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MUTUAL DEPENDENCE OF RANDOM VARIABLES AND
MAXIMUM DISCRETIZED ENTROPY

By CARLO BERTOLUZZA! AND BRUNO FORTE?
Universita di Pavia and University of Waterloo

In connection with a random vector (X, Y) in the unit square @ and a
couple (m, n) of positive integers, we consider all discretizations of the
continuous probability distribution of (X, Y) that are obtained by an m X n
cartesian decomposition of Q. We prove that Y is a (continuous and invertible)
function of X if and only if for each m, n the maximum entropy of the finite
distributions equals log(m + n — 1)

In [2] a criterion for the discretization of a continuous random n-vector has
been suggested. Based on the maximum entropy method, it presents indeed some
advantages with respect to the methods previously introduced (see [1] and [2]
for a full bibliography on the subject). In verifying the method, optimal bounds
for the maximum discretized entropy have been found ([1] and [3]). The (best)
upper bound in [3] is nothing but one of the “natural” properties of Shannon’s
entropy. Here we analyze the (best) lower bound derived in [1]. This bound is
not trivial since it holds only under certain regularity assumptions on the
probability distribution. These results are significant in pattern recognition. In
digital image processing via a (black and white) video screen, for example,
quantization is unavoidable. The image is a set of black or white squares covering
the screen. The distribution of the black squares (pixels) on the screen defines a
quantized probability distribution of a random 2-vector (X, Y). From this
viewpoint the results of the present paper can be interpreted as follows:

a) If for some couple (m, n) of positive integers a discretization of the screen
into m - n rectangles has entropy greater than log(m + n — 1) then the random
variables X, Y are either functionally unrelated or if related, relation is not
invertible.

b) Conversely, if for every discretization into m - n rectangles the entropy is
not greater than log(m + n — 1) then the “picture” is a perfectly connected
quantized line representing a monotone function [4].

1. Introduction. Let (X, Y) be a real-valued random 2-vector in the unit
square @ = {(x, ¥): 0 =x =< 1,0 < y = 1}; that is (X, Y) is an ordered couple of
real-valued random variables such that

Prob{X < 0} = Prob{X =1} =0
Prob{Y < 0} = Prob{Y = 1} = 0.
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As usual we denote by F(x, ¥) = Prob{X < x, Y < y} the probability distribution
of (X, Y) and by F,(x) = F(x, 1), Fo(y) = F(1, y) its marginal distributions.

For each m, n in the set of all positive integers N and each couple of sequences
of real numbers

Spni=0=s<8<-.-.-<s,=1}
T,=0=tr <t <. <t, =1}
we consider the cartesian decomposition S,, X T}, of @ into mn rectangles
Rij:={(x, y): i < x <81, t; Ty < tjna},

wherei=0,1,---,m—1andj=0,1, ..., n— 1. As in [1], the finite probability
distribution

m(F,m,n):={mj:i=0,.--,m—1,j=0,...,n—1}
with
mij = F(Six1, tis1) + F(si, t;)) —F(si, tjr1) — F(sis1, t))

is a “discretization” of the continuous probability distribution of the real-valued
random vector (X, Y). Shannon’s entropy of the discretized distribution, or
simply the discretized entropy, is given by

Hx(F, m, n)] = —X%5" 258 mijlog m; (0 log 0 := 0)

where the log is taken in any fixed base.

It has been shown in [1] that if F(x, y) is continuous and x — F(x, y),
y — F(x, y) are strictly increasing then for each m, n € N, the maximum value
of the discretized entropy satisfies the following inequalities

(1) log(m + n — 1) < Max,mnH[r(F, m, n)] < log(mn)

where on the right-hand side, equality holds for all m, n € N, if and only if X
and Y are stochastically independent [F(x, y) = Fi(x) - Fa(y)] [2].

Here, as in [1] and [2], we restrict ourselves to the case of a random 2-vector.
In the case of a random p-vector (p = 2), inequalities (1) read as follows

log(m; + mg+ .- + mp —p + 1) < Maxe@w,my,...,mpH[T(F, mq, -+, mp)]

<log(m; - my - --- - my).

A question arises, naturally. When is the left-hand side of (1) satisfied by
equality for all m, n € N?

The answer to this question in a certain class of random 2-vectors (X, Y) will
be given in the form of Theorem 2 in Section 3 of the present paper. But first in
the form of Theorem 1 we shall give another proof of the Lh.s. of (1). The proof
will be simpler than the one that can be found in [1] and it will provide a way
for a better understanding of the proof of Theorem 2.

2. The lower bound for the discretized entropy. We assume F(x, y) to
be such that both F,(x) and F»(y) are strictly increasing and continuous. For all
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such random 2-vectors the following theorem holds,

THEOREM 1. For eachm,n € N,
(2) Max, @ mnH[7(F, m, n) = log(m + n — 1).

PROOF. Construct a partition « of the square € into m + n — 1 rectangles
by drawing horizontal and vertical lines, according to the following rules (see
Figure 1).

(a) Draw n — 1 horizontal lines through the points (0, ¢), j=1,2, ---,n— 1,
such that Fy(t}) — Fo(t—1) = (m + n — 1)™! (¢, := 0), this being possible (in an
unique manner) since Fy(y) is continuous (and strictly increasing).

(b) Draw m — 1 vertical lines down to the horizontal y = &,-;, through the
points (s;, 1),i=1,2, ..., m — 1, so that

Fi(s;) + F(si-1, ta-1) — [Fi(siz1) + F(siy ta-1)l = (m+ n — 1)7!

(so := 0). This is always possible since the function x — Fy(x) = F(x, t,—;)
is continuous, hence it takes on all the values between 0 and 1 — Fy(t,—;) =
m/(m+n—1).

Each element (atom) of the partition a has probability 1/(m + n — 1). The
entropy of this uniform probability distribution equals log(m + n — 1).

On the other hand, by extending the vertical lines down to meet the horizontal

4
y
|
|
|
|
I
|
|
|
|
N !
-1 v
[ | I | !
I | I I '
t f l 1 |
h-2 v ! i ] |
! | | |
| | I | |
| | | | |
S S e Ty TS YUY
| | | | |
t1_ i i t N i
1 | | | |
1 | | ! |
to 1 | | | | -
So S, S, Sm-2  Sm-1 Sm X

Fi1G. 1. Partition « of the square Q.
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x (see Figure 1) one generates a decomposition =(F, m, n) of the square Q into
mn rectangles. This cartesian decomposition is a refinement of «, hence

H[x(F, m, n)] = log(m + n — 1),
which yields (2).
The following section is devoted to the proof of the main result.
3. Mutual dependence and maximum entropy. Under the same as-

sumptions of Theorem 1, that is

(i) x— Fi(x), y — F2(y) continuous on [0, 1],
(i) x— Fi(x), y — Fs(y) strictly increasing on [0, 1],

we have

THEOREM 2. If for each m,n € N
(3) Max.,mn H[m(F, m, n)] = log(m + n — 1)

then there exists a continuous and invertible function ¢: [0, 1] = [0, 1] such
that Y = ¢(X). The converse is also true.

In other words (3) is the necessary and sufficient condition for Y to be
functionally dependent on X in the class of random vectors (X, Y) that verify (i)
and (ii).

PROOF. Let ¥ be the set of all those points (xo, o) in @, such that for every
rectangle

R(C,ﬂ) = {(x,y)ilx_x0|<eyly_y0|<’7}

the probability of R(e, n) N Q is positive. The set ¥ is clearly closed. To prove
the first part of the theorem we have just to prove that 4 is the graph on a
continuous and invertible function ¢: [0, 1] —onto [0, 1].

Since x — Fy(x) is strictly increasing and 4 is closed, it is easy to recognize
that for each % in [0, 1] there exists one y in [0, 1] such that (%, y) € 7. Suppose
that there are two such numbers y: 3, < 3,. Fi(y) being strictly increasing, at
least one of the following inequalities holds true

(4) F(z, y;) — F(x, 1) >0
(5) Fy(y2) + F(x, 31) — F(%, 32) — Fao(31) > 0.
If (5) is satisfied, let
a := Fao(y;) + F(X, y1) — F(%, 3,) — Fa(3)
= Prob{(x, y): i <x <1,y <y < ¥}

and choose n € N, so that n™! < a/3.
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Then choose m € N, m = 2, to satisfy
m-2(m+n-1)'<FE<m-1Dm+n-1"1 for >0
m=2 if x=0.

(6)

This is always possible since forallm =2, n € N
Fiix)<l-n'<l-(m+n-1)"L.

According to the two diagrams in Figure 2, construct the partition 8 of @, by
exchanging horizontals with verticals in the rules we followed to construct the
partition a.

At least for one of the numbers ¢; we have

N <t <y,

since a = Prob(4) > 2n"! = 2(m + n — 1)~%. The entropy associated to partition
B equals log(m + n — 1). As before, the cartesian decomposition =(F, m, n)
generated by 8 (see dotted lines in diagram (b) of Figure 2) has entropy not less
than log(m + n — 1) since it is obtained by further partitioning the rectangles of
B. But in the present case we are sure that H[x(F, m, n)] is strictly greater
than log(m + n — 1). In fact the points (X, 1) and (X, ¥.) belong to two
separate rectangles (of positive probability) in =(F, m, n). Hence by going from
B8 to w(F, m, n) we have divided an atom of 8 into at least two atoms in
w(F, m, n) of probability strictly greater than zero, thus increasing the entropy.

t
Bu Hx(F, m, n)] > log(m + n — 1)
contradicts the hypothesis of the theorem, hence (%, ¥;) € ¥ and (%, y,) € ¥ imply
Y1 = Yo,

If the inequality (4) is the one which is satisfied, the procedure is quite similar.
In constructing the partition 8 one goes left to right instead of going right to left.
The special case ¥ = 0 is now the case ¥ = 1.

In the same manner, by interchanging x with y one can prove that for each
¥y € [0, 1] there exists at least one x € [0, 1] such that (%, y) € ¥, and (%,, ¥),
(X2, ¥) € ¥ imply %; = %,. Thus there exists an invertible function ¢: [0, 1] —onto
[0, 1] such that Y = ¢(X).

The set ¥ being closed, it contains each of the following points

(%, lim inf, ; ¢(x)), (%, lim sup,_;—¢(x)) forall 0<x =<1
(%, lim inf, ;. ¢(x)), (%, lim sup,_z+¢(x)) forall 0 <x<1
and, of course (%, ¢(%)). But the point on ¥ with x = % is unique, hence
lim inf, ,; ¢(x) = lim sup,_;-¢(x)
= lim inf, .z ¢(x) = lim sup,_;+$(x) = ¢(X)
for all % in the open interval (0, 1), and
lim inf, 0+ ¢(x) = lim sup.o+¢(x) = $(0)

lim inf,_,;_¢(x) = lim sup,_,-¢(x) = ¢(1).
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Hence, ¢ is continuous on the closed interval [0, 1].
The function ¢, being continuous and bijective, is either strictly increasing or
strictly decreasing.

Conversely, assume Y = ¢(X) with ¢: [0, 1] —onto [0, 1], continuous and either

(a) strictly increasing, or
(b) strictly decreasing.

In the case (a) it is easy to recognize that
¥ =7 = {(x, y) € Q: Fi(x) = Fa(y)}
and consequently F(x, y) = Inf{F,(x), F2(y)}. Then, by Lemma 2 in [1] we have
Max, @z mnH[m(F, m, n)] =log(m + n — 1)

for all m,n € N.
In the case (b)

7 =7":={(x, y) € Q: Fi(x) =1 — Fx(y)}.
Moreover
F(x, y) = Sup(0, Fi(x) + F2(y) — 1).

Thus case (b) is symmetrical to case (a), namely reduces to case (a) by the
change of variables x” = x, y’ = 1 — y. Thus again

Max, g m nH[w(F, m, n)] = log(m + n — 1)
for all m, n € N.

4. Conclusion and final comments. We would like to point out that
Theorem 1 still holds if we do not impose strict monotonicity to Fi(x) and Fy(y).

Note also that Theorem 2 can be immediately extended to a random p-vector
(X1, Xa, - +,:X,), p € N, X; real-valued random variables in the interval [0, 1].
With the said assumptions on the marginal distributions, X; and X; are mutually
dependent (i, j =1, 2, - - -, p) if and only if

Max,@m,,....myHlx(F, m, ---, mp)] = log(my + .-+ + mp —p +1)

for all my, mga, -+, mp E N.

However the p-dimensional case has a larger variety of dependence than the
two-dimensional one. Further investigations are needed. A degree of dependence
could be based on the values of Max,(z,m n» H[7(F, m, n)]. This will be the subject
of future investigations.
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