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OPTIMAL STOPPING OF INDEPENDENT RANDOM
VARIABLES AND MAXIMIZING PROPHETS

By D. P. KENNEDY
University of Cambridge

The prophet inequality for a sequence of independent nonnegative ran-
dom variables shows that the ratio of the mean of the maximum of the
sequence to the optimal expected return using stopping times is always
bounded by 2; i.e., on average, the proportional advantage of a prophet with
complete foresight over a gambler using nonanticipating stopping rules is at
most 2. Here, an inequality linking the mean of the sum of the k largest order
statistics of the sequence and the optimal expected return is derived. This
implies that if the k largest order statistics are close to the maximum in mean
then the proportional advantage of the prophet is at most of order (k + 1)/k.
An extension of the additive prophet inequality for uniformly bounded inde-
pendent random variables is also given.

1. Introduction. Let {X,, r = 1} be a sequence of independent random
variables on a probability space (2, #, P) and let 9 represent the set of (finite-
valued) stopping times with respect to the natural filtration. Krengel and Su-
cheston [6], [7], showed that if the random variables X, are nonnegative, then
there exists a universal constant, C, such that

(1.1) E(sup»1X;) = C supres EXr.

Furthermore, Garling (cf. [7]) showed that C = 2 and that 2 is the best possible
constant in the sense that the upper bound in (1.1) is attained for certain random
variables. This and similar inequalities linking the mean of the maximum of the
sequence and the optimum of the stopped sequence have come to be called
“prophet” inequalities as E(sup,=,X,) represents the expected return to a prophet
(a player with complete foresight) in a game where the rewards are represented
by the sequence {X,, r = 1} while supresEXr is the optimal expected return of
a gambler using nonanticipating stopping rules. Thus (1.1) shows that, on
average, the gambler does proportionally at least half as well as the prophet.

In a recent series of papers Hill and Kertz ([2], [3], [4], [5]) have considered
various extensions and refinements of (1.1). In particular ([4]), they have shown
that if the random variables {X,, r = 1} are uniformly bounded, taking values in
[a, b], then

1.2) E(sup,=1X;) — supres EXr < (b — a)/4,

and again this is the best possible such inequality.

While (1.1) and (1.2) give tight bounds on how the gambler fares relative to
the prophet, there are situations where, for example, the gambler does very much
better than half the return of the prophet and in this paper we attempt to pin

Received December 1983; revised May 1984.
AMS 1980 subject classifications. Primary 60G40, 62L15.
Key words and phrases. Optimal stopping, prophet inequality, order statistics.

566

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Probability.

L ®
www.jstor.org



OPTIMAL STOPPING 567

this down by relating the gambler’s return to order statistics of the sequence
{X,, r = 1} other than the maximum. For each n = 1and 1 < k < n, let My, be
the kth largest order statistic among X, - - -, X,,, i.e.,

M, =V AL X,

where the maximum extends over all ry, -- -, i withl=r<r<...<rn=n.
Let M), = M = lim, .My, be the kth largest order statistic from the whole
sequence {X,, r = 1}, so M; = sup,>; X,. We will prove the following generalization
of (1.1).

THEOREM 1. If {X,, r = 1} is a sequence of independent nonnegative random
variables, then for each k = 1,

(1.3) E[3k M)] < (k + 1)supres EXr,
and the inequality is the best possible.

What (1.3) shows is that if there are k order statistics which are close to
sup,=1 X, in mean, then the proportional advantage of the prophet is not 2 but
(k + 1)/k. Of course, this reduces to (1.1) in the case k = 1. The analogous result
to (1.2) becomes the following.

THEOREM 2. If {X,, r = 1} is a sequence of independent random variables
taking values in [a, b] then for each k = 1,

(1.4) (1/k)E[L%1 Mi] — supres EXr < (b — a)/(k + 1)**V

Again, we observe that (1.4) reduces to (1.2) in the case k = 1, though for
k> 1it is not clear whether the bound in (1.4) is tight. Unlike (1.2) the inequality
of Theorem 2 may be vacuous in that it is possible that the left-hand side of (1.4)
is negative for k£ > 1 (consider the trivial case X; =1, X, =0, r > 1). We present
the proofs in Sections 2 and 3 and we note that Theorem 1 could be deduced
from the proof of Theorem 2 (in particular, from Corollary 3, below) but we
present a direct argument as it suggests the proof of the second result.

2. Proof of Theorem 1. First note that for nonnegative real numbers
a, 3, v we have

2.1) aVB+y=a+pBVy, for a=4.
Assume that X, = 0 for each r, and for n = r, let
Urn =SUp{EX7m: TE I, r < T < nj

with v,., = 0 for r > n. Then (cf. Chow, Robbins and Siegmund [1]) v, = EX,,
and v, = E(X, V Ur41,n), r < n. Note that

lim, by, = SUp{EXr: TE T, r < T <} =v,,

say, with v, = E(X, V v,+1) and v; = supres EXr. Observe that vy, = vg, = -+ -
= Upn, for each n. The proof makes repeated use of (2.1) and the following
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obvious equality. For any «, and n = &,
(2~2) §=1 aV Mi,n = ?=_11 aV Mi,n—l +aV Mk,n—l \Y Xn’

where by convention we take M;, = 0 for i > n, and the empty sum to be zero.
Now, for fixed n = k, we will show by backwards induction on r = n, n — 1,
.+, kthat

2

(2~3) E[ZLI Mi,n] = E[ZLI Ur+2,n V Mi,r + vr+1,n]

and furthermore, the right-hand side of (2.3) is decreasing in r. Clearly (2.3) is
true (with equality) for r = n; for n = r > k, using the fact that v, , is decreasing
in r, we have

E[ZLI vr+2,n V Mi,r + vr+1,n]
= E[Zf=1 Ur+1,n \Y Mi,r + vr+1,n]
= E[Zf;ll vr+1,n V Mi,r—l + vr+1,n V Mk,r—l V Xr + vr+1,n]’

the second relation coming from (2.2). Now, take @ = v,41,, V M},,—;, 8 = X, and
Y = Ur+1,n in (2.1) and we see that this expression is bounded above by

E[Xk1 Ursrn V Misy + X, V Upe10] = E[ZE1 Urirn V Mooy + 0,,],
giving the inductive step. Setting r = k in (2.3) and observing that
Tht Vkron V Mip = Tk Upeon V X;

gives

E[Yk Mi,) < E[Shy Vkian V Xi + Ukernl.
Letting n — o and using the fact that v; = E(X; V vi+2) for i < k, gives

E[XEs M) < E[Zki veea V Xi + 0ea] = T v

< (k + 1)v; = (k + 1)supres EXr,

(2.4)

which establishes (1.3).

To see that the inequality (1.3) is tight, take X; = X, = ... =X, =1, X, =0,
r>k+ 1 and X4, = 1/6 with probability 6 and X+, = 0 with probability 1 — 6.
Thenv; =1and E[SE, M]=k+1—-6—>k+1asé—0.

It should be noted that (1.3) provides an improvement on the inequality (1.1)
only if EM; > 4 EM,. In the above example the ratio EM,/EM, tends to % and
so the question is raised as to whether, say in the case k = 2, (1.3) is the best
bound that may be obtained for EM; < 2EM,. The answer is no, as is shown by
the following result, the argument for which was suggested by an Associate Editor
of a first draft of this work.

PROPOSITION. If {X,, r = 1} is a sequence of independent nonnegative random
variables then

(2.5) EM, =< ((1 + v)/2v®)supres EXr
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where v = v (a) is the nonnegative root of
1-7P=Q0-a)l+v) with o=EM,EM,.
PROOF. Supposethat 0 =3 =<1, 0 < v =< 1 satisfy

(2.6) a=1-(1-7v)*1-p8).
Then P{M, > BEM,} = v, for if not

which in turn implies that
P{M, < BEM, | M; = X;, M\} = P{M, < BEM,} > 1 — v;
now consider
EM; — M;) > (1 — v)E(M, — BEM;). = (1 — v)E(M,; — EM,)+
= (1 - v)EM; — EMy))-> (1 — v)*(1 — B)EM,,
from 2.7).

Hence, {1 — (1 — v)%(1 — B)}EM, > EM,, contradicting (2.6), and disproving
(2.7). By considering T = inf{k: X, = BEM,} we see that supre 7 EXr = ySEM,,
and maximising v subject to a =1 — (1 — v)%(1 — B) gives (2.5).

Now, as « = EM,/EM; — 1, v(a) — 1 and hence supres EX7/EM; — 1,
showing that the lower bound in (1.3) cannot be best possible for all values of «,
% < a <1.For a =1, M, = M, = constant, a.s. and so supres EXt = EM,;. It
would be interesting to obtain a lower bound for the ratio supres EXr/EM, in
terms of « = EM,/EM,;; a direct numerical calculation shows that the
bound provided by (1.3), (1 + «)/3, is strictly larger than that given by (2.5),
2v2(a)/(1 + v(a)), for all values of a < 0.992.

One might conjecture that for some k& we always have supres EXr > EM,, but
the following example shows that this is not true. Take X; = Xo = --- = X = 1;
for k + 1 = i < 2k, let X; take the values o;/6; and 0 with probabilities §; and
1 — §; respectively, 1 > «; > §; > 0 and let X, = 0 for r > 2k. Assuming that ay;
+ .- t+agp=<1lwehave ;= EX;+ -.- + EXy, <1 for k+ 1 =i =< 2k, whence
Vi =V = 1. But EMk =1+ {/\iﬁl(a,/ﬁ,) - 1} H%ﬁ-l 6i> 1.

Examining the proof of Theorem 1, in particular the relation (2.4), might lead
one to conjecture that it could be improved to

(2.8) E[TEi M < suplE[Zi" Xp: T €T, T1 < T2 < -+ < Th1}.

Again, this is not true. Let X; = 1, 1 = i < k&, and suppose that X, takes the
values 2, 0 with probabilities , 1 — §, X2 takes values 3/¢, 0 with probabilities
&1 —e,and X, =0,r > k + 2. Provided 1 > § = Y%, it is easily seen that the
right-hand side of (2.8) is k + 2 + 26 while the left-hand side is B + 6 + 3 — ¢
contradicting (2.8) as ¢ — 0.

Finally, it has been pointed out by E. Samuel-Cahn that a technique used by
her in [8] leads to a simple and elegant proof of Theorem 1. For b = 0 let T'(b) =
min{r < n: X, = b} with T'(b) = n + 1, if there is no such r. By choosing b* to be
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the unique solution to b = E ¥, (X; — b)., then the argument in [8] shows that
b* = EX7¢» from which Theorem 1 follows when it is observed that

Yhi M, < kb* + 31 (X — b%),.

3. Proof of Theorem 2. By scaling the uniformly bounded random vari-
ables {X,, r = 1}, without any loss of generality we may assume that they take
values in [0, 1]. The argument is similar to that of the previous section except
that in place of (2.1) we use the following inequality. For k& = 0 and real numbers
O=sy=wr=sop1=<---=ay=1,and 0 < <1 we have

(B1) arVB+y—vIEl(@VB) Al =ar+8Vy—(8V7Y) [ ai,

where by convention the empty product is 1. This inequality follows easily after
observing that for k = 1

1 [l V B) AN aia] = [ V B) A o] TTEF a.
Now take My, =1andthenfor0<a<1,i=1,
3.2) aVM,=(@VM,.VX)A @V M_yn,).

With the same notation as in the previous section we shall establish, for fixed
n = k, by backwards inductiononr=n,n —1, - - -, k that

(3 3) E[ZLI Mi,n]
. = E[Zf-l Ur+2,n V Mi,r + Ur+1,n — Ur+1,n H?=(k—n+r+l)+ (vr+2,n V Mi,r)],

and furthermore, the right-hand side of (3.3) is decreasing in r. This inequality
is immediate for r = n. Then, for n = r > k, using (2.2) and (3.2), since Uy, 18
decreasing in r, we have

E[2§=1 Ur+2,n V Mi,r + Ur+1,n — Ur+1,n sz=(k—n+r+1)+ (vr+2,n V Mi,r)]
= E[ngl vr+1,n V Mi,r + vr+1,n - vr+1,n H?=(k—n+r+l)+ (vr+1,n V Mi,r)]

= E[Zf;ll Ur+1,n \Y Mi,r—l + Ur+1,n \Y Mk,r—l \% Xr + Ur+1,n
— Ur+1,n H?=(k—n+r+l)+ (Ur+1,n VM, .VX)A (Ur+1,n V Mi_1,41)]

Now apply (3.1) with &; = Uy41,, V M1, i = (B — n + r),, -+, kR a; =1 for
i<(k—=n+r); 8= X, and ¥ = U,41,,. Using the fact that X, is independent of
M;,_, we see that this last expression is bounded above by

E[Zi';l Ur+1,n V Mi,r—l + Upn — Ur,n H?=(k—n+r)+ (vr+1,n V Mi,r—l)]’

which establishes the induction and hence (3.3). Taking r = k in (3.3) and noting
that
f=1 (e V Mi,k) = f—l (a V Xi)

we see that
E[Tk, M. = E[Tk, Ukt2,n V Mig + Ukern = Uktrn 1151 (Vkezn V M;.)]
=ETL. XV Ukt + Ukitn — Ukern [[ 51 (G V Uk+2,n)].
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Using the independence of Xj, - - -, X; and letting n —  yields
E[YEi M) = TE1 E(X; V Uke2) + Ukir — Uker [151 E(XG V Ugeo)
(3.4) =Y o -5 v
< (k + v, — v¥*.
It follows that
(1/R)E[X %1 M;] — supres EXr < (v; — v§*')/k
< 1/(k + 1)®+D%

where the final inequality is obtained by maximizing (x — x**')/kin 0 < x < 1.
This completes the proof of Theorem 2. From (3.4) we derive the following result
(which in the case k = 1 was given by Hill ([2], Theorem 2.3)).

COROLLARY 3. If {X,, r = 1} is a sequence of independent random variables
taking values in [0, 1] then for each k = 1,

E[TE, M) = (k + v — v**?

where v = supres EX7.
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