too much to ask). This most likely cannot be done in such a general setting so
we now consider some special cases.

1. Let E be the product of two state spaces E = E;, X E, and let X, =
(X1, X7,) be a pair of independent Markov chains observed at different times.
Then for domains T of the form

I' = {x:a(x1) + Yalxp) < 0}

it is possible to give verifiable sufficient conditions for formula (6.2) to hold. This
is the discrete time version of the problem studied in Vanderbei (1983).

2. Let X, = X, +n, where X, is a Markov chain. Then A, and A, coincide with
the generator A of X, and formula (6.2) reduces to formula (1.7) with

Um = Znelm Un, Vm = Znel,,, Vn,
where
I, ={n € N%n, + ny, = mj.

Replacing the condition that X,, € T' (and X, & T') in (6.3) by the condition
that n belongs to a fixed set B C N? (and the condition that n & B) we get a non-
random difference equation which can be solved by computer. Having tried many
sets B it seems that sets which are unions of the [,, are bad in the sense that
| U,| and | V,, | grow fast. However, no precise statement to this effect has been
proved. Since {n:X, € I'} is a union of the /,, (over a random set of indices m),
we conjecture that for the next random field formula (6.2) may hold under weaker
assumptions.

3. Let X, = Xo + X2, & + X2, nj, where the & and the 7; are independent
identically distributed random vectors with values in Z¢. Then A, and A, coincide
with the generator A of the Markov chain X, = X, + Y%, &.
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