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ON THE LOWER BOUND OF LARGE DEVIATION OF
RANDOM WALKS

By Tzuu-SHUH CHIANG
Institute of Mathematics, Academia, Sinica

In this note, we prove for a large class of random walks on R" that
lim inf, ..(1/n)log P{(L,(w, -) €E N) = =I(u)

where L,(w, -) is the occupation measure, N is a weak neighborhood of u and
I(u) is the usual Donsker-Varadhan functional. This generalizes a previous
theorem of the author where the state space is assumed to be compact.

Section 1. Let X, X;, --- be a Markov process with state space 2 and
Feller transition p(x, dy). For each w in the sample space, let L,(w, -) be the
average occupation measure, i.e., VA C 2, L.(w, A) = (1/n) 3% xa(Xi(w)). Let
M be the space of all probability measures on 2  and I(u) be the usual entropy
functional defined as follows:

(1.0) Vi€ A I() = —infreaa) f tog P2 uan

where 4 (') is the set of all positive continuous functions for each of which
there exist a, bst.0<a =< f(y) sb< o Vy€ 2 and (pf)(x) = [ f(y)p(x, dy).
In this note, we shall be concerned with the following type of estimate:
For any u € #, x € 2 and weakly open neighborhood G of y,

(1.1) lim inf,.(1/n)log P.(w: Ly(w, -) € G) = —I(p).

The I-functional was first introduced by Donsker and Varadhan [2] and (1.1)
was obtained under the hypothesis that for any x and x’ € 2, the resolvents
R(x, dy) (= Yp-1 P™(x, dy)/2") and R(x’, dy) are equivalent. If X,, X, --- is a
random walk on a compact group, it was later proved that (1.1) holds under a
weaker condition: (see [1])

(1.2) R(x,A)>0 forevery x€ 2 andopenset A C Z.

In Theorem (2.11), we will generalize this result to random walks on R" (which
is only a locally compact group) under the assumption (1.2). This is not a trivial
generalization because all the estimates in [1] have to be sharpened and the
vague topology on # has to be considered. Throughout the rest of this paper,
Xo, Xi, - - - is assumed to be a random walk on R" which satisfies (1.2).
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REMARK. We will actually assume that P(x, A) > 0 for every x € 2 and
open set A. This causes no loss of generality because of Theorem 3.3 [3].

Section 2. We begin with an easy lemma whose proof will be omitted.

LEMMA 2.1.  Let Z be a locally compact Polish space and let u be a probability
on Z. Then for any ¢ > 0, there exists a compact set K and a weak neighborhood
N of u s.t. A(f{) > 1 — ¢ for every A € N.

The following lemma is due to Donsker and Varadhan [3]. We include it here
only for completeness.

LEMMA 2.2 If I(u) < o, then there exists a transition function p(x, dy)
< p(x, dy) for almost every x with respect to u s.t. u is an invariant measure for
p(x, dy) and

_ plx, dy) _
I(p) = f log o(x, dy) p(x, dy)u(dx)

where p(x, dy)/p(x, dy) is the Radon-Nikodym derivative of p(x, dy) with respect
to p(x, dy).

For any G € #, we define E}(G) = {w: (1/k) Yt 0x,..» € G}. Also, we call a
probability measure A indecomposable with respect to a transition n(x, dy) if A
is invariant relative to «(x, dy) and [4 w(x, A°)A(dx) > O for every A with 0 <
A(A) < 1. \ is said finitely decomposable if it is invariant relative to =(x, dy) and
- there are finitely many mutually disjoint sets A;, - - -, A, s.t. [4, w(x, A)N(dx) =
0if i # j and X | 4, (X restricted to A;) is indecomposable with respect to «(x, dy).

LEMMA 2.3. Let u € # with I(u) <  and let N be a weak neighborhood of u.
If u is indecomposable with respect to the transition p(x, dy) in Lemma (2.2), then
for each ¢ > 0, compact set K there exists a compact set A, C 2 s.t. for every
x€EK,

lim inf,,_,.(1/n)log Py(Lytm(w, -) €E N, Xpim-1 € A,
forsomem =0, ..., [en] + 1) = =I(u) + O(e).

The convergence is uniform for x € K. (As usual, [en] denotes the integral part of
en). ’

PrROOF. By Lemma 2.1, for each ¢ > 0, we can choose A, and N’ such that
wEN CNand MA,) >1 —¢/2if \ € N’. Let S, = inf{k = 0: X,—14x € A}.
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Now,
P.(En(N), Xp4n-1 €E A, Xn E A forn—1<=m<k+n-1)

= PAE%n(N), S, = k) = f dP,
EfnN{S,=k}

-1, dx;) . —
> r;_+k—1 p(xl 1, i dP
- Lzﬂ.nnsfk; = Py, dx)) 7

o n,_+k—1 l p(xi—l’ dxl)) dp
Lg+nﬁ{sn=kl exp( Z‘ ' °8 p(xi—1, dx,) x'

Here, P, denotes the Markov process with starting point x and transition
P(x, dy). Let h(x, y) = (p(x, dy))/(p(x, dy)) and let

Fp. = {w: (1/(m = 1)) 27" log h(xi—1, x) < I(p) + ¢}.
Then,
Thobt PAERn(N), S, = k)
2 Y™ PUEA(N) N (S, = k} N Foeroexp(—(k + n — 1)(I(n) + ¢))
= exp((—([en] + n))(I(g) + &) PUL" (E%n(N) N {S, = k} N Frs))

= exp((=([en] + n))(I(n) + ¢))
P((NZF (Bn(N) 0 Fran)) N (U (S, = k)
= exp((—([en] + n))I(w) + &))Po(Nio (ER4n(N’) N Fpis.))
for almost every x — u(dx).
The last inequality is true because S,(w) < 1 + [en] if € NI EL,,(N”). Since
P, is ergodic by the assumption that u is indecomposable with respect to p(x, dy),
we have P.(N5-o (Ef4n(N’) N F,44.)) — 1 for a.e. x — u(dx). Thus
lim inf, ,.(1/n)log P.(L,+m(w, -) € N,
Xnim-1 €E A, for some m =0, 1, ---, [en] + 1)
= lim inf,..(1/n)log T Po(E2in(N), Xpsnt € A,
XnEAforn—1=m<k+n-1)

z —(I(n) + &)1 + &) = =I(n) + Ofe)

for a.e. x — u(dx). We will omit the proof for general starting point x since it is
the same as that in Lemma 2.5 [1].
The same A, works for all x in a compact set and umform convergence is an
easy consequence of the fact that we are dealing with random walks.
# The following lemma is the analogue of Lemma 2.4 [1], where compactness of
Z was assumed.
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LEMMA 2.4. Let u = 37, \iu' be a convex combination of u'’s with u' € A
and I(p') < o fori=1, 2, ---, m. Let pi(x, dy) be the transition functions in
Lemma 2.2 corresponding to u' for each i =1, 2, - - -, m. If u* is indecomposable
with respect to p;(x, dy) for each i, then, for each x € Z,

lim inf,_.«(1/n)log P(Ln(w, -) € N) = X2 NI(n))
where N is an arbitrary weak neighborhood of p.
PrOOF. For simplicity, we only prove the case that m = 2. The same proof
works for general m.
For ¢ > 0, choose N; and N,, weak neighborhoods of u' and u? respectively
such that ttN; + t2N, C N if |t; — N | < efor i = 1, 2. Let N/ € N, be weak

neighborhoods of u’s s.t. A € N; if [A — X' || < ¢ for some A’ € N/. Also, by
Lemma 2.3, we can choose a compact set A, s.t. when n is large enough,

P.(Lpim(w, -) €E N{, Xp4m-1 €E A, for some 0 = m < [en] + 1)
= exp n(—I(x') + O(e))

and
P,(L,(w, -) € N3) = exp n(—I(n®) + O(e)), y E A..

For any positive n, let 4 be the integer s.t. 4/n < A\ < (4 + 1)/n and let
T, = inf{k = 4: X,-, € A.}. Now, for large n,

P.(Lu(w, -) € N)
= PAE%(N)) NElL (N3), A< Ty < A4 + [e4] + 1)
= Tt PAEUNT) N E%-«(N3), Ty = k)
= YAt B(PAEUNT) N Efw(N3), Ty = k| Xo, Xi, - -+, Xi=1))
= A PAEXND), Ti = Rlexpn — B)(=I(u?) + 0G)
(Lsysm(w, -) € N{, X 4m-1 € A, for some m =0, ---, [eA] + 1)
- exp(n — A)(=1(x*) + O(¢))
= exp A(—I(n') + O(e))exp(n — A)(=1(1®) + O(e)).
Thus:
lim inf,_.(1/n)log P.(L.(w, -) € N) = M(=I(p") + O(e)) + Ao(=I(1?) + O(e)).
We then complete the proof by letting ¢ — 0.

COROLLARY 2.5. If u' is finitely decomposable with respect to p;(x, dy) for each
1=1,2, ---, m, then

hm lnfn—»w(l/n)l()g Px(Ln(w’ ) € N) = _2521 }\,I(Ml)
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ProoF. For each k, there exist A¥C 2, j=1,2, ---, n such that u* =

o ur(AF )ﬂAk and ,uAh s are indecomposable with respect to pk(x, dy) By Corol-

lary 2.2 [1], I(u*) = ;'il wMADI(uhy). Since p = T21 M(TF, n(A)whi), we have,
by Lemma 2.5,

lim inf, ,.(1/n)log P.(L.(w, -) € N) .
= 32 MY, ui(Af)I(ui;)) = %1 Nd(p).
This completes the proof.

For a sequence of sub-probability measures u,, we say u, converges to u weakly
if [ f du, — [ f du for every continuous bounded function f and u, converges to
w vaguely, if [ f du, — [ f du for every continuous function which vanishes at o.
We use u,, —,, 1 and u, —, u respectively to express such convergences. Through-
out this paper, .# will denote the space of probability measures and M the space
of all sub-probability measures. We now proceed to prove the analogue of Lemma
2.9 [1]. First, we state the following lemma without proof.

LEMMA 2.6. Let u, be a sequence of sub-probability measures in M and let u
be a probability measure. Then u, —, u if and only if u, —w u.

If we extend the domain of I-functional from _# to M with the obvious
extension, we have the following.

LEMMA 2.7. I(u) is lower semi-continuous on M with the vague topology.

PRroOF. Since p(x, dy) is a Feller transition function and 2 is a o-compact
space, we can write

100 = superecer | tog L0 i

where B*“(Z°) consists of bounded positive continuous functions which are
constants outside some compact set. (See [4]). Now, pf(x) = [ f(y)p(x, dy) =
[ f(y + x)p(dy), thus

lim, . | (pf)(x) = f(2) | = lim; e f flx + y) = flx)p(dy) = 0.

Therefore ((pf)(x))/(f(x)) = 1 as x — oo, i.e., log((pf)(x))/(f(x)) vanishes at o.
This implies that I(u) is lower semi-continuous with the vague topology.

Let M, = (u€M: I(p) < 7} and A, = {n € 4: I(p) < 7).
.LEMMA 2.8. M, is convex and vaguely compact.

PROOF. M, is vaguely closed because I is lower semi-continuous in the vague
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topology. Then the compactness follows from the fact that M is compact.
Convexity of I(u) is trivial.

LEMMA 2.9. If u (u # 0) is an extreme point of M, then u/| p || is an extreme
point of M jyuy-

PRrROOF. Trivial.

THEOREM 2.10. Let Xy, X3, -+, X, --- be a random walk satisfying (1.2).
Then for any x € 2 and u € A,

lim inf,,_.(1/n)log P.(L.(w, -) € N) = —I(u)
where N C _# is an arbitrary weak neighborhood of p.

ProoF. Let I(n) = 4 Since M, is vaguely compact, there exists a sequence
ui € M, such that u; —, u and u; = T3, \; wuix Where p;)’s are extreme points of
M, and )\, > 0 with 3%, N\, = 1. Let A(i, ¢) = {k: [| x|l = 1 — ¢}. By Lemma
2.7, we have u; —, u. Thus for any small ¢ > 0, Yreay Nix > 1 — ¢ when i — o,
If we let N C N be a weakly open neighborhood of u such that A € N if
[A=XN | =e+¢/(1 —¢)for some N\’ € N’ and let u;. = Yreaco Nirpnir where

¢, = Nk and pl, = —u*

" Tk Nk |
It is easy to see that || u;. — || < e + ¢/(1 — ¢), and therefore ;. € N if u; € N'.
Since each u/; is an extreme point of _#,y,, i, it is finitely decomposable with
respect to pi(x, dy) by Lemma 2.9 [1]. By Corollary 2.5, we thus have:

lim lnfn—m(l/n)IOg Px(Ln(w’ ) € N) ZkEA(! €) Al kI(”'l k)

" when i is large enough. But

N k Mi,k
Yread,) MNrl(nin) = Yread, . I < :
Yrea Nk \ M mikll

1 /
Sa=op Zreaie Nirl(pir) = a=o

thus
- _ __Iw
(1-2¢? (1-¢?

lim inf, . '—11 log P.(Lp(w, -) EN) =
We complete the proof by letting ¢ — 0.
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