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MALLIAVIN DERIVATIVES AND DERIVATIVES OF
FUNCTIONALS OF THE WIENER PROCESS WITH RESPECT
TO A SCALE PARAMETER

BY MOSHE ZAKAI'

Technion—Israel Institute of Technology

Let F(cow) be a functional of the Wiener process with variance parameter
c3 and let F(cw) be an extension of F(cow) to F(cw), ¢ € (0, ¢y). Relations are
derived between the Malliavin derivatives, between the derivatives with
respect to the scale parameter (0F (pcw)/dp)p=1 and ‘noncoherent derivatives’
such as (dE(F(cw + ~/;cu~)) | w)/de).=o where @ is another Wiener process
independent of w and between the generator of the nontime-homogeneous
Ornstein-Uhlenbeck process.

I. Introduction. Let w denote the standard Wiener process on [0, T']; for
¢ real, cw will denote the Wiener process with variance parameter ¢ (E ((cw)(t))?
= c%t). Let F(cow) be a square integrable functional of cow. Then in general
F(cow) may not be extendable to a continuous functional on the space of
continuous functions on [0, T'] starting at zero. Note, however, that F(cow) may
always be extended to F(cw), for all ¢ satisfying 0 < ¢ < ¢; for some ¢y, ¢; = ¢
but such an extension is not unique. Derivatives of functionals of the Wiener
process have first been considered for differentiable functions on the space of
continuous functions and derivatives of the form (0F(cow + ¢H)/de).—0 where
H(t) = [§ f(¥) dv; in which case the measure induced by cow + ¢H on the space
of continuous functions is absolutely continuous with respect to the measure
induced by cow (cf. [4]). Malliavin introduced a different class of derivatives and
an associated calculus for functionals F(cow) defined for some fixed co [5]. The
Malliavin calculus can be introduced either directly ([2], [7]) or through a time
homogeneous infinite dimensional Ornstein-Uhlenbeck process ([5], [6], [8], [9]).
For the case where F(cow) is the restriction to cow of a twice differentiable
functional on the space of continuous functions starting at zero, the relation
between the Malliavin calculus and the calculus of Fréchet derivatives is well
known. The purpose of this note is to consider the relation between Malliavin
derivatives to certain derivatives related to F(cw) where ¢ is in the interval
(0, c1), and in particular the derivative of F with respect to the scale param-
eter c.

II. Preliminaries. Let Co(T) denote the space of real valued continuous
functions on [0, T'] which vanish at ¢ = 0. Let .#° denote the o-field induced by
Borel measurable subsets of Co(T') and completed with respect to the measure
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610 M. ZAKAI

induced by the nonstandard Wiener process cw on [0, T']. Whenever we consider
the functional F(cw) for 0 < ¢ < ¢, we will assume that F(+) is defined for all the
elements of Cy(T') and for every ¢, ¢ € (0, c;], F(cw) is a Wiener functional, that
is, an ¢ adapted random variable. In other words, F(cw) is assumed to be scale
invariant measurable in the sense of Johnson and Skoug [3].

Turning now to the definition of the Malliavin derivative ., let F(cow) be a
square integrable functional of cow for some fixed co, then F(cow) has the multiple
Wiener-It6 integral representation:

T ty
(1) F(cow) =K + Z‘,%J{: J; falts, - -+, ta) d(cowy,) --- d(cow,).

If the series

T ty
Shea nj; J; falts, -+, ta) d(cowr,) --- d(cow,)

converges in the mean then we say that F(cow) is in the domain of .% and define

(51, 121, [7], [8]) :
T t
(2) ZLF(cow) = Yn= nj; j; falts, - -+, ta) d(cowy,) -+ d(cow,).

REMARK. Let Z[n] denote the Malliavin operation .# or L as defined in
reference [n] then the formal relation between #[n] and .# as defined by (2) is
as follows: .Z[2] = Z[6] = Z[7] = - and .Z[5] = Z[8] = — % %. The reason
for reversing the sign in the definition of .# is that it appears more natural in
the context of derivatives with respect to a scale parameter (cf. equations (8) and
(13a)). Let civ denote a Wiener process with variance parameter ¢ which is
independent of cw and let 9 denote the sub o-field generated by cw.
Since F(cw) was assumed to be a Wiener functional of cw for some fixed ¢
and since cw and (V1 — ecw + +Veciv) have the same variance parameter,
F(V1 = ecw + vVeed) is well defined. Furthermore, since F(cw) was assumed
square integrable, it follows immediately that

E(F(V1 = ecw + Vecd) | %)

(3) T ty
=K+ Y5 (1- e)"/zj; L falts, -+, tn) d(cwy,) --- d(cw,,).

Consequently, if F(cw) is in the domain of . then
(4) (1/e)F(cw) — E(F(V1 = ecw + Vecid) | 7%) “—3 %% F(cw).
The nontime-homogeneous Ornstein-Uhlenbeck process in infinite dimension,

can be introduced as follows. Let Wy, t, s = 0, denote the Brownian sheet and
consider the process X, s = 0, 0 < t < T satisfying

83X3’t = —aXs,t ds + 8., Ws,t
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with Xy, 0 < t < T as the initial condition. Then
8
(5) Xs,t = Xo,te_‘“ + e™ f e"“'a., Wa,t'
0

Since [§e*°9, W, = [r,, e*° dW,,, where the r.h.s. of the last equation is a surface
integral on R, = {(s, 7), 0 < 0 < 5, 0 = 7 < t} and since this indefinite surface
integral has a.s. a continuous sample version it follows that the solution to (5) is
sample continuous iff X, is sample continuous in ¢. It follows from (1) that for
any 9 >0

8+9
Xoror = s,ze_m, + eale* f e, W,,;.
8

Therefore X, is a Markov process in the parameter s with the state space being
functions in the ¢ parameter on [0, T']. Let Y(7) = [3*’ ¢*°0, W, . then Y(7) is a
one parameter Brownian motion in the 7 parameter with the variance E Y3(7) =
7[5 e**?do = 7™ (e?*® — 1)/2a. Therefore if X,,. is a Brownian motion with a
variance parameter c2 then the pair (X,.; X+s,.) has the same probability law as
the pair

(6) (cw, e ®cw + ((1/2a)(1 — e™2%) %),

Let Xo. = cw and set & = (2c?)™* then the process X, is time homogeneous in
the time parameters. It follows immediately from (4) and (6) that if F(cw) is in
the Domain of . then it is in the domain of the Generator of the Markov process
X,,. and

(7) - ZF(cw) = —(%c)ZF(cw).

III. Relations between the different derivatives. The relation between
the Malliavin derivative .# and derivatives of F(cw) with respect to the scale
parameter c is given by the following result.

PROPOSITION 1. Let F(cw), ¢ < ¢o be a scale invariant measurable functional.
Assume that for 0 < ¢ < ¢o (F(cw) — F((1 — ¢)cw))/e converges in quadratic mean
as ¢ — 0.and denote the limit as dF ((pcw)/dp),=1 or D°F(cw). Also assume that
for 0 < c < co (E{F(cw + Vecd) | #°} — F(cw))/e converges in the mean as ¢ — 0
and denote the limit as DF (cw). Furthermore, assume that D*F(cw) is continuous
in the mean with respect to the scale parameter ¢, 0 < ¢ < co. Then

(8) ZF(cw) = D°F(cw) — 2D F(cw)
and for EX2, < cot
9 ZF(X,.) = —(1/2¢)ZF(X,,.) + ((1/2¢®) —a)D*(X,.).

REMARK. Given F(c, w) for some fixed c;, each of the derivatives D°F(c, w)
and DF (¢, w) depends on how F(c, w) was extended to ¢ # ¢, while the left hand
side of equation (8) is independent of such an extension.
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PROOF. For ¢ < ¢y, arbitrary ¢, and e sufficiently small
F((1 = 2ea)2cw + Vee, )
(10) = F(cw + (¢/(1 — 2ea))V2c,)
— D*F(cw + ((¢/(1 — 2¢a)))Y?c,i0)(1 — (1 — 2ea)2) + o(e)

where o(e) denotes a random variable with a second moment which is o(e2).
Therefore

(1/e)E{F((1 — 2ea)Y2cw + Vecy ) | 7%} — F(cw)

(11 m. 2.
) bl (9> DF(cw) — aD*F(cw).
e—0 \ C
In the stationary case ¢; = 1, ¢® = (2a)™" therefore the left hand side of (11)
converges to —a.ZF(cw) and (8) follows. Replacing equation (10) by

Fe™cw + ((1/2a)(1 — e™2%))V2p)
= F(ew + ((1/2a)(e? — 1)) %)

= D*(cw + ((1/2a)(e? — 1))"2D)(1 — ™) + o(e),
it follows from (6) that

ZF(X,,.) = (1/c*)DF(cw) — aD*F(cw)
and (9) follows by substituting D from (8) into the last equation.

REMARK. Equation (8) can be used to yield an expression for D for solutions
of stochastic differential equations in terms of known results for . and an easily
derivable equation for D*.

Two special cases of (8) and (9) will be considered now.

Let X denote the Banach space of continuous functions on [0, T] starting at
zero under the sup norm. Assume that F(cow) can be extended to all x € X and
is a continuous functional on X for this extension which will be denoted F(x). It
is easy to show that such an extension, if it exists, is unique. Let F(x) be twice
continuously Fréchet differentiable on X:

F(x + ey) = F(x) + eF.(y) + %e?Fox(y, y) + n(e; %, y)

where, for every x in X, F,(y) is a linear form in y; F, ,(y, z) is a bilinear form
iny, z € X and 5(¢; x, y) is o(e?) for every x, y € X. Further assume that F.,(w),
F oy (@), Fey,ew(h, W) are square integrable and En’(e; w, w) and En?(e; w, ) are
upper bounded by Ke*. In this case E(F.. (b)) = 0, because of the linearity of
F, (%) in w;

(12a) D*(cw) = Fe,(cw)

and
DF(cw) = Vo EAF .00 (C), cth) | 7).

Let h'(*),i=1, 2, --- be any complete orthonormal sequence on [0, T'] and v;
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independent Gaussian normalized random variables. Then Y, v; [§ h'($) d¥
converges in the mean to the standard Wiener process on [0, T'], further assume
that h‘ are such that the convergence is uniform. Then for x € X fixed and since
¥i, ¥j, I # J are independent

E{Fu(w, w)} = limy_oE IY 7?Fxx<f hi(9) dd, fhf; d0>
0 0

=27 Fx,< j; hi(®) dv, j; hi(®) dz‘}).

The last expression is known as trace D?F(x). Therefore
(12b) DF(cw) = Y% trace D2F(cw),

which yields the relation #F = F,,(cw) — trace D*F(cw), which was used by
Shigekawa [2], [7] to introduce .ZF.

A second special case is the following. Let F(cow) be a square integrable
functional for some ¢y > 0. A natural extension of F(cow) to ¢ < ¢q is to set

n T to
F(cw)=K+2$=1<C£)J; J; fa(ts, - -+, ta) d(cowy,) - - - d(cows,)

0

(13) r .
=K+2$=1J; J; fa(ts, - -, ta) d(cwy,) - - - d(cw,,)

where f,(---) and K are as in (1). In order to point out the difference between
this special case and the previous one, consider the functional F(w) = w?(T) —
T. This functional can be extended as a functional on the Banach space of
continuous functions on [0, T'] and for this extension Fi(cw) = (cw(T))2 — T on
the other hand F(w) = 2 [{ [¢ dw., dw, therefore the extension defined by
equation (13) yields Fy(cw) = 2c? fgz wy dw,s. Consequently, (since for ¢ # 1,
Fi(cw) # Fa(cw)) Fi(cw) and Fo(cw) are two different extensions of F(w).
Incidently, a case in which the extension defined by (3) yields a solution to the
problem of representing a given process as “signal plus independent white noise”
is given in [10]. For the extension defined by (13) we obviously have

(14a) . ZLF(cw) = D*F(cw)
therefore (9) and by (11)

(14b) ZF(X,,.) = —aLlF(X,,)
and

(14c) DF(X,.) = 0.

IV. The bilinear form associated with the Malliavin calculus. We
turn now to the bilinear map or the “opérateur carré du champ” (DF, DG). Let
hi(s) be a complete orthonormal sequence on [0, 7] and assume that
(F(cw + ¢ fo hh d¥) — F(cw))/e converges in quadratic mean and denote the limit
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by DyiF(cw). Assume that Y X, (Dy:F(cw))? converges in L, and denote the limit
by

(15) (DF, DF) = ¥, Dyi(F(cw))>.
If (DF, DF) and (DG, DG) exist then (DF, DG) = (DG, DF) is defined by
polarization.

A different way to introduce (DF, DF') is the following. Let @ denote the class
of process {u,, t € [0, T']} such that, a.s., u. is measurable and square integrable
on [0, T], for every ¢, u, is adapted to the o-field generated by cw (but not
necessarily to the o-field generated by {cw,, 0 < ¢ < t}), and the measure induced
by cw. + ¢ fo usdd on Co(T) is equivalent to the measure induced by cw for every
0 < e < ¢. It can then be shown [11] that

(Du(F (cw)))?

[§ uj do
where D F(cw) = d(F(cw + ¢ [o us d¥)/d¢).—o. We may therefore denote
(DF, DG) as the (gradient)?® operation. As introduced above, the (gradient)?
operation on F(cow) does not depend on any possible extension of F(cow) to

other values of c. In terms of the Ornstein-Uhlenbeck process this operation may
be introduced as follows [5], [9]. Let C¥ denote the continuous martingale

(16) (DF, DF) = sup,eq

C{=F(X,) - F(X,) —J; ZF(X,,) dv
and set
(17) I'(F, G) = 2¢2(d/ds)[CF, CY;

where [C*, C€), denotes the cross quadratic variation (or cross increasing) process
associated with the martingales C* and C® and c? is defined by cZt = EX2,.

In the stationary case it is well known that I'(F, G) = (DF, DG) (cf. Theorem
7.1 of [2]). It seems interesting to note that the same result holds in the nontime
homogeneous case.

PRrROPOSITION 2. If F, G and FG satisfy the assumptions of Proposition 1, then
(18) I'F(X,.), G(X,.) = (DF(X,,.), DG(X,,.)).

PRrROOF. (DF, DG) as defined by (15) depends only on the variance parameter
¢? (but is invariant of «) and, as is well known,
(19) (DF, DG) = X(FG) — F¥G — GZF.
On the other hand, a direct calculation as in [9] yields that as in the time
homogeneous case
(20) I'(F, G) = 2¢%(2(FG) — F-£G — G-£F).

Substituting (9) in (20), noting that D*(FG) — FD*G — GD*F = 0 and comparing
with (19) yields (18).
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