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Let A(1), A(2), - - - be a sequence of independent identically distributed
(i.i.d.) random real n X n matrices and let x(¢t) = A(t)x(t —1),t=1,2, ---.
Define X, = supf{limya| x(t) |/ 0 # x(0) € R"} where | - || denotes, e.g. the
Euclidean norm, providing the limit exists almost surely (a.s.) and is nonran-
dom, and define ), analogously with sup replaced by inf. If all n? entries of
each A(t) are i.i.d. standard symmetric stable random variables of exponent
a, then A, = X, = A,(a). In the standard normal case (a = 2), \,(2) =
(2 exp[¥(n/2)]) 2, where y is the digamma function, and n~/*\,(2) — 1; for
0<a<2 (nlogn) "\, (a) converges to {2 I'() sin(ar/2)/[ar]}"2

Criteria for stability (X, < 1) and instability (A, > 1) are investigated for
more general distributions of A (t). We obtain, for example, the general botind,
e =< {r[E(A(1)TA(1))]}'/%, where AT is the transpose of A and r denotes the
spectral radius. In the case of independent entries of mean zero and common
variance s2/n, this leads to lim sup, X, < s. If the entries of A(t) are i.i.d. and
distributed as W/n'/? where W is independent of n, has mean zero, variance
s? and satisfies E(exp[iuW]) = O (| u|™) as | u| 1 « for some & > 0, then lim
inf,\, = s.

These conditions for the asymptotic stability or instability of a product of
random matrices are of the form originally proposed by May for differential
equations governed by a single random matrix. We give counterexamples to
show that May’s criteria for the system of linear ordinary differential equa-
tions that he considered are not valid in the generality originally proposed,
nor are they valid for the related system of difference equations considered
by Hastings. The validity of May’s criteria for these systems under more
restrictive hypotheses remains an open question.

1. Introduction. Ecologists have long been concerned with the question of
whether ecological communities or ecosystems that are more complex, in some
sense, are also more stable, in some sense. In the past decade, much theoretical
and empirical investigation has been stimulated by May’s (1972) proposal of a
specific quantitative relationship between complexity and stability within the
framework of a mathematically explicit ecological model. May’s model is de-
scribed in Section 4. The results presented here arose from the desire to generalize
May’s model from a randomly constructed dynamical system with coefficients
that are fixed in time to a randomly constructed dynamical system with coeffi-
cients that vary randomly in time.
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For each positive integer n, let A(t),t =1, 2, -- -, be an infinite sequence of
random real n X n matrices with elements A(¢);;,i,j=1, -+, n, and let x(0) be
a nonzero vector in R". Define
(1.1) x(t) =A@) --- A(x0); t=1,2, .-

and letting | x | denote (£, | x;|?) /7 for some fixed p € (0, «), define
(1.2) log M(x(0)) = lim,t™" log [l x(¢) |,
(1.3) A =inf{A(x(0)): 0 # x(0) € R"}, X\ = sup{A(x(0)): 0 # x(0) € R"}.

We assume in (1.2) that for each x(0), the limit exists almost surely (a.s.) and is
nonrandom. The inf and sup in (1.3) are taken over thése nonrandom values.
For a fixed n, we shall say that the system {A (t)} %, is strongly stable if log X\ <0
and is strongly unstable if log A > 0. As n 1 », we shall say that the sequence of
systems is asymptotically strongly stable (resp. unstable) if there exists a positive
integer N such that strong stability (resp. instability) is valid for each n > N.

If the limit in (1.2) exists a.s., it is independent of p for all 0 < p < o because
max, | x| < | x| < n'Pmax;| x| and lim,;n"/®? = 1.

In many situations, it can be shown that the limit of (1.2) exists (a.s.) and it
is nonrandom (see Furstenberg and Kesten, 1960, Furstenberg, 1963). We will be
concerned entirely with such situations in this paper and particularly with those
where, for each n, the A(t)’s are independent and identically distributed. The
first purpose of this paper is to point out a number of examples of that type
where A = X and an explicit expression for A = A\ = X can be obtained. In certain
cases, A can be calculated in closed form, e.g., when the entries of each A(t) are
i.i.d. normal with mean zero. To our knowledge, these are the first nontrivial
(although simple) cases in which log A has been computed explicitly for general
n. In all the examples, conditions can be determined which imply asymptotic
strong stability (resp. instability).

After having obtained our results concerning these examples, we discovered
that they had been partially anticipated by Girko (1976) who considered essen-
tially the same set of examples, but with a different motivation. He gave neither
the explicit expressions for A\ (see (2.7) and (2.16) below) nor their asymptotic
behavior (see (2.10)-(2.11) and (2.19)-(2.21) below).

The second purpose of this paper is to extend the conditions for asymptotic
strong stability and instability to more general products of i.i.d. random matrices
where \(x(0)) may not be explicitly expressible. These conditions are of the form
proposed by May (1972) for a linear system of n ordinary differential equations
governed by a single randomly chosen matrix of coefficients fixed in time.

The third purpose of this paper is to show by a number of counterexamples
that the criteria proposed by May, in the generality with which he stated them,
may fail for the system he considered. The related but slightly different “theo-
rems” of Hastings (1982a, 1982b) are similarly false. One of the systems consid-
ered by Hastings is the degenerate special case of (1.1) in which A(t) = A, a fixed
t-independent random n X n matrix. In this case, X is replaced by the (random)
spectral radius r(A) (maximum modulus of the eigenvalues) of A. Rather than
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considering asymptotic strong stability or instability as defined above, one is
interested in criteria which imply that lim sup r(A) < 1 or lim inf r(A) >1
(either in probability or a.s.). The May criteria may yet turn out to be correct
under hypotheses which are not excluded by our counterexamples.

2. Some explicit examples. We begin with a general proposition which
leads to all our examples. We define for v = 0,

log > 1 0, v=1
2.1)  log.(v) = v, v= log-(v) ={—logv, O0<v<1
0, 0 = 1) < 1, +CX3, v = O‘

Throughout this section A(¢), ¢t = 1, 2, - .. will denote a sequence of i.i.d. n X n
real matrices.

PROPOSITION 2.1.  Suppose that V. = | A(1)x ||/|| x || has a distribution which
does not depend on x in R"\{0}. Then the limit in (1.2) exists, is nonrandom, is
independent of x(0), and is given by

(2.2) log X = Eflog(| A(M)x I/ xI]

providing log.(V.) or log_(V.) or both have finite expectation. If E (log?(V,)) < o,
then for any x(0) # 0, t7*(log || x(t) || — t log \) converges in distribution as
t 1  to a normal random variable of mean zero and variance equal to the variance
of log V..

Proor. Either V., > 0 w.p. 1 or V, > 0 w.p. < 1. In the second case the
proposition is true with log A\ = —. Henceforth we assume the first case. It
follows from the lack of dependence of V. on x that | A(t)x(t — 1) ||/| x(t — 1) |
is independent of {x(t'): t" < t} and hence of {[x(t) |/l x(t’ — 1)|: ¢’ < ¢t}.
Expressing

(2.3) t7logllx(t) | — t7og |l x(0) | = ¢ Ty logl I x () I/ x(w — 1) |11,

we see that the summands on the right side of (2.3) are i.i.d. The desired result
now follows from the standard law of large numbers and central limit theorem.
Note that (2.2) also follows immediately from Corollary 3.2 below.

In order to apply Proposition 2.1 when A (1) is normally distributed, we note
the following.

LEMMA 2.2. Suppose Y is a mean zero normal vector in R" with covariance
matrix C. Let || - || denote the Euclidean 4 norm. Then the distribution of | Y ||
depends only on the eigenvalues of C (and their multiplicities). Moreover log(| Y ||)
has finite mean and variance unless C = 0, and

Eflog(|| Y] = %E[log(¥ i1 ¢:Z?)]
Var[log(|| Y|)] = “%Var[log(X -, ¢;.Z?)],

where the c/s are the eigenvalues of C and the Z;s are ii.d. standard normal
random variables.

(2.4)
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PROOF. By an orthogonal transformation leaving | - || invariant, Y can be
transformed to a mean zero normal vector with a diagonal covariance matrix
whose diagonal entries are the ¢’s. Assume C # 0. To see that log(| Y|) has
finite absolute expectation, we may bound log.(]| Y|) above by “log.(c, (Z} +
.-+ + Z2)) where ¢, = max{c: i=1, ---, n}. We may bound log_ (|| Y|) above
by % log_(c,Z%) where Z, = Z; with j such that ¢, = ¢;. The finiteness of the
moments of these quantities follows from the next proposition.

LEMMA 2.3. Suppose W has a chi squared distribution with n > 0 degrees of
freedom (W =23+ ... + Z2). Then log W has finite mean and variance with
E(log W) = log 2 + ¢(n/2) = log 2 + I'"(n/2)/T'(n/2),
Var(log W) = ¢’ (n/2) = [I"(n/2)/T(n/2)] — [T’(n/2)/T(n/2)F%,
where T'(r) is the gamma function and (r) = I''(r)/T'(r) is the digamma function.

(2.5)

PrRoOOF. Using the standard formula for the density of W, we have
E(W® = [2"2T'(n/2)]! f wbw™? e/ dw
0

= [['(n/2)]7'2°T'(n/2 + b) = exp[(log 2)b + ¢(n/2 + b) — ¢(n/2)],

where ¢(b) = log I'(b). Since E(W?®) = E (exp[b log W]) is the moment generating
function for log W, we know from the finiteness of E(W?) in a neighborhood of
b = 0 that all moments of log W exist and in particular that

E(log W) = (d/db)E(W") |s=0 = (d/db) log E(W®) |s=0
= log 2 + ¢'(n/2) = log 2 + Y¥(n/2),
Var(log W) = (d*/db?) log E(W°) [s=o = ¢"(n/2) = ¢'(n/2)
as desired.
THEOREM 2.4. Suppose {A(1);;:i,j=1, ---, n} are jointly normal mean zero

random variables. Define the n X n matrix C*" by

(C*)y = [Cov(A ()i, A(1);)) + Cov(A(1)is A(1)je)]/2.
Suppose that the matrices
(2.6) C(x) = Xk =1 2mx,C*, xE€R", i (m)*=1,

are isospectral, i.e. have the same eigenvalues and multiplicities, ¢,, -+, ¢,
independent of x. (C(x) is the covariance matrix of A(1)x.) Then Proposition 2.1
applies with || - || taken as the 4 norm, and log \ and Var(log V,) are given by
(2.4).

PrROOF. This is an immediate consequence of Proposition 2.1 and Lemma
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2.2 and the fact that
Cov((A(1)x)i, (A(D)x);) = X}, =1 xex Cov(A (1), A(1);)
= C(x),~,~.

We remark that a mean zero normal A(1) that does not directly satisfy the
hypotheses of Theorem 2.4 can sometimes be transformed to one that does by
applying a nonsingular transformation T to R" which transforms A(1) to
TA (1)T'. Equivalently one can replace the norm | x | by the norm || Tx ||. This
extension should be kept in mind when assessing the generality of Theorem 2.4.
A simple situation in which the C(x)’s are isospectral occurs when the columns
of A(1) are independent (so that C*'= 0 for k # /) and identically distributed.
A somewhat more complicated situation can be constructed by replacing such an
A(1) by TA(1)T ' with T orthogonal. The next theorem describes the simplest
of all situations.

THEOREM 2.5. Suppose {A(1);:1,j =1, ---, n} are i.i.d. N(0, s®). Then the
limit in (1.2) exists, is nonrandom, is independent of x(0), and is given by
2.7 log A = Y[log(s?) + log 2 + ¥(n/2)].

Moreover, for any x(0) # 0, t7*/2 log(A\~*|| x(t) |) converges in distribution to
N(0, ¢ with

(2.8) o2 =Yy’ (n/2).
Thus {A (t)} is strongly stable (resp. unstable) if
(2.9) s? < (resp. >)[e ¥ "/?]/2.

A sequence of such n X n systems with s*> = s2 is asymptotically strongly stable if
(2.10) lim supn'?s, <1
and asymptotically strongly unstable if

(2.11) lim inf,;.n'/%s, > 1.

PROOF. This is an immediate consequence of Theorem 2.4, Lemma 2.3 and
the asymptotic expansion (see Abramowitz and Stegun, 1964, page 259)

(2.12) ¥(n/2) = log(n/2) — 1/n + O(1/n%).

REMARK. The exact finite n criterion (2.9) can be combined with (2.12) to
give finer asymptotic criteria than (2.10)-(2.11). For example, if ns2 =1 + (g/n)
+ 0(1/n), then g < 1 (resp. g > 1) implies asymptotic strong stability (resp.
instability).

The proof of Theorem 2.5 (especially the analysis leading to Proposition 2.1)
yields not only log A, which describes the asymptotic behavior of || x(¢) || for large
t, but also the explicit distribution of | x(¢)| for finite t. In particular, if
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r>-n/2,
E([|x@) I/1x(0) 1) = {27°T([n + r]/2)/T(n/2)}".

For the model of Theorem 2.5, we define the critical variance s?2
as Veexp[—y(n/2)], since {A ()} is strongly stable for s* < sZ and strongly unstable
for s > s2. Here are some illustrative values.

n s? ns?
1 3.5621 3.562
0.8905 1.781

10 0.1109 1.109
100 0.0101 1.010

The criteria (2.10)—(2.11) are of the form given, for a different random system,
by May (1972). In the next section, we extend these criteria to a much larger
class of distributions for which no explicit expression for A is obtainable for finite
n. Before that, however, we give a further example where an expression for A can
be obtained which leads to quite different criteria for asymptotic stability than
(2.10)-(2.11). In this example, the normal distribution of Theorem 2.5 is replaced
by a symmetric stable distribution of exponent « in (0, 2] (see e.g. Feller, 1971).
The normal distribution corresponds to a = 2.

We say that W is a standard symmetric stable random variable of exponent o

if
(2.13) E(exp(irW)) = exp[— | r|“/«a].

For the rest of this section || x || denotes (37, | x;| ).

LEMMA 2.6. Suppose W,, Wy, W,, ... are ii.d. standard symmetric stable
random variables of exponent a and U = (W, --- , W,). Then Y-, y; W, has the
same distribution as || y | Wy, and log(|| U||) has finite mean and variance.

PROOF. The first statement is a standard fact, proved thus:

E(explir $j-1 y;W;D) = II}-, E(expliry;W;]) = IIi_, exp[—= | ry;|*/e]
= exp[— llyll“|r|*/a] = exp[— (Ir| |¥])*/a]
= E(exp[ir | y | Wo]).

To prove the second statement, we write
(2.14) log(U) = a'{log([1/n] E}-1 | W;|*) + log n}.

As in the proof of Lemma 2.3, it suffices to show that the moment generating
function for log(¥ = | W;|%/n),

(2.15) E((n7' Thy | W9,

is finite in an interval about b = 0. For b < 0, we may use the convexity of
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fs(u) = u® to bound fo(n™' Tjty | Wi|) by n7' Ty fo(| Wi|*). For 0 < b = 1,
(7 T | Wi < n7 27 fo(| Wil since |x + x/|° < max(1, 2°7)f| x| +
| x”|®}. Together these imply that it suffices to show that E(| W;|*®) < « for b
in (—e, 1) for some ¢ > 0. It will be shown in Lemma 3.9 that for 0 < ¢ < 1,
E(|W,|™) <wif

f [t E(e™™) | dt < oo.

This is the case (using (2.13)) for any ¢ < 1 and thus E(| W;|*®) < o for
b € (—1/a, 0]. On the other hand (see Feller, 1971, and formula (2.26) below) it
is a standard fact about W, that if « # 2 and g > 0, E(| W,|#) < = if and only if
g < a. Thus E(| W;|*®) < o for b € [0, 1) which completes the proof.

THEOREM 2.7. Suppose {A(1);;:1,j =1, ---, n} are i.id. with A(1);;/s being
standard symmetric stable with exponent a € (0, 2], while s > 0. Then the limit in
(1.2) exists, is nonrandom, is independent of x(0), and is given by

(2.16) log A = a [log(s®) + E(log(| Wi|“+ -+ + | W,|9)].

Moreover, for any x(0) # 0, t™2 log(A\~|| x(¢) |) converges in distribution to
N(0, ¢ with

o? = a”? Var(log(| Wi |* + --- + | W,|9).
Thus {A(t)} is strongly stable (resp. unstable) if

(2.17) s < (resp. >)e (@
where
(2.18) Qn(a) = a*Eflog(| Wi|“+ -+ + | W, |9)].

A sequence of such n X n systems with s®> = s2 and a # 2 is asymptotically strongly
stable if

(2.19) lim sup,i«(n log n)“s, < J(a)

where

I AT l Ve
(2.20) J(a) = a1r/]2F(a)Sin -5 l
and asymptotically strongly unstable if
(2.21) lim inf..(n log n)s, > J(a).

Figure 1 graphs J(«) for o in (0, 2).

Proor. Each of the independent components of A(1)x is of the form
Y1 y; W, with y; = sx; and W; = (A(1);;/s). By the first part of Lemma 2.6, each
component has the same distribution as s|x|W,. Thus [|A(Q)x|| =
(B | (A(D)x):|*) Y« has the same distribution as s| x| (%, | Wi|“)Y<. The
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4+

12
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J(a)

0 0.2 .4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
o

Fig. 1. J(a) = [an/{2T(a) sin(ar/2)}]"as a function of «, for a in (0, 2).
theorem now follows from Proposition 2.1 except for (2.19)-(2.21). To prove
these we need to show that for « in (0, 2),
(2.22) lim,jw (n log n) e % = J(a),
or equivalently that
(2.23) lim,joFE logl(| Wi|“ + -+ + | W,|*)/(n log n)] = —« log(J(a)).
This is an immediate consequence of the next proposition.

PROPOSITION 2.8. Let Wy, W,, - - - bei.i.d. standard symmetric stable random
variables with exponent o in (0, 2) and let S, = | W1|*+ --- + | W,|*. Then

(2.23a) S,./(n log n) — K(a) (in probability) as n |
and

(2.24) lim,,;. E (log(S,./[n log n])) = log[K(a)],
where

(2.25) K(a) = 2T'(a)sin(an/2)/[ax].

PROOF. Let p(v) denote the density of | W1|*. We first note that
(2.26) p() = K(@v?+ 0@™®) asv ] .
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This is elementary for « = 1 and follows from equation (6.8) (resp. equations
(6.8) and (6.10)) of Feller (1971, page 583) for 0 < a <1 (resp. 1 < a < 2). We
next define, for x > 0,

(2.27) S,=U, + --- + U, where U; = | Wi|“1{,w;j*<nu>»

and observe that (2.26) implies that, as n | o,

(2.28) P(S, # 8,) = nP(U, # | W,|%) = K(a)/x + O(1/nx?),
(2.29) E[S,/(n log n)] = K(a)log(nx)/log n + O(1/log n) — K(a),.
(2.30) Var[S,/(n log n)] — 0.

It follows from (2.29), (2.30) and Tchebychev’s inequality that S./(n log n) —
K(a) (in probability) and (2.23a) then follows since (2.28) is valid for arbitrarily
large x. To obtain (2.24) from (2.23a) it suffices to bound the second moment of
log[S./(n log n)] uniformly in n, and to accomplish this, it suffices, as in the
proof of Lemma 2.6, to show

(2.31) lim sup,;»E{[S./(n log n)]*} < o

both for some positive b and some negative b. It follows from (2.28), (2.29) and
Tchebychev’s inequality that for n, x sufficiently large,

P(S,/[nlog n] > x) < E(S,/[nlog n])x™' + P(S, # S.)
(2.32)
< C log(nx)/(x log n) + C'/x < (C"/x)log x,

for suitable constants C, C’, C”, which implies (2.31) for b € (0, 1) by a standard
argument. The proof is completed by showing (2.31) for b = —1. This follows by
tedious but straightforward arguments from:

(2.33) E{[S./(nlog n)]} = J; {g(t/[n log n])}" dt,

(2.34a) 1 — Ht|logt]|], 0<t<?
(2.34b) g(t) = E(exp[—t| W1|°]) =4 H., Bh<t=<2
(2.34¢) t, 2<t<oo

for some H; in (0, ), H, in (0, 1) and v in (0, «). (2.33) follows from a standard
identity for E(X™') for positive X, (2.34a) is a consequence of (2.26), (2.34b) is
elementary, and (2.34c) is due to the fact that the density of W is (analytic and
hence) bounded near the origin so that p(v) = O@WwY* ) asv | 0.

REMARK. Generalizations of Theorem 2.7 analogous to Theorem 2.4 (re-
garded as a generalization of Theorem 2.5), or at least analogous to the situation
considered in the remark following Theorem 2.4, are possible. For example, one
could take the columns of A (1) to be i.i.d. random n-vectors which are symmetric
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and stable in the sense that
E(exp(i ¥ x:A(1)y;)) = exp(—D(x))

where D(sx) = |s|“D(x) for real s and x = (x;, ---, x,) € R". The Lévy-
Khintchine formula gives a complete characterization of such random vectors
(see Feller, 1971). There may also exist generalizations of the criteria (2.19)-
(2.21) to distributions of the elements of A (1) that are in the domain of attraction
of the symmetric stable laws. We will not pursue such generalizations here.

Other generalizations of Theorems 2.4 and 2.7 are possible. Suppose {A(¢)}
and {B(t)} are two mutually independent sequences of i.i.d. n X n real matrices,
each of which satisfies the assumptions of Proposition 2.1, using the same norm
for A and B. Let log A4 and log Az denote the corresponding quantities in (2.2).
Pick g in [0, 1]. Define the sequence {C(¢)} by C(t) = A(t) w:p. q, C(t) = B(t)
w.p. 1 — g, i.i.d. for all ¢. If log \¢ is the quantity in (2.2) with A replaced by C,
then log A¢ = q log A4 + (1 — q) log A\g. More generally, for a given norm, let S
be the class of distributions on real n X n matrices C such that the distribution
of || Cx /|l x| is independent of the real nonzero n-vector x. Then S is a convex
set and log A is linear on S. Consequently, for example, if {A (¢)} had i.i.d. normal
columns with one covariance matrix and {B(t)} had i.i.d. normal columns with
another covariance matrix, the Liapunov exponent log \¢ for the mixture could
be found using Theorem 2.4. We thank Morris L. Eaton for suggesting that we
try to extend our results to scale mixtures of normal matrices.

3. General stability criteria. The purpose of this section is to extend the
stability criteria (2.10)-(2.11) to general situations in which A = A(x(0)) is not
explicitly calculable. This turns out to be quite easy to accomplish, at least for
the stability criterion (see Corollary 3.5 below).

Again in this section A(t), t = 1, 2, - - - will denote a sequence of i.i.d. n X n
real matrices and x(¢) will be as in (1.1). || - || will be the #, norm and we let S
denote {x € R™ || x| = 1}.

We begin with a result which is a consequence of the arguments of Furstenberg
(1963) and of Furstenberg and Kifer (1983) [H. Furstenberg, private communi-
cation (Dec. 22, 1983)].

THEOREM 3.1. Suppose that
(3.1) sup,es—1 Eflog, (| A(1)x )] < .
Then for any x(0) # 0, the limit (1.2) exists, is nonrandom, and is given by
(3.2) log Mx(0)) = J;H Eflog || A(1)x [|]u(dx)
where p is some probability measure on S" ! which may depend on x(0).

As an immediate corollary of Theorem 3.1, we have, using the definitions (1.3),
a further result.
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COROLLARY 3.2. If (3.1) is valid, then
(3.3) log X < sup,es1E[log | A(1)x ],
(3.4) log A = inf,cgn1E[log | A(1)x|l].

THEOREM 3.3. Suppose each A(1); has finite mean and variance and define
C to be the positive semidefinite matrix E(A(1)TA(1)), i.e.

(3.5) Cij = Xi-1 E(A(1)A(L)x)).
Then (3.1) is valid and
(3.6) X = [r(O)]"3

where r(C) is the spectral radius (or maximum eigenvalue) of C.

In a previous version of this paper, we established a weaker form of Theorem
3.3 in which (3.6) was replaced by log X\ < [r(C) — 1]/2. The fact that our previous
argument could be improved to yield the present (3.6) was noted independently
by Eric Key and by us. (3.6) is sharp in that if A (1) is nonrandom and symmetric,
then X = r(A(1)) = [r(C)]"% The last equality is not in general true if A(1) is
not symmetric.

Proor. If r(C) =0, then A(1) = 0 identically and both sides of (3.6) are 0.
Assume r(C) > 0. If every element of A (1) is multiplied by a positive constant K
then both X and [r(C)]? are multiplied by the same K. Take K = [r(C)]"V2
Evidently it entails no loss of generality to assume that r(C) = 1. We then use
the elementary inequalities

log, (y) = Ylog, (y*) < Yoy’
log y = Yilog y* < (y* — 1)/2,

the identity

E(JAD)x]?) = (x, Cx)
where (-, -) denotes the standard inner product in R", and the fact that

sup.es-1(x, Cx) = r(C),
to conclude first that (3.1) is valid and second that

sup.es~-1E(log |A(D)x ) = [r(C) — 1]/2 = 0.

It follows from Corollary 3.2 that X < 1 = [r(C)]"/?, which completes the prqof.

COROLLARY 3.4. Suppose each A(1);; has zero mean and finite variance s¥.
Suppose further that Cov(A (1), A(1)x;) = 0 for i # j and all k. Then

(8.7 X < [max{(Tr, sH) V= j=1, ---, n}l
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PrOOF. Under the hypotheses we may apply Theorem 3.3 with C diagonal
and ij= 2'1:=1 ng.

COROLLARY 3.5. Suppose each A(1);; has zero mean, a common variance s>
and Cov(A (1)y;, A(1)r;) = 0 for i # j and all k. Then {A(t)} is strongly stable if
ns® < 1. A sequence of such n X n systems is asymptotically strongly stable if (2.10).
is valid.

PrROOF. Immediate from Corollary 3.4.

REMARK. Corollaries 3.4 and 3.5 are applicable both to the case where the
A(1);/s are i.i.d. for all i, j and to the case where the A(1);’s are i.i.d. for i <j
while A(1); = A(1), (so that A(1) is a symmetric matrix) since in both of these
situations A (1)x;and A (1), are pairwise independent for each k and i # j.

We now proceed to extend the instability criterion (2.11).

LEMMA 3.6. For any nonnegative random variable Y, any ¢ > 0, and 0 < n <
1 <7y’ < o, there exist positive finite constants K, and K, , such that

(3.8) E(log-Y) = K.E(Y™),
E(og Y) = — K.,E(Y™) + log 7 P(Y < n')
+ log n" P(Y = 9'),
(3.10) lim, K., = 0.

(3.9

PrOOF. We let
K., = supo<y<,y°|log y|

and K, = K, ;. The conclusions then follow by elementary arguments.

PROPOSITION 3.7. A sequence of n X n matrix systems {A™(1), A™(2), ---}
is asymptotically strongly unstable if for each n, (3.1) is valid with A(1) replaced
by A™(1), and if for some ¢ > 0 and n’ > 1 and any sequence x™ € S" !,

(3.11) sup,E(] A™(1)x™|7*) <
and ,
(3.12) lim,p. P (|| APD)x™ |2 < 9’) = 0.

PrOOF. We apply Corollary 3.2 and Lemma 3.6 with Y = || A™(1)x||? and
note that the validity of (3.11) and (3.12) for every sequence x‘™ implies the
(seemingly stronger) results that

sup, (sup,es= E(| A™(D)x || 7*)) < 0
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and
limp o {sup,es-1 P(| A®(1)x [|> < n')} = 0.
We proceed to obtain conditions which imply (3.11). In the following lemma
no assumption is made about the independence of the entries of A ™(1).
LEMMA 3.8. In the previous notation, if
B = n'PAP (1), W = (8 %B),
then
E(JA”M)x|™) = n™' Thy E(W")™

(3.13) . 1
=n"' YL E|Yo ijij B

PrOOF. For any ¢ > 0, g(y) = y™is convex on (0, ») because g”(y) =
(—e)(—e — 1)y 2= 0. Therefore, for w; = 0,
g(wi + -+ + wy]/n) = n7' T, g(wy).
But since
IA®x]? = n™* By WY,

the claimed inequality follows.
We need to bound the right side of (3.13). We do so through a series of lemmas.

LEMMA 3.9. Let ¢(t) = Ee"" be the characteristic function of a random variable
W. Then forany 0 <e<1

=)

E(|W|™) < K! f 1617 9(e) | de
where K/ is a finite positive constant that depends only on e.

ProOF. The Fourier transform (in the sense of generalized functions) of
gw) = |w|™is [F(g)](t) = K/ | t|°" for some K] > 0 (see, e.g., Gelfand and
Shilov, 1958 [1964], page 359, entry 13). Thus, if ¢(t) is a sufficiently smooth
and rapidly decreasing function, it follows that

E(|W|™) = J:w gw)f(w) dw = J:w (F(£)](t)e(t) dt

where f is the (necessarily smooth and rapidly decreasing) density of W. For a
general ¢, we approximate Wby W, + Z/m where Z is a standard normal variable
independent of W and

[w it |W|=n

W = ]O otherwise.

The characteristic function ¢, of W, is smooth (in fact, analytic) and the
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characteristic function ¢, ,of W, + Z/m is exp(—t*/[2m?])¢.(t) which is smooth
and rapidly decreasing. Thus

oo

E\W, + Z/m|™ =K. f | |71/, (¢) dt

< K! I | 617%™ | g, (2) | dt.

Now, ¢,(t) — ¢(t) pointwise and | ¢,(t)| = 1, |¢(t)| = 1 for all ¢. By two
applications of the dominated convergence theorem, we have

00

lim supmielim sup,oE | W, + Z/m|~* < K/ f [t]° () | dt.

Finally, | W, + Z/m |~ converges in distribution to | W + Z/m |~ as n 1 ® and
if POW=10) =0, | W + Z/m |~ converges in distribution to | W| ™ so that by
standard arguments

E|W|™ < lim supmelim sup,E | W, + Z/m| ™.
This inequality is also true if P(W = 0) # 0 since in that case both sides are
infinite. The proof is completed by combining the last two inequalities.
LEMMA 3.10. If, for some & in (0, 1), ¢(t) = Ee"¥ satisfies
|¢(t)] = (A + t)™2 for all t in (—, ®),
then for any ¢ in (0, 6),
E|W|"=K;<o»
where K, ; is a finite constant that depends only on ¢ and é, and may be taken to
decrease as 0 increases.
PrROOF. This lemma follows immediately from Lemma 3.9.
REMARK. If W has finite variance o2, then the hypothesis of Lemma 3.10 is
implied by the (seemingly weaker) condition,
|¢(t)| = O(|¢]™) as | t| 1 o for some 6, in (0, 1).

To see this, first note that the finite variance condition implies, with u denoting
EW,

l¢(t) | = |1 + iut — ¢%t%/2 + o(t?) | = |expliut — o’t*/2 + o(t?)] |
= exp[—c’t?/2 + o(t})] = (1 + t* + o(t?) " as | ¢| | 0.

On the other hand, the large |t| condition implies, by Lemma 3.9, that
E|W+a| <o for0<e<é; and any a so that W must be a continuous random
variable (this also implies o® > 0). It follows that | ¢(¢) | < 1 for ¢t # 0 and thus
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that for any 0 <& < K < o, sup(| ¢(¢) |: & < | t| = K) < 1. The large | ¢|, small
| ], and intermediate | ¢ | bounds together iniply the hypothesis of Lemma 3.10
with ¢ smaller (if necessary) than either o or §,. The finite variance assumption
made at the beginning of the remark can actually be eliminated by a simple
truncation argument. Finally, if W has a density p(x) which has a continuous
derivative p’(x) with [2. |p’(x) | dx < o, then by standard Fourier transform
arguments | ¢ ¢(¢) | | Oas || T » sothat | ¢(t) | =o(|t|™") as | t| ] . Thus the
hypothesis of Lemma 3.10 is valid.

LEMMA 3.11. For 6 >0, let
hs(t) = (1 + 372,
Then for any |y| <1,
ha(yt) < [hs(0)P".
PROOF. Define D(u) = (6/2)In(1 + u) on [0; ). Then h;(t) = exp[—D(¢?)].
We want to show that for 0 < ¢ < 1, D(cu) = c¢D(u) or equivalently that D (cu) /

cu = D(u)/u or equivalently that D (u)/u decreases on (0, ). This is true because
D(0) = 0 and D(u) is concave on [0, ®).

DEFINITION. For a random variable W with characteristic function ¢(t),

define
d(W) = supf{é € [0, 1]: | p(t) | = (1 + £33},

Note that | ¢(t) | < (1 + ¢2) 2 with 6 = d(W).

LEMMA 3.12. If W,, ..., W, are independent random variables and Y1, x?
=1,and d’ = min{d(W,):j=1, ---, n}, then

d(X ;W) =d’.

PROOF. Denoting the characteristic function of W; by ¢; and of ¥, x; W; by

¢, we have
| 6(E) | = X1 | ¢;(5t) | < L hawy(%;t) < 11 ha (x58) < [ha (£)]%,

where we use Lemma 3.11 to obtain the last inequality.

PROPOSITION 3.13. If for each n and each i, B\, .., B.” are independent
and

d = inf,;j,nd(Bg.’)) > O,

then (3.11) holds for any ¢ in (0, d’/2).

ProOF. This is an immediate consequence of Lemmas 3.8, 3.10 and 3.12.
To analyze (3.12), we consider two cases. In the first, we assume every A},’»’)(l)
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has finite fourth moment but different elements of A (1) need not be independ-
ent. In the second, all elements of A™(1) must be independent, but they need
have only finite second moments.

LEMMA 3.14. If
7” = lim inf,1E(] A™(1)x™ %) > 1,
and
limpe Var (| A™(1)x™[1%)/E (| A™(1)x™ %) = 0,
then (3.12) is valid for any 5’ < %”.

PrOOF. Let Y, = | A™(1)x™||% Then for sufficiently large n, n’ < EY,.. So
by Tchebychev’s inequality,

P(Yn < "7,) = P(l - Yn/EYn >1- n,/EYn)
< Var(Y,/EY,)/[1 — #'/EY,].

The right side of this inequality tends to zero since its numerator tends to zero
while the lim inf of its denominator is 1 — 5’/5” > 0.

LEMMA 3.15. The n” of Lemma 3.14 satisfies
7” = lim inf,;.8(C™)

where C'™ = C is defined as in (3.5) and B denotes the minimum eigenvalue of
C™. If each Aﬁj'-')(l) has zero mean, finite variance sf}’ﬂ and if Cov(A7 (1), A{L';)(l))
=0 for all n, all k, and all i # j, then n” > 1 if

lim inf, e [min{} X, si}‘)Z:j =1 ---,n}]>1

PrOOF. The first part of the lemma follows from the identities 8(C) =
inf,cs-1(x, Cx) and (x, Cx) = E(|| A(1)x]|?). The second part follows as in the
proof of Corollary 3.4.

Rather than analyze the variance condition of Lemma 3.14 we content our-
selves with the following special case.

PROPOSITION 3.16. Suppose that for each n, i, j, the element A (1) of A™(1)

1
has zero mean, finite variance s{* and finite fourth moment q""“. Suppose in

17
addition, for each n, either that the A" (1)’s are independent for all i, j or else that
they are independent only for i < j with A\’ (1) = A{”(1). Then (3.12) is valid for
some 3’ > 1 if the last inequality in Lemma 3.15 is valid and

Yo [max{sP*:j=1, ..., n}]?

(S [minfs{?j =1, -, )

0

limnTm
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and

Yo, max{g?:j=1, ---,n}
e, mln{s(")2 j=1,---,n})?

lim,,Tw = 0.

PrROOF. We must show that the second limit of Lemma 3.14 is valid. We
have with x and A replacing x™ and A™(1),

Var(|| Ax ||?) = Var(3; (T, Ai;%)?) = X Var(Yi) + Yirr Cov(Y;, Ye),
where
= (3 Ayx)® = X x]AG + 2 Tj<r 2% AijAu.

Under the assumptions of the proposition, for each i, the A;’s are independent
with mean zero (j =1, - - -, n). It follows that

Var(Y:) = 3; xfVar(A}) + 2 3 x]xiVar(A;Ai)
= % xf(qh — s§) + 2 Tj< XFxESTiSh-

When the A;/’s are independent for all i, j, Cov(Y;, Y;) =0 fori # i’. When 4;;
= Aj;, one has

Cov(Y;, Yy) = Cov(x? A%, x?A%) = xix?(qh — sk).
Thus, in either case
Var(|| Ax||2) < Xi; x}(qh — s&) + Tije xfxishsh
+ Y xix? (gl — siv)
< Y xiqh + Y xiqh + Yijk x]xishish
< 2 Y, (max;qf,) + Y:(max;s5)>
We have used above that x7 = ¥ x% < 1 for each j. The proposition now follows

from Lemma 3.14, Lemma 3.15, and the proof of Lemma 3.15.

COROLLARY 3.17. If for each n the A("’(l) s are either i.i.d. for all i, j or else
ii.d. for i <jwith A(”) 1) = A(”) (1) and in addztwn have zero mean finite variance
52 and finite fourth moment q‘")“ then (3.12) is valid for some n’ > 1 if

lim inf n'%s™ > 1
and
lim,jon~'[n'2q"”/(n?s™)]* = 0.
ProOF. This follows from a simple computation, using the expressions of
Lemma 3.15 and Proposition 3.16.

Combining Theorem 3.3, Propositions 3.7, 3.13, and Corollary 3.17, we have
the following.
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THEOREM 3.18. Suppose for each n that the A{"’s are either i.i.d. for all i, j or
else are iid. for i = j with A’(1) = A{”(1). Let B™ be a random variable
distributed as n*?A"” (1) and assume B™ has mean zero and finite variance. Then
asymptotic strong mstabzlzty applies if the following three conditions hold:

lim inf,., Var(B™) > 1
lim,;.n " 'E[(B™/[Var B"]"/%)*] = 0.
lim inf.d(B™) > 0
where d is defined above. In particular, this is the case if the distribution of B is

independent of n with variance > 1, finite fourth moment and positive d.

Proposition 3.16, Corollary 3.17, and Theorem 3.18 all require the existence
of finite fourth moments to insure the validity of (3.12). We proceed to eliminate
this requirement in the case where, for each n, the Af»}”(l)’s are independent for
all i, j. For the sake of simplicity we henceforth assume that for each n, the
A‘”’(l)’s are identically distributed as well as independent for all i, j with zero
mean and finite variance s™? (but possibly infinite fourth moment). Using the
notation of Lemma 3.8, we note that in this case the W‘””s are, for each n, i.i.d.
nonnegative variables with mean ns™?

LEMMA 3.19. In the ii.d. case under consideration, (3.12) is valid if
lim inf,.ns™? > 1 and X = W{"/[ns'"?] satisfies the uniform integrability
condition

(314) limKTwsupnalE(Xi"’1g|xgn»|2K,) = 0.

Proor. It suffices to show that as n 1 «,
n' ¥, X' — 1 (in probability).

The X }") ’s are, for each n, i.i.d. nonnegative random variables of mean 1 and the
X s are uniformly integrable. We will apply Theorem 1 of Feller (1971, page
316). We define

[n71X}", if X" < sn
|s, if X(") > sn,

Xk,n = n—leN), Xl:‘,n =
b, = nE(X{,).
Then, since E(X|") =1,
1-b,=EX") = EX\"1jxvcsn) — nsP(X'\" = sn)
= E(X\" 1 ix0sm) — snP(X\" = sn)
so that by uniform integrability, for any s > 0,
0=<1-b,<EX/"Lxwsm) —0asn 1.

It follows that to obtain the desired result, it suffices to verify conditions (9.1)
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and (9.2) of Feller. Since (9.1) is weaker than the first condition of (9.2), it
suffices to show

(3.15) for all >0, nP(X{" >ny) - 0asnto
and
(3.16) for all s >0, n Var(X;,) — 0asn 1 .

The limit (3.15) follows immediately from
nP(X\" > nn) < 97 E(X{" Lixosm),
and uniform integrability. To obtain (3.16), we have
n Var(X{,) < nE(X{%) = n"'E(X{""Lixp<sm) + ns’P(X{” = sn)
< eE(X" 1ixpeen) + SE(X Lpnexoicon) + SE(X1ix005 0ny)
< E(X") + sE(X(l")l‘xngm;) —e¢ asnl o

by uniform integrability. Since this last estimate is true for arbitrérily small e,
we obtain (3.16) which completes the proof.
Now X' is given by
Xgn) — (2;;1 x}n)B*fn))Z, B;kj(n) — B(IZ})/(Var(B(lg})))lﬂ

1j

with the B¥™"s, for each n, being i.i.d. and having mean zero, in the case under
. '1]
consideration.

LEMMA 3.20. Suppose for each n, Y™ = Y, x"Y{", where the Y{"’s
are i.i.d. with mean zero and variance one, and ¥; (x\”)> = 1. Then the (Y »2)’s
are uniformly integrable if the (Y{™)*'s are uniformly integrable.

ProOOF. Define by continuity in some (a priori n-dependent) neighborhood
of r = 0, the functions

D™(r) = log E(e"*"), D{"(r) = log E(ei"?).
Then D™(r) = 3; D" (x{”r). So
[D™(r) = r?/2)/r* = Ejey 1Dy (xfr) = (7 r)*/2)/ (%" r)>.
The proof may be completed by applying the next lemma.

LEMMA 3.21. Let Yy, Y,, --- be random variables with mean zero, variance
one. Then the Y3's are uniformly integrable if and only if for any e > 0, there exists
ro > 0 such that if D, (r) = log ¢,.(r) and ¢,(r) = E(exp[irY,]), then

(38.17) D}(r) = |[Dn(r) — r*/2)/r*| < efor |r| < ro, forall n,
or equivalently there exists ry > 0 such that
(3.18)  ¢X(r) = |[da(r) — (1 = r?/2))/r*| =& for |r| <r, foralln.
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ProoF. We first show that (3.17) and (3.18) are equivalent. Denote
én(r) — 1 by ¥,(r). First, by the triangle inequality, | D./r?| = % + D} and
| ¥,./r?| <% + ¢%. Secondly, also by the triangle inequality,

|D*—¢*| < [an/ll/n_]-l . |§//n/r2| = |10g(1+¢n)/‘l/n_1| - (% + ¢n).
n = @l = 1y./D, — 1||Da/r?| < | (ePr = 1)/D, = 1] - (% + D}).

If we define
K.(r) = sup{|log(1 + ¥)/¥ — 1]: || = (%2 + &)r¥,
H.(r) = supf|(e” — 1)/D — 1|: |D| < (& + &)r%,
then

[K.(r)(% + ¢), for |r| < r if (3.18) is valid.
|H.(ro))(%2 + ¢), for |r| = roif (3.17) is valid.

A further application of the triangle inequality and the fact that K.(r) | O,
H.(r) | 0 as r — 0 imply the equivalence of (3.17) and (3.18). We proceed to
prove the equivalence of (3.18) to the uniform integrability of the YZs.

First we assume uniform integrability. We use the standard inequalities (see
e.g. Feller [1971, page 512]) for real u,

| u®|/3! (for all u) < e u?/6, for |u| <e.
e — 1 —iul| + | (iw)?/2| < u?, for all u.

| D — 7l =

e — 1 — ju — (iu)?/2| s{

Then
r2ex(r) = | E(e™» — 1 — irY, — (irY.)%/2) |
(3.19) < (er?/6)E(Y21y v, 1<) + PPE(YaLy v, 12101)
< rY[(¢/6)E(Y3) + E(Y21v2=.)]

Given ¢ > 0, we may choose r, sufficiently small so that, by uniform integrability,
sup, E (Y7 1jy22023) < 5e/6.

It then follows from (3.19) and E(Y?2) = 1 that (3.18) is valid as desired.

Next we assume that (3.18) is valid. We wish to prove uniform integrability of
the Y%'s. If uniform integrability is not valid, then there is some subsequence
Y,, which converges in distribution, to some Y, such that

(3.20) E(Y?) <1 = limyE(Y2).

We wish to show that (3.20) is impossible. Defining ¢*(r) as in (3.18) but with

.. replaced by ¢(r) = E(exp[irY]), we have from the convergence in distribution

that ¢,, — ¢ and so ¢}, — ¢*. Thus ¢* satisfies (3.18) or equivalently
é(r)=1-r%/2+ o0(r? asr— 0,

which implies [see Feller, 1971, pages 512-513] that EY = —i¢’(0) = 0 and E Y?
= —¢”(0) = 1 thus contradicting (3.20) and completing the proof.
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Combining Theorem 3.3, Propositions 3.7, 3.13 and Lemmas 3.19, 3.20 gives
the following.

THEOREM 3.22.  Suppose for each n that the A{”(1)’s are i.i.d. for all i, j with
mean zero and finite variance s™?. Let B™ be a random variable distributed as
n'2A{P(1) and let B*™ be distributed as A{?(1)/s"™. Then asymptotic strong
instability applies if the following three conditions all hold:

lim inf,;.ns™? > 1
uniform integrability of the [(B*™)?]’s
lim inf,;.d(B™) > 0

where d is defined above ( following Lemma 3.11). In particular, this is the case if
the distribution of B'™ is independent of n with finite variance > 1 and positive d.

4. Claims, counterexamples and questions. May (1972) considered the
stability of a system of linear ordinary differential equations

(4.1) dx/dt = Ax

where x is an n-vector and the n X n real matrix A satisfies A = B — I. Here I is
the n X n identity matrix, and the meaning of B here differs from that in the
preceding section. The off-diagonal (i # j) elements B, of the n X n matrix B
are independent random variables that are equal to 0 with probability 1 — C(0 <
C =< 1) and drawn from an arbitrary distribution, say F, with probability C.
Throughout this section, C is a scalar. The diagonal elements of B are 0. The
only restriction May imposes on F is that it have mean 0 and variance a2

May (1972) defined the system (4.1) to be stable if R(A), the largest real part
of the eigenvalues of A, is negative. Let P(n, a, C) be the probability that, for
the given values of n, a, and C, the system (4.1) is stable. May asserted, without
proof, that

(4.2) limy.P(n, a, C) =1
if
(4.3) lim,;..(nC)"%a < 1,
while
(4.4) lim;1P(n, a, C) =0
if
(4.5) lim,;.(nC)"%a > 1.
Recently, Hastings (1982a) considered the system of difference equations
(4.6) X141 = Bx,

where x, is an n-vector and the random n X n matrix B has all elements Bj;
iid. By is 0 with probability 1 — C, and with probability C is drawn from a



304 COHEN AND NEWMAN

distribution with mean and all odd moments 0 and variance a2. The system (4.6)
is defined to be stable if r(B), the spectral radius of B, is strictly less than 1.
Hastings assumed (page 158) that a is fixed and C = k/n, where k is a fixed
positive constant. Under these assumptions, he claimed that (4.3) (alternatively
(4.5)) implies that (4.6) is stable (alternatively not stable) with probability
approaching 1 as n 1 .

With B as in Hastings (1982a) and A = B — I, Hastings (1982b) considered
the system (4.1) under the additional hypothesis that the (possibly n-dependent)
C satisfies, for some ¢ > 0 and all large n,

4.7 C=(1+ ¢)n"tog n.

He claimed that asymptotic stability in the sense of (4.2) is valid if (4.3) holds,
and that asymptotic instability in the sense of (4.4) is valid if (4.5) holds. The
announced proof, given in more detail in Hastings (1983), apparently rests on
claiming that under (4.3), as n 1 o, the norm of A is, with probability approaching
1, less than a quantity that is less than 1, while under (4.5), as n 1 %, the norm
of A is, with probability approaching 1, greater than a quantity greater than 1.
The error in these claims will be dlscussed in detail below.

The difference between the matrix A of Hastings (1982b) and the matrix A of
May (1972) is that the diagonal elements of Hastings’ A are random variables
that have the distribution of the off-diagonal elements shifted by —1, while the
diagonal elements of May’s A are fixed at —1.

We now show, by explicit counterexamples, that the assertions of May (1972,
repeated in 1973) and Hastings (1982a, 1982b) are false in the generality with
which they are stated. We also describe some more restricted situations where
the criteria of May may turn out to be valid.

ExaMPLE 1. Choose any positive constant £ and any i.i.d. real random
variables X;;, i,j =1, 2, - -. such that P[X;;=0] =0, EX;;= 0 and P(X;;> 1) >
0. (E.g. let X;;~ N(0, s?) with s>> 0.) Let C, = k/n with 0 < k < « and let B(n)
be an n X n matrix with independent elements

B(n) =0wp.1-C,
= X;; w.p. C,.

PrOPOSITION 4.1. Ifp = P(X;;>1) >0, then
lim inf;.P(B(n) has a real eigenvalue >1) = 1 — exp(—pke ™) > 0.
PROOF. Let e; be the n-vector that has 1 in the ith position, 0 elsewhere. Let

B, be the jth column of B (we drop n here). Then Be; = B;. Thus if B; = ae;, a is
an eigenvalue of B. We have for a given i

P(B; = ae; for some a > 1)
= P(B;; = a for some a > 1 and B;; = 0 for all j # i)
=pC,(1 - C,)"" .
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Hence
P(B; = ae; for some a > 1 and some i)
=1—[1 - (pk/n)1 — k/n)" "]

Now we use the standard fact that if b, is a sequence of real numbers with
limub, = b, then

limuje (1 — b,/n)" = e
Letting b, = pk(1 — k/n)" ' gives b = lim b, = pke™* and
P(B; = ae; for some a > 1 and some i)

— 1 — exp(—pke™) as n | c.

COROLLARY 4.2. Forany k, 0 <k <, if P(X;;> 1) >0, then
P(rB(n)) <1)»1lasntx», PR(B(N)<1) -HlasnTx,
even though when s® = Var(X,;) < 1/k, we have )
lim, nVar B;(n) = lim,;.nC,s* = ks* < 1.
In particular, X;; may be chosen to be normally distributed with mean 0 and any

positive variance s* such that ks® < 1.

This contradicts Hastings (1982a, pages 156-157) since & = nC, so that
s?nC, < 1. In fact, ks? may be chosen arbitrarily close to 0, provided p > 0.

ExXAMPLE 2. Choose k, X;;and C, as in Example 1. Let A(n) bean n X n
matrix with independent elements A;;(n) such that A;(n) =0,i=1, --.,n,and
for i # j, A;j(n) is distributed according to

A;j(n)=0wp.1-C,
= X,‘j W.p. Cn.

PROPOSITION 4.3.
lim inf1. P(R(A(n)) > 1) = [1 — exp(—pZk®e7*/2)]/2.
Before presenting the proof of Proposition 4.3, we need the following lemma.
LEMMA 4.4. For 2 < m < n, with n given, let U,, be the event that for some
i #J,1<1i,j<m,both A; = ae; and A; = be; for some a > 1 and some b > 1. (The
event U,, implies that for some i, j < m, e; + (a/b)"?e, is an eigenvector of A with

eigenvalue (ab)/?> 1.) Let P,, = P(U,,) and int(x) be the greatest integer < x.
Then

P, = %[1 — (1 — n[(pk/n)(1 — k/n)""2?)inun/2],

ProoF. If 2 <=m =m’ < n, then P, < P, . Let V,, be the event that for
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some j =2, --- , m, and some a > 1, b > 1, we have A, = ae; and A; = be;. Then

P, =PU,|V,P(V,) + P(Un|not V,)P(not V,).
Now, by independence of matrix elements, with p = P[X;;> 1] > 0,

P(V,) = ¥~ P(A: = ae; for some a > 1)
-P(A; = be, for some b > 1| A; = ae, for some a > 1)
= (m — 1)P(A, = ae, for some a > 1)
-P(A; = be, for some b > 1)

= (m — D[(pk/n)(1 — k/n)"*]"

Also P(U,,| V) =1 and it can be seen that
P(U,|not V,,) = P(U,-2).
Thus
P, =z (m — 1)[(pk/n)(1 — k/n)""*)?
+[1 = (m — D[(pk/n)(1 — k/n)"*]*|Pp-s.
Letting
r=1—n[(pk/n)(1 — k/n)"*P,
we have, form — 1 = n/2,
P, = (n/2)[(pk/n)(1 — k/n)""%)* + rP,—,.

Therefore, providing n — 2j = 1 + n/2, i.e. j < int(n/2) — 1, we have

P, = (n/2)[(pk/n)(1 — k/n)"]2A + r+r* + ... 1)),
Taking j = int(n/2) — 1 yields the desired inequality.

ProOF OF PROPOSITION 4.3. Let
b, = [pk(1 — k/n)"*]%
Then
lim, b, = pkZe?.
Using Lemma 4.4 gives
P, = {1 — (1 = by/n)™"],
Therefore
lim inf.P([ab]"? is an eigenvalue of A(n) for some a > 1 and b > 1)

= lim inf 1P, = Y% limuya[1l — (1 — b,/n)"2)]

= limpa[1 — (1 = by/n)"?)/2

= [1 — exp(—p’k’e™"/2)]/2.



STABILITY OF RANDOM MATRIX PRODUCTS 307 -

COROLLARY 4.5. If0 <k <o, p=P[X;>1]>0, and s*> = Var X;; < 1/k,
then n Var A;;= ks> <1 but p

P(R(A(n))>1) A~ 0asn oo
This contradicts the claim of May (1972) that (4.3) implies (4.2). As in example

1, k may be chosen arbitrarily large and ks? arbitrarily small (but positive), and
X;; may be normal with mean 0 and variance s°.

ExAMPLE 3. Choose positive real constants d >1,0< C <1, and k < d?
and a positive real sequence b, such that lim nb2% = 0. Let g, = k/n. Let B(n) be
an n X n matrix with elements B;;(n) i.i.d. according to

Bij(n) = 0 w.p. 1 — C (independent of n)
= +b, w.p. C(1 — g,)/2 each
= +d w.p. Cg,/2 each.
PROPOSITION 4.6. There exists a positive sequence b, (with lim nb% = 0)
approaching zero sufficiently rapidly so that
lim inf,1» P(B(n) has an eigenvalue with modulus and real part > 1)
= [1 — exp(—Cke~“*/2)].

PrROOF. Consider the n X n matrix D(n) with elements i.i.d. according to
D;j(n) =0w.p.1- Cg,
= +d w.p. Cg,/2 each.

D(n) is constructed from B(n) of Example 3 by replacing the elements equal to
+b, with 0. So, for a given n, as b, approaches 0, the eigenvalues of B(n) approach
the eigenvalues of D(n), by the continuity of the roots of a polynomial as
functions of its coefficients. However, D(n) is a special case of Example 1 with
X;; = *d, each with probability % and C, = Cg,. By Proposition 4.1,
lim inf,;.P(D(n) has an eigenvalue +d) = 1 — exp(—Cke */2). For each n, b,
may be chosen small enough so that B(n) has some eigenvalue within a distance
(d — 1)/2 in the complex plane of any given eigenvalue of D(n) (w.p.1). In that
case P(B(n) has an eigenvalue with modulus and real part > 1) = P(D(n) has
an eigenvalue +d).

COROLLARY 4.7. Choosing b, as in Proposition 4.6, we have lim n Var B;;(n)
= Ckd* <1 but

P(r(B(n))<1)-»1 as n1 o

PrROOF. We have only to compute
n Var B;; = nC(1 — g,)b2 + nCg,d*> — Ckd* < 1.
This contradicts Hastings’ (1982b) assertion that (4.3) implies (4.2) for the
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system under consideration, even if Ckd®> > 0 is chosen arbitrarily close to 0,
provided d > 1.

This example could be perturbed to allow not purely discrete nonzero matrix
elements, while keeping C constant.

The examples given so far have shown that the stability, with probability
approaching 1, of (4.1) or of (4.6) does not follow from the conditions asserted to
be sufficient. The next example deals with instability.

EXAMPLE 4. Let A(n) be a sequence of random real matrices with i.i.d.
elements such that EA;;= 0, n Var A;;— K <1, and
lim,;.P(r(A(n)) <1) = 1.
This guarantees that also
lim,;.P(R(A) <1) =1

(For example, let A (n) = 0 with probability 1, or, by the results of Geman [1980],
let A;j(n) be i.i.d. N(0, s*/n) with s* < %.) Let g, be a positive real sequence such
that lim n2, = 0 and let b, be a positive real sequence such that lim ng,b; = ©
(e.g., 8» = n~>and b, = n'*%, a > 0). Let D(n) be a sequence of random real
matrices with i.i.d. elements such that

D;; = A;; with probability 1 — g,
= +b, W.p. g./2
= —b, W.p. g./2.

PROPOSITION 4.8.
limy1 P(r(D(n)) <1) = 1.

Proor. For given i, j, P(D; # A;) = g,. So considering all n* elements
simultaneously, P(D(n) # A(n)) < n’g.. Therefore, since lim n’g, = 0,
lim P(D(n) # A(n)) = 0. Hence the assertion.

COROLLARY 4.9. Even though lim n Var D;;= +x,

limy. P(r(D(n)) <1) = 1.

ProOF. We compute
n Var D;; = n(1 — g,)Var A;; + ng,b;,
lim n Var D;; = K + lim ng,b;, = o.
This concludes the demonstration that the claims of May (1972, 1973) and
Hastings (1982a, 1982b, 1983) concerning stability and instability, with proba-

bility approaching 1, are false, at least in their full generality.
Where does the “proof” of Hastings (1983) go wrong? Apparently the error
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consists in assuming mistakenly that

(4.8) lim,.supy, =1 P(| Av|l =2 1) =0
implies
(4.9) lim,; P(| A | = supy,j=1|Av| = 1) = 0,

where A is a random n X n matrix and v is an n-vector.

Let | A | =sup{|| Av|: || v || = 1}, where the vector norm is the Euclidean norm
lvll?2 = (v, v) and (u, v) = Y}, uwbx for any n-vectors u and v. Suppose the
elements A;j(n) of the n X n matrix A(n) are i.i.d. N(0, s*/n). As pointed out by
Geman (1980, page 253), it follows from results of Wachter (1974; see also
Wachter, 1978) that

lim inf1 || A(n) |* = 4s%
Geman shows that in fact
(4.10) limy. | A(n) | = 2s.

Fix s such that % < s < 1. Then n Var A;;(n) = s* < 1. For any v with ||v] =1,
lAR)|2=3 (T, Aij(n)v)? =3 (sn™V?Z;)? = (s*/n)x 2, where, as before, Z; are
i.i.d. N(0, 1) and x?Z is chi-squared with n degrees of freedom. As n 1 ®, x5/n is
asymptotically N(1, 2/n). So ||A(n)v|? is asymptotically normal with mean
s? < 1 and variance 2s*/n | 0, i.e. (4.8) holds. However, Geman’s result (4.10)
contradicts (4.9).

Notwithstanding our counterexamples, May’s conjectures may be true under
appropriate restrictions. For example, let D(n) be an n X n matrix with i.i.d.
elements having distribution function F (independent of n) with mean 0 and
finite variance s2. Let A(n) = n~Y2D(n). We say that A (n) varies with n only by
scaling. Let r, = r(A(n)). As n 1 o, three possibilities are:

(i) for all F, r,— s
(ii) for all F, r, — a constant that is a functional of F other than s>
(iii) for some F, r, — s? or another functional of F, but for other F, r, does
not converge to a constant or does not converge at all.

Case (i) is May’s conjecture when A (n) varies only by scaling. Case (ii) asserts
that a universal criterion exists, but it is not May’s in general. Case (iii) says
that May’s criteria are valid only for certain distributions under scaling, including
perhaps those studied numerically (McMurtrie, 1975).
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