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A LOCAL LIMIT THEOREM FOR ASSOCIATED SEQUENCES

By THoMAS E. WooD

Louisiana State University

A local central limit theorem of the type due to L. A. Shepp is proved for
certain stationary sequences of associated random variables.

I. Introduction. A theorem of L. A. Shepp (1964) gives conditions under
which an independent, identically distributed sequence Y;, Y;, - of random
variables with ¢% = EY? < o will satisfy

limn_.,mUV27rnP(aS Y1+ e +Yn5b)=b_a

for all real numbers a and b. Our result combines the techniques of Shepp and
C. M. Newman (1980) in a local limit theorem for associated random variables
which reduces to Shepp’s theorem if the variables are uncorrelated.

The proof of our result relies heavily on the theory of characteristic functions.
We have drawn mainly from the book by L. Breiman (1968) for basic results on
characteristic functions as well as for our notation. The estimates we use on
characteristic functions of associated variables can be found in Newman (1980),
Newman (1982), and Wood (1983).

II. Notation and background. Throughout this paper we let X;, X, - --
denote a strongly stationary sequence of associated random variables with mean
zero, 0 < EX? < o, and -

A2=EX? + 2 Y. Cov(Xy, X,) < .
We further establish the following notation:
Sk=Xi+ -+ + Xa; Fulx) = P(Sk s x); Si= Su/Vk;
o = var(S;); fu(u) = E exp(iuSi); ¢r(u) = E exp(iuS;).

Let N4(x) denote the normal distribution with mean zero and variance A2

The Central Limit Theorem of C. M. Newman (1980) says that within our
framework Fi(xVk) converges to N4(x). In particular, we will use the facts that
o} converges to A% and ¢.(u) converges uniformly on compact intervals to
exp(—A*u?/2). We also use the following inequality.

Newman’s Inequality. Suppose Yi, ---, Y, are associated random variables
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with finite variances; then for any real \;, - - -, A,
|E exp(i Y81 \eY:) — 151 E exp(ir:Y3) |
= Yk=uj>k | M| | N |Cov(Xy, X;).

From this inequality we can point out that if our variables X;, X,, --- are
uncorrelated then o} = A? is a constant sequence, the variables are mutually
independent, and our theorem will reduce to that of Shepp stated below.

ITII. The results. We set Ly = {nd: n = 0, 1, £2, .-} and L, = R
(the real numbers). A random variable X is called centered lattice if there
exists d > 0 such that P(X € L;) = 1, and there is no d’ > d and « such that
P(X € a + Ly') = 1. X is called centered nonlattice if there are no numbers «
and d > 0 such that P(X € a + L;) = 1. We let /; assign mass d to every point
of Ly, and 4 denotes Lebesgue measure on L,.

Shepp’s Theorem. Let X, X5, --- be independent, identically distributed
random variables, either centered lattice on L, or centered nonlattice on L, with
EX,=0and 0 < EX} = ¢ < ». Then for any finite interval I,

lim, oo V27nP(S, € I) = 4().

Since uncorrelated associated random variables are independent, this theorem
covers the case when o7 = A? or, what is the same thing, Cov(X;, X,) = 0, for
all &.

THEOREM. Under the assumptions in Section IT with Cov(Xy, X,) > 0 it is
possible to find m = m(k) so that limy_.m**(A% — ¢3) = 0 and for any finite
interval I,

im0 0% V21 mP (S, € VEI) = £(I).

REMARK. The conclusion of the theorem is a statement of weak convergence
of measures. Thus, the theorem follows by showing that

1) limye 0% V2 MER(S i/ VE) = f h(x) dx

for a sufficiently large number of functions h. Let H be the class of all functions
h such that [ | h(x) | dx < o and h(x) = [ ¢"“*h(u) du for some continuous, real-
valued function h with compact support. It suffices to prove (1) holds for all h €
H (see Breiman, 1968).

LEMMA. The conclusion of the theorem is valid if

limy_woxvV2rm f Fr(u/vE)h(u) du = f h(x) dx forall he€E H.
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PROOF. Let J be any finite interval containing the support of A and note
that

Eh(Sn/VE) = f f exp(iux/vE)A(u) du Fo(dx)
= f fru W/ VR)A(W) du

= I, fre(w/VER)A(U) du.

We write

fJ frr(w/VR)R(W) du = L (frx(w/VE) — fR(u/VE)A () du

+ J;f,'z"(u/\/’ﬁ)ﬁ(u) du:=1 + I,.

Using Newman’s Inequality it can be shown (Newman, 1980; Wood, 1983)

L] <A« fJ | s (u/VR) = f2(u/VE) | du

<Al S .isn Cov(SE, Si) I’u2 du

< (constant depending on h)m(A? — ¢2)
where
Sue= X1+ -+ X))+ oo+ Xpovprr + 00+ + X)) =8k + -+ + SF
and S7 = S7/VE. Thus, ¢, v2rml; — 0 since m¥%(A% — ¢%) — 0 and the lemma

is proved.

ProoF OF THE THEOREM. The proof of the theorem now follows by showing
that ¢,v2rml, — [ h(x) dx. For this purpose we recall that fi(u/vVE) = ¢x(w)
and ¢,(u) converges to exp(—AZu?/2) uniformly on compact sets. Thus for all
sufficiently large k, | ¢»(u) | # 1 on the set J\{0}. Standard estimates let us write

dr(u) =1 — (c3u?/2)(1 + 6e(w)), limu_odk(u) = 0.

Again we have for sufficiently large k that there is an interval N = (—b, b) small
enough that on N, | 8,(u) | < % and cfu® < A%u® < 1. Also, for u € J\N, | ¢x(u) |
=<1 — B for some 0 < 8 < 1 and such large k.

On N we have

| pr(u) | =1 — (07u?/2) + (oFu?/2) | dx(u) |
=1 — (c}u?/4) < exp(—oiu?/4) \ exp(—A%u?/4).
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Hence
L= L P Wh(W) du + Ol hll.(1 = 8)™

where | 0., | < 4(J). Also

bvm
o [ ar i) du = o f m<L ; L)
Ok 2rm L ¢k (u)h(u) du Ok 2w v ¢k % h \/E dv
which, by the dominated convergence and central limit theorems, converges to
A2 [ exp(—A%u?/2) du h(0) = 2xh(0). To see the pointwise convergence of
o7 (v/vm) to exp(—A2v2/2) notice that

| 67 (v/Vm) — exp(—A%*/2) |
= | $me(v) = $F(©/Vm)| + | dma(v) — exp(-A%v%/2)|
= | fru(v/Vmk) = f W/ mR)| + | $ms(v) — exp(=A%0%/2) |.
Now, as in the proof of our lemma above,
| e (v/VmE) — fP(v/vmE) | < (constant depending on v) - (A2 — ¢3),

which goes to 0, and ¢,..(v) converges to exp(—AZ%v?/2) by Newman’s Central
Limit Theorem. Since h(u) = (1/27) [ exp(—iux)h(x) dx by Fourier inversion,
setting u = 0 gives

o, V2rmER(S,/VE) — f h(x) dx + lims b Vm| A ||=(1 — B)™

=fh(x) dx.

REMARKS. (a). If we allow the case Cov(X;, X.) = 0 in the statement of
our theorem then m*2(A2 — ¢}) = 0 since o = A%, and we have Shepp’s theorem
by setting m = n and k& = 1. One must restrict to the case of centered lattice or
nonlattice variables then because without the factor of v, |fm:(u)| may be
periodic and then | f*(u) | = 1 for u 5 0 in J. However, for large &, | f7*(u/VE) |
# 1 for u # 0 in J, and the additional restrictions are unnecessary.

(b). It is important to see how m grows in relation to k, but in the generality
of our theorem we can say nothing more. The growth of m in relation to k should
be fast to be in the spirit of Shepp’s theorem, and this requires fast convergence
of the series Y ;-2 Cov(X;, X.). One example worth mentioning is a ferromagnetic
Ising model. At temperatures above critical the series ¥ -, Cov(X;, X,,) converges
as a geometric series and m can grow exponentially in k. This and other examples
are discussed briefly in Wood (1983).

This concludes the proof.
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