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Previously we established that the martingales
t
M(t) = (0, Y() - Y(0) - % I LAz(E)Y(S)u(df) d3>,

with quadratic variation process

Ve(t) =I L(ﬂ,A(DY(S))’u(dQ ds,

characterize the limit process for a sequence of random evolutions. This paper
shows the equivalence of this presentation to the questions of existence and
uniqueness of the stochastic integral equation

YO = Y0 + 3 I | arerveuas as + I [ a@vowe, a.
E E

The paper proceeds in giving strong existence and uniqueness theorems for
this integral equation.

1. Introduction. More than a decade has passed since Stroock and Var-
adhan [6] first used the martingale property to characterize a Markov process.
This method has a great advantage because the parametric process of the
stochastic integral has been eliminated. The martingale problem formulation
focuses on the law of the process at hand. Hence, the tools of weak convergence
are available to show that approximating Markov chains converge to a Markov
process. These were the advantages that we exploited in giving a central limit
theorem for random evolutions. In [7], we began with a sequence {Y,} of random
evolutions, stochastic processes which take values in a separable Banach space
B. At time ¢,

(1.1) Y,.(t) = exp(1/n)Ap2 - - - exp(1/n)Azexp(1/n)A,Y,(0)

where Y, (0) is some initial distribution on B, and A, A,, A,, - - - is an independent
sequence of identically distributed generators of strongly continuous semigroups.
A is defined on a probability space (£, 2, u) centered so that [z A(£)u(df) = 0.
The theorems were a listing of assumptions on {A(§)}, (or more precisely on )
sufficient for us to conclude that a limit process Y exists and is unique in law on
Cg[0, ). This limit process was characterized by a martingale problem. The
martingale problem formulation that we shall present here is somewhat more
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cumbersome and less general than the one presented in [7]. In a moment, we
shall see that, in addition to previous assumptions, we must hypothesize that
{A(£): £ € E} be a set of generators of strongly continuous groups in order to
conclude that the martingale problem, as stated below, is satisfied by some
process. This seems restrictive, but I know no examples where the A are not
group generators but [ A du = EA = 0.

We shall begin with a short argument which is meant to convince us of the
plausibility of the martingale problem as well as to recall the line of reasoning in

[7]. Letr, ry,rs, - - - be an independent sequence of Rademacher random variables,
ie.,
(1.2) plr =1} = pfr = -1} = %.

This sequence should be chosen independent of the {4;}. Consider the random
evolution Y, that results from an iterated product of exp((1/n)r;A;). Then

(1.3)  Ya(i/n®) — Ya((i — 1)/n®) — El(exp((1/n)rA) — D)]Y.((i — 1)/n?

is the centering of the ith increment of the process. In order to ‘isolate the
contributions to the evolution due to T, we make the following definitions:

Y.(T, 0) = u(T')Y,(0)
(L4) Y,,(I‘, r—:§> - Y,,<I‘, ‘; 1> - <exp<-:‘; Irr,-Ai> - I)Y(‘;—21>
1 i~ 1
= Ir<exp<;—l r,-A,-) - I>Y,,<l o )

In other words, the process is censored outside I'. Clearly if I' N Ty = &

(1.5) Yo(Ty, t) + Yo(Ty, t) = Ya(Ty U Ty, ¢).
In addition,
(1.6) Y.(E, t) = Ya(t),

1.7 Y,,(r, #) - Y,.(I‘, i;,f) - E[Ip<exp<% rA) - I>]Y,,<i ;2 1)
is the centering of an increment of the process. Therefore, for all § € 27, a
certain subspace of B*,
M(T, t)
= (6, Yu(T, £) = Y,(T, 0) = S ElIn(exp((1/n)rA) — DIYa(G — 1)/n?)
is a martingale. By Taylor’s theorem

E[Ir(exp(1/n)rA — I)] = (1/2n?)E[Irr?A?%] + O(1/n?)

= (1/2n?E[I;A?] + O(1/n®).

(1.8)

(1.9)
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Therefore,
MO(P’ t) = (0’ Y,,(I‘, t) - Yn(P’ O)
— 1 3 E[IA%)Y,(G — 1)/n?(1/n2) + O(1/n).

By the same type of reasoning, letting ; = o{ry, ---, r;, A1, -+, A;}, the
quadratic variation process is

VAT, £) = 39 EIML(T, (i/n))? — MY, (i — 1)/n)?| 5]
= 2" E[I (6, AY,(G — 1)/n%)2(1/n2) + O(1/n).

Upon taking limits on the Y, and changing Riemann sums to integrals, one
may easily conjecture the following martingale problem:

Let {Y(T, t): T € 2} be a family of processes on (Cg[0, ), P) with initial
distributions .Z (Y (T, 0)) satisfying:

(1) Yis additive in T, i.e., if I'; N Ty = ¢,

(1.12) YTy, t) + Y(Iy, t) = Y(TL, U Ty, t) as. [P] ‘
(ii) Denote Y(E, t) by Y(t). For a dense subspace of test functionals
2' C B*,

(113) M’T, ¢) = (0, YT, ¢) - Y(T,0) - %J; J;Az(E)Y(S)u(dE) dS)

(1.10)

(1.11)

is a continuous orthogonal martingale measure for each § € 9"’
(iii) The quadratic variation of M*(T, t) is

(1.14) VYT, t) =j; J;(b’,A(E)Y(S))zu(dE) ds.

Some abuses of notation have appeared in this section. In particular, Y, was
used to denote the two quite different processes 1.1 and 1.6. However, if {Y,} in
1.1 give rise to a limit process Y via the theorems in [7], then {Y,} in 1.6 will
give the same limit. To see this, all one must realize is that A appears in the
martingale problem only with a squaring, and so the Rademacher function
disappears.

The second presentation is in terms of the following stochastic integral
equation:

Y() = ¥(0) + 5 f f AE)Y(s)u(dE) ds
(1.15) 0 V&

+£ LA(E)Y(S)WAdf: ds)

where W, is the unique (in law) orthogonal martingale measure having continuous
sample paths and quadratic variation process u(I')t. In (1.15), we mean that
equality holds for each real-valued process obtained by pairing this equation with
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an element in &’. This interpretation permits us to view statements 1.13, 1.14
and 1.15 in a mild sense. For example, if N {F(A*¥(£)): £ € Z} 2 2, then we
can place the operators A*(£) and A**(£) on the elements of Z.

The setting we have chosen employs orthogonal martingale measures, a
concept developed by Gihman and Skorohod in [5]. Because these objects are
uncommon, and because we have an entirely different purpose in mind, we
present in Section 2 a synopsis of the relevant properties of orthogonal martingale
measures and their associated stochastic integrals.

Theorem 3.1 is the statement of the equivalence of the two formulations for
Y given above. Because the linearity plays no essential role, we drop that aspect
in Section 3 for a slightly more general and slightly more workable form. The
translation from this form to statements 1.13, 1.14, and 1.15 can be easily made.

At the conclusion of Section 3, we have an integral equation with which to
work. Many properties of this integral equation can be addressed. However, we
shall limit ourselves to questions of the existence and uniqueness of solutions in
two cases of particular interest. Section 4 opens with a Stratonovich form, and
with variation of parameters form for the stochastic integral equation 1.15. If
{A(§): £ € £} form a bounded set of bounded operators, then by the obvious
variant of the stochastic version of the Picard iteration method any of these
three forms can be shown to have a unique strong solution. Most of Section 4 is
devoted to proving the following uniqueness theorem for the transport problem
in R%:

THEOREM 4.3. If the coefficient functions a in A(§) = a(§, x)-V have
a € CY(RY and sup{(da/dxx)(£, ) |: x ER, k=1,2, ---,d, § EE} < » and if
the closure of C = Y [z A*(£)u(dE) is uniformly elliptic and generates a semigroup,
then the stochastic integral equation has the property of pathwise uniqueness.

On the existence of solutions, we have

THEOREM 5.1.  If the coefficient functions a € C*(RY), if for each ¢ and each
multi-index o, D%a (&, x) is a Lipschitz function with a common Lipschitz constant,
and if C is uniformly parabolic, then the variation of parameters form for the
stochastic integral equation has a strong solution.

2. Stochastic integrals over orthogonal martingale measures.

DEFINITION 2.1. [5]. A family of (locally) square integrable martingales
N(T, t), indexed by I' € £, g-algebra on E, and adapted to the filtration
{ F:t = 0} is an orthogonal (local) martingale measure if the following conditions
are satisfied for all ', I';, Ty in 2 and all ¢t = 0:

(i) (additivity)

(21) N(Ty, t) + N(Ig, t) = N(Ih U Ty, t) as.for T'NT,=@.
(ii) (orthogonality)

2.2) N(T'y, t)N(Tg, t) is a (local) martingale for T, N Ty, = @.
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(2.3) (i) (N(T, t), N(T, t)) = =(T, t)

where 7 (T, t) is a random function which, for fixed ¢, is a measure on % with
probability one, and for fixed T', is a continuous monotonically increasing function
of t.

REMARK 2.2. (i) (T, t) is called the quadratic variation of the martingale
measure N (T, t). If we additionally require that (T, 0) = 0 for all ' € 2, then

w is unique.
(ii) ForIy, I € 2,

(2.4) (N(Ty, t), N(Tg, t)) = «(['1 N Ty, t)
(iii) IfI'y NIy =, then

(2.5) m (T, t) + 7(Te, t) = w(Ty U Ty, £)

Therefore = is additive and the definition of = is consistent in T

EXAMPLE 2.3. (i) If £ has atoms {I'y, Ty, ---, I',}, then {N(I';), N(Ty),
.+-, N(T',)} form a finite family of orthogonal martingales. Conversely, any
finite family of orthogonal martingales can be viewed as a martingale measure.

(ii) Let X be Gaussian white noise measure on the positive quadrant in R2
Thus for a Borel set 2, X(Z) is a normal random variable with mean zero and
variance equal to the area of Z. In addition, if =; N 2, = &, X(Z,) and X(Z,) are
independent. Define N(T, t) = X(T' X [0, t]) where T is a Borel set in [0, T']. If
{F:0 =<s=<T,t=0}is the filtration for X, then N is a martingale measure with
respect to the filtration {F,: t = 0} where ¥, = ¢{F: 0 = s < T} = F 1. In this
situation the quadratic variation process is tm(I') where m is Lebesgue measure.

(iii) Let u be a probability measure on 2, and set « (T, t) = tu(T'). Upon
appealing to Lévy’s characterization of Brownian motion, one sees that the
associated martingale measure N (T, ) having continuous sample paths is Brown-
ian motion with variance u(T'). For the class of random evolutions presented in
this paper, the limiting process will be represented as the solution to an integral
equation with respect to this martingale measure. Because of its particular
interest, we shall denote this martingale measure W(T, t) or W, (T, t) whenever
the measure u needs to be emphasized.

Once a martingale on a probability space (2, &, P) with a filtration
{F: t = 0} has been specified, the construction of a stochastic integral follows
three major stages of development. First, one must find some suitable class & of
elementary functions. For these functions, there is, generally speaking, only one
way to make a definition worthy of the term “integral”. Then one extends by
linearity to a class of simple functions .. At this stage, one defines the significant
properties of the stochastic integral. For simple functions, these properties follow
routinely from the definition. In the last stage, the quadratic variation = of the
martingale comes to the front. At the second stage, one of the properties is an
L%isometry between squares of functions on the probability space and L*(r).
This isometry is exploited and the stochastic integral is defined on the completion



536 J. C. WATKINS

of . in the metric induced by the isometry. Via a continuity argument, the
properties verified in the middle stage hold equally well in the final stage. The
construction for integrals over martingale measures follows the lines of many
others (cf. [1], [4], or [3]).

With this outline in mind, we can begin. Let N be a continuous square
integrable martingale measure with quadratic variation , and let & denote the
class of functions of the form xIsxr, where I' € 22, A = (¢, t’], and x is a bounded
 ~measurable random variable. Set

(2.6) f f xlsxrN(d§, ds) = x(N(T, t’) — N(T, t)).

The simple functions . are finite linear combinations of elements of &. Each
function in . may be written

2.7 X= Zﬁ—-l ZJEI xikIthXAh

where 0 < t; <t < --- < tn, Ax = (tr-1, &), Tjx € 2, and xj, is-a bounded
._,-measurable random variable. Because we are interested in using stochastic
integrals to represent new stochastic processes, we invoke the following notation:

f erdN= f f X (&, s)N(d¢, ds)

=ff1[t,t'>xr X (¢, s)N(dg, ds).

PROPOSITION 2.4. If X € ., and T € 2, then

(2.9 M(T, t) =J; J;X(E, S)N(dg, ds)

defines a continuous square integrable martingale measure. In addition,
(i) (linearity) if X1, X, € & and ¢y, ¢; €E R, then

ff(chl(E, s) + c2 X5 (&, 8))N(d§, ds)
(2.10)

=0 f f X1(& s)N(dg, ds) + co f f Xz(§, s)N(dg, ds).
(ii)

E[( I [ % oveae ds>>< [ xue v, ds>)]

(2.11)
=EU f (X1(& s) = Xa(§, ) (dE, ds)].
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(iii) In particular,

2
(2.12) E[(f X(& s)N(d¢, ds)) ] = E[f f X*(&, s)w(dg, ds)].

This is the promised L2-isometry.

2
(iv) E[( I | xuis owiae, a0 - | [ xe onvae ds>)]

(2.13)
= E[f f (X1(& 8) — Xa(8, S))27r(d£, ds)]

(v) ForT,, T;€EX,let
LT, t) = J; J;Xj(-‘,’, s)N(d¢, ds), j=1,2
then
(2-14) (Il(rh t), I2(P29 t)) = J; Jl:nl‘ Xl(£9 s)X2(£9 S)W(d& dS)

(vi) For an & ,-stopping time ,

tAT t
(2.15) J; J;X(E, $)N(d¢, ds) = J; J;X(E, s)N"(d¢, ds)

where
(2.16) N'(I, t) = NI, t A 7).

PROOF. Use the definitions. O

We are now ready to extend the definition to a still wider class of random
variables. Let

X = {X = {X(§ t): t = 0}: X is progressively measurable

and E[J{: J:X“’(E, t)w (d§, ds)] < o for all t = O}.

The proposition above implies that . C #. Let .% denote the completion of
& in the isometry stated in equation 2.12. Since # is a closed subspace, 7 C #,
but we would like . = #. This is the essence of the following lemma.

LEMMA 2.5. Let X € #, then there exists a sequence {X,} C .% such that for
allt=0

(2.17) limn—onl:f f (Xn(&, s) — X (¢ 5))°n(dg, dS)] =0.
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Let X € #, and choose a sequence {X,} C .% that fulfills Lemma 2.5, then by
equation 2.13,

(2.18) { f f X (& s)N (s, ds)}

is a Cauchy sequence in L%(P) for each t. Thus we specify the limiting process,
denoted [} [z X (%, s)N(dE, ds) for each t > 0 as an equivalence class in L(P).
However we can do better.

THEOREM 2.6. [§ [r X (& s)N(dt, ds) has a continuous version.

In the future, the term stochastic integral will mean a continuous version of
this process.

THEOREM 2.7. Proposition 2.4 holds with .% replaced by #.

One further generalization is possible. Now, let N(T', ) be a local martingale
measure. We shall be able to integrate over N, the processes

Z = {X(§, s): X is progressively measurable and

I6 [z X2(¢, s)w(dE, ds) < o a.s. for all ¢ > 0}.
Let

(2.19) 6, = inf-{t =0 J; J;X“’(E, s)w(d§, ds) = n}

where inf @ = . Then lim, .0, = ®© a.s. If 7, is a sequence that arises in
defining the local martingale measure N, then 7, = g, A 7, will serve equally
well. N»(T, t) = N(I, t A 7,) is a continuous square integrable martingale on
the filtration {#:n,,: t = 0}, with quadratic variation #™(T', t) = = (T, t A 7,,). Set,
forXe¥

t tAT,
(2.20) M,(T,¢) = J; J;X(E, s)N'*(d¢, ds) = J; J;X(i, S)N (d§, ds).

X(§, s N\ 7,) € # for N™» by equation 2.19 and the fact that 7, < ¢,. So, for each
n, M, (T, t) has been defined. On the set {7, > t}, M,,-(T, t) — M,(T, t) = 0 ass.
whenever n’ > n. In other words, for almost every w € Q, there exists n so that
M, (T, t) = M,(T, t) for n” > n. Thus we can define M(T, t) = lim,_,.M, (T, t).
By a standard martingale inequality, M, (T, t) — M, (T, t) in probability uni-
formly in finite intervals. In summary we have:

THEOREM 2.8. Let N(T, t) be a local martingale measure with quadratic
variation (T, t) and X € . Then
(i) M, t) = [b [r X(& s)N(dE, ds) is a continuous locally square integrable
martingale measure with continuous quadratic variation

(2.21) (M(T, t), M(T, ¢t)) =J; frxz(f, s)m (dg, ds).
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(i) If X, X, € Zandc,cs €E R, then

ff(chl(E, 8) + c2X5(&, 8))N(dE, ds)

(2.22)
=c1ffX1(£, s)N(dg, d8)+02fsz(£, s)N(d¢, ds).

tAr t
(2.23) (iii) J; J; Xi(§, s)N(dg, ds) = fo J; Xi (¢, s)N"(d¢, ds)
where N'(T, t) = N(T, t A 7) and 7 is an F-stopping time.
DEFINITION 2.9. Let N; and N; be two local martingale measures. Then the
random process
<N1(P’ t), N2(F’ t))
(2-24) = 1/2 {(Nl(r9 t) + N2(P, t)’ Nl(Fa t) + N2(I‘, t))
- <N1(I‘a t), NI(F’ t)) - (N2(P, t), N2(P’ t));

is called the covariation of N; and N,.
We shall refer to equation 2.24 as the polarization identity. The usefulness of
this notation is due to the fact that

(2-25) NI(F’ t)N2(P9 t) - (NI(F’ t), N2(P’ t))

is a martingale for every I'. In fact, (N;(T, ), Na(T, t)) is the unique process of
bounded variation that is zero a.s. at time zero and makes equation 2.25 a
martingale. The major difference between this set up and the usual set up with
martingales is that

(2.26) <Nl(., t)’ N2(.9 t))

admits a representation as the difference of two measures on 2 X 2.

THEOREM 2.10. Let N; and N, be local martingale measures with quadratic
variation w, and w, respectively. Let X; be in Z for 7;,i =1, 2. Then

t 2
<£ J; IXl(E’ S)X2(£’ S) | <Nl(d£9 dS), N2(d£$ dS)))

s( [ [ 31 mae, ds>>( [ [ xe ormata, ds>>
0 r 0 r
and
< I e omcae, asn, [ [ xate, omcar ds>>
0 r 0 r

(2.28)

(2.27)

= J; J;XNE, $) X2 (£, s)(N1(d¢, ds), Ny(dt, ds))
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THEOREM 2.11. Let X,, X,, and their product be elements of . Set

(2.29) M, t) = J; erz(E, s)N(d¢, ds)
then

(2.30) £LXI(E’S)M(dE’dS)=£lXI(EaS)X2(£9s)N(d£ads)-

THEOREM 2.12. Let w(d, ds) be a positive measure on E X [0, »), and denote
w(T, t) = [§ [r w(dE, ds). Then there exists a process Z, unique in distribution,
such that for eachT € &

(i) Z(T, *) has sample paths in C([0, x), R),
(ii) Z(T, *) is a martingale, and
(iii) Z%T, *) — = (T, *) is a martingale.
In addition, Z is a martingale measure.

PROOF. A white noise based on = satisfies (i)-(iii), and therefore such a
process Z exists. As for uniqueness, let p € R and define f:[0, ©) X R — C by

(2.31) f(t, x) = exp(ipx + Yep*n (T, t))
Then by the Ito formula f(¢, Z(T, t)) is a martingale. In particular,
(2.32) El[exp(ip(Z(T, t) — Z(T, s)))| %] = exp((—¥2)p*(= (T, t) — = (T, 5)))
Therefore Z(T', *) has independent Gaussian increments. This determines the
finite dimensional distributions of Z(T', ¢), and guarantees us that Z (T, ¢) is
unique in distribution.

Let’s check that Z is a martingale measure. For I'; and Ty disjoint, both
Z(T, U Ty, *) and Z(T'y, *) + Z(Ty, *) satisfy properties (i), (ii), and (iii) of the
theorem, and hence must be equal in distribution. Orthogonality is a consequence

of equation 2.4.
(Z(T, t), Z(T, t)) = = (T, t)

is just a restatement of property (iii). 0

To this point, we have developed the stochastic integral with an eye to the It6
integral. In a similar fashion, we may begin with a symmetric approximating sum
and follow the Stratonovich development of the integral. Let N be an orthogonal
martingale measure on Z. If X is' a progressively measurable function and
X(£, ¢) is a fixed function on the disjoint sets 'y, - - -, T, then we may operate
by direct analogy.

DEFINITION 2.13

(2.33) J; J;X(E, s) ° N(d§, ds) = ¥ja fo X(&, s) ° N(Iy, ds)

where & € T.
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The left side of the equation is thus defined by the right. The raised small
circle on the right denotes the usual Stratonovich integral with respect to
martingales. This definition now serves as a basis for an approximation scheme
for more general X. For example, from this definition we can pass to

X(&, +) is a fixed function on the disjoint sets Ty, - -+ '

whenever t, < s < t3+1, and then on to more general X. Any relevant formula
which show the relationship of the two types of integral can be verified using
2.33 and shown to hold in the passage to the limit.

3. The martingale problem and the stochastic integral equation. Let
(T, t) be a positive measure on (£ X [0, ), 2 X [0, »)), and let N be the
continuous process for which (N(T, t), N(T, t)) = «(T', t). Let a, b: =X B— B
be measurable functions.

The Martingale Problem.
Let {Y(T, t): T € 27} be a family of processes on (Cg[0, ®), P) with initial
distributions Z (Y (T, 0)) satisfying
(i) Yisadditivein T, ie., if ;N T, =,

YTy, t) + Y(T'y, t) = Y(I', U Iy, t) a.s. [P].

(ii) Denote Y(E, t) by Y(¢). For a dense subspace of test functionals
2' € B*

is a continuous orthogonal martingale measure for each § € &".
(iii) The quadratic variation of M’(T, t) is

t
(3.2) VAT, t) = J; J; 0, b(¢, Y(5)))*n (d, ds).
The Stochastic Integral Equation.

(3.3) Y(t) = Y(0) +£ La(& Y(s)) (d¢, ds) +J; J;b(é, Y(s))N(ds, ds)

where 3.3 is read after pairing both sides of the equation with an element from
2’. Again, we can view 3.1, 3.2, and 3.3 in any sort of mild sense as long as we
are consistent.

Assume the existence of the process in equation 3.3 and define

Y(T, 0) = »(I')Y(0), where v is some probability measure,

(3.4) YT, t) =Y(T, 0 + J; J; a(§, Y(s))w(dg, ds)

* fo fr b(¢, Y(s)N(dg, ds).
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By the basic properties of stochastic integrals, M%(T, t) is a martingale with
quadratic variation VYT, t). A progressively measurable process Y(T, ¢) with
initial distribution Z(Y(T, 0)) is said to be a solution to the martingale
problem if 3.1 and 3.2 hold with respect to the measure P and the filtration
Fi=0{Y(s, T): T € 2, s < t}. A martingale problem is said to be well posed if
there exists a solution and every solution has the same finite dimensional
distributions. Thus one easily sees that existence of a solution to the stochastic
integral equation in 3.3 gives a solution to the martingale problem. In addition,
if the martingale problem is well posed, then the solution to the integral equation
is unique. This gives us one direction in each of the following two statements.

THEOREM 3.1. (i) The stochastic integral equation has a solution if and only
if the martingale problem has a solution.

(ii) The solution to the stochastic integral equation is unique if and only if the
martingale problem is well posed.

The interest comes in the converse. As stated earlier, the stochastic integral
equation involves a process N. If we wish to construct a process that behaves as
N, then we must build it from the processes M and V, for they are all we have.
The construction follows a familiar line. First, a process Z (T, t) is defined as a
stochastic integral over M. By the definition, Z will be a martingale measure.
Second, we show that (Z(T, t), Z(T, t)) = «(T, t). By Theorem 2.12, this
guarantees us that Z and N have the same distribution. The finishing touch is to
show that Y(¢) solves the stochastic integral equation.

Before we begin, we must be precise in defining stochastic integrals over M.
M is not a real valued process, and so it does not fall in line with the theorems
in Section 2. However for fixed 6 € @', M%T, t) = (8, M(T, t)) is a real valued
martingale measure with quadratic variation process V*(T, t), and we can apply
the results of Section 2 to this situation. If #: £ X B — B* is a simple function,
then we may define the stochastic integral [ [ (n(£, ), M(d¢, ds)) by using the
correspox}ding L?-isometries piece by piece on the sets where 7 is constant. Next
we can define the integral for any measurable n by approximation to simple
functions. Finally we may replace y by an adapted process Y(s). In each instance
we use the martingales

t 2 t
U; J;(n(& Y(s)), M(d¢, dS))] —J; J;(n(f, Y(s)), b(&, Y(s)))*x (dE, ds)

as the key tool in the extension. Now we go on to construct an » that will be
particularly useful.

ProOOF oF THEOREM 3.1. If b in equation 3.2 is never zero, then the M (T, t)
and V(T, t) provide us with enough “randomness” to recover N. To this end,
assume that Y is a continuous solution to the martingale problem, and define
7: & X B — B* in the following way:

First, let (n(£, ), b(&, ¥)) = 1. This is always possible since b(£, y) is never
zero. Then extend 7(£, y) linearly on the subspace generated by b(£, y). Further
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extend 7 to be defined as a linear functional on all of B in a such a way that the
norm is not increased. The Hahn-Banach theorem promises us that such a linear
functional exists for each (£, y), but it is only an existence theorem, and as such,
it does not guarantee us that 7 is measurable. This is a technical point. Never-
theless, let’s satisfy ourselves that a measurable 7 exists.

If b were a simple function, then 5 could be chosen to be a constant on the
sets where b is constant. In this case, n, being a simple function, is certainly
measurable. (Here a 31mple function can be a countable sum.)

Because B is separable, we can choose a sequence of simple functions {b,}
converging to b in norm so that ‘

10.(& ¥) I = 16CE Y) I

a.s. and

(3.5) I6n(& ¥) = basr (& Y) | = 47" (& Y Il

Define a measurable mapping 7, € 2’ so that

(3.6) (m(& y), bi(§, ¥)) =1

and extend 7, without increasing norm. Having defined #;, 7o, - - , #,, define
M1 € 2’ by

(3.7) (Mn+1(& ¥); bas1 (&, ¥)) =1 = Tiey (ma(£, ¥), buar (£, ¥))

and extend 7+, without increasing norm. Observe the following:
I 7ne1(& XY I 11 Bnsa (&, ¥)
= (Mn+1(& ¥); bar1 (&, 9)) = 1 = Tiey (&, ), braa (&, ¥)
(3.8) = $h1 (& ¥), balE, ) = Dies (£, ), busa (£, ¥))
= Xh=1 (me(& ¥), ba(&, ¥) — basa (£, y))
= Xha1 I ne(E YN N 0a(E, ¥) = busa (& ) Il
Therefore since || ba(£, y) — bpr1(£, ) | < 47 busa (£, ¥) |
(3.9 I ne1 (& Y) I = (Bkar | me(E, y) )47

By an easy induction argument || ,+1(%, y) | < 37| n1(£, ) ||. This shows that
N = X k=1 Mk is a measurable function from = X B to B*. Moreover

(n(& ), b(§ y))
= limpo(n (4, ¥), ba(§, ¥))
(3010) = limn—*w 22-1 (ﬂk({:, y)’ bn(s’ y)) + 2;‘:=n+1 (ﬂk(f, y)’ bn(f, y))

= limn—»oo 1+ Z:=n+l (nk(g’ y)’ bn(s, y)) =1
With 7 in hand, we can define Z by

(3.11) Z(T, t) =J; J;(n(f, Y(s)), M(d¢, ds)).
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Let’s check that Z satisfies the axioms for a martingale measure with respect to
the filtration #; = ¢{Y (s, T'), I € £, s < t}. First of all, Z(T', *) is a martingale.
Note that it is additive. Also,

(Z(T1, 1), Z(Te, 8)) = J; J;nr (n(& Y(s)), b(&, Y(s5)))*x (dE, ds)

= W(Fl N Fz, t).

Therefore (Z(T, t), Z(T, t)) = (T, t), and Z(Ty, t)Z(T'y, t) is a martingale if 'y
and T, are disjoint. Since the form for = is sufficiently restricted to determine
the distribution, we have #(N) = .#(Z). Consequently by the change of variables
formula

(3.12)

J; Lb(é, Y(s))Z(d¢, ds) = J; b(& Y(s)(n(§, Y(s)), M(d§, ds)).

If
, b(& Y(s))(n(& Y(s)), M(dE, ds))
(3.13) t
= J; (n(& Y(s)), b(¢, Y(s)))M(dg, ds)
then

J; Lb(f, Y(s))Z(dg, ds) = J; LM(dS, ds) = M(E, t)
=Y(t) - Y(0) - J; La(i‘, Y(s))w (dg, ds)

and the stochastic integral equation holds. Let’s check equation 3.13. It is
sufficient to show that the square of the difference of the two sides has zero
expectation. This is the plan of attack. Let § € &', then

EU; L(G, b(&, Y(s)))(n(¢, Y(s)), M(dg, ds))
- J; L(n(& Y(s)), b(& Y(s)))(0, M(dg, dS))z]

= EUO f (0, b(5, Y(s))n(E Y(s)), M(ds, ds»z]
(3.14) B

- 2EU; J;(@, b(&, Y(s)(n(& Y(s)), M(dg, ds))
x fo | e, ven, b6, vomeo, M, ds))]

+ EU; L(n(& Y(s)), b(¢, Y(s)))(6, M(d¢, ds))Z],
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The first and third terms both equal

(3.15) EJ; I(n(é, Y(s)), b(& Y(s)))(0, b(&, Y(s)))(dE, ds).

To finish we show that the expectation in the second term also equals 3.15. This
term may be written

(3.16) EU: J; (0, b(&, Y(s))(n(& Y(s)), b(& Y(s)))
X ((n(& Y(s)), M(d¢, ds)), (6, M(dE, ds»)]
By the polarization identity for the covariance process
((n(& Y(s)), M(d¢, ds)), (6, M(dg, ds)))
= %((n(& Y(s)) + 6, M(dg, ds)), (n(§, Y(s)) + 0, M(dE, ds)))
— ((n(§, Y(s)), M(dE, ds)),(n(& Y(s)), M(dE, ds)))
(3.17) — (6, M(dt, ds)), (0, M(dt, ds)))}
= %{(n(& Y(s)) + 6, b(£, Y(s)))?n(ds, ds)
= (n(& Y(s)), b(&, Y(s)))?n(dg, ds) — (6, b(£, Y(s)))*x(dt, ds))
= (n(& Y(s)), b(& Y(s)))(0, b(§, Y(s)))w(dg, ds).

Upon substituting the result in 3.17 into 3.16, one sees that, indeed, the second
term is equal to 3.15.

If b is sometimes zero, the processes M and V may lack the randomness
necessary to recover N. In this case we shall need more. To this end, let N’ be a
continuous martingale measure on a space (Q', &', P’) with respect to the
filtration /. N’ has quadratic variation «. Define Y'(T, ¢, w, w’) = Y(T, ¢, w)
and N'(T', t, w, w’) = N’(I, t, w’). Thus Y’ is additive in T'. On the augmented
ptrobability space (2 X @', & X #’, P X P’) with filtration #; X &

(3.18) M'UI,t) = <0, Y'(T, t) — Y(T, 0) — J: fr a(t, Y'(s))n(dE, ds))
is a martingale measure for each § € 2’. The quadratic variation of M’%(T, t) is
(3.19) VT, t) = J: J; (8, b(%, Y'(s)))*n (dg, ds).
Define 5’: £ X B — B* in the following way:
If b(& y) =0, set (£, y) be the zero linear functional. Otherwise, b(§, y) # 0

and 7’ may be defined in exactly the same manner that 5 is defined. Let p (£, y)
= Ilb(s,y)=0}~ As before, we check that,

(3.20) Z'(T, t) =J;J;(n(£, Y'(s), M’(dg, dS))+J;J;p(£, Y’(s))N'(dg, ds)
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is a martingale measure. Z’ is a martingale, additive in T,
(Z’(Fly t)’ Z,(FZ’ t))

[ [ e vion bt viemas ao
0o JrNr,

+f f p*(& Y'(s))w(dt, ds)
0 TN,

t t
= f f Lips, ysp=oym (dE, ds) + f f I, yisp=oym (dE, ds)
0 T;NTy 0 IiNTy

= 1l"(I‘1 N Fz, t).

Therefore (Z'(T, t), Z'(T, t)) = = (T, t), and Z'(T'1, t)Z'(T;, t) is a martingale
if T; and T, are disjoint. Again, we have recovered N.

fot f b(, Y'(5))Z'(d¢, ds)

= J; J;I{b(e,v'(s));eo;b(&, Y'(s))Z’(dt, ds)

(3.21)

B fo L’Ib(aws»#olb(é, Y'(s))(n' (& Y'(s)), M'(dE, ds))
(3.22) + J; Lllb(e,y'(s))¢oup(é, Y’(s))N'(d¢, ds)
= J; J: L,y sy M’ (dE, ds) + O

t
=M'(5,t) — J; Ll|b(s,y'(s))=o;M'(d$, ds).

I8 = Lipe v on=0yM’ (dE, ds) = 0 because the quadratic variation for this martingale
is

(3.23) J(: IIlb(f,Y'(s)))=0l(0’ b(&, Y'(s)))*n (d¢, ds) = 0.

Therefore

J; Lb(& Y'(s))Z’(d¢, ds)

J; M’(dg, ds) = M’ (%, t)

Y'(t) - Y'(0) - fo J;a(& Y’(s))w (dg, ds)

i.e., the stochastic integral equation holds. O
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4. Uniqueness of solution to the stochastic integral equation. The
focus of attention now moves to the stochastic integral equation for the limiting
random evolutions. Thus we are using Theorem 3.1 in the case

a(t, y) = A%&)y/2 b(g y) = A&y
w(dg, ds) = u(dg) ds N(d¢, ds) = W,(dE, ds)

and 2’ = N {D(A*¥(£)): £ € E}, which is assumed to be dense in B*. First of all
we present two reformulations of the integral equation.

LEMMA 4.1. If Y solves 1.15 then

(4.1) Y(t) = Y(0) + J; J;A(E)Y(s) o W(d¢, ds).

PRrROOF. Use the definition to make the transformation. [

This form suggests that Y solves an evolution equation and that Y preserves
some sort of exponential behavior from the random evolutions Y, in 1.1. The
noncommutivity manifests itself in the fact that the integral in 4.1 cannot be
written as an iterated integral. Although we shall not use this form, this repre-
sentation shows the connection between central limit theorems for random
evolutions and stochastic flows (see [8]).

LEMMA 4.2. If Y solves 1.15 and if the closure of C = Y2 [z A*(£)u(d§) generates
a semigroup S(t) then

(4.2) Y(t) = St)Y(0) + J; LS(t — 8)A(§)Y(s)W(dg, ds).

PrROOF. Let € 2, then
0, Y(t) — St)Y(0))

= J: @, dS(t — s)Y(s))
- fo "6, CS(t - )Y (s)) ds + f (0,56 - 9) dY()
(4.3) = —J: @, CS(t — s)Y(s)) ds + J: 0, CS(t —s)Y(s)) ds
+ fo t f (6, S(t — $)A(E)Y(s)W(d, ds)

=»£ L("’ S(t — s)A(£)Y(s)) W(dE, ds). O
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Under the variation of parameters form, the average behavior, S(¢) Y(0), is
separated from the random behavior of the integral term. This presentation gives
us a chance to handle the unbounded operators A(£¢). We shall prove pathwise
uniqueness for equation 4.2, which in turn, proves pathwise uniqueness for
equation 1.15. After a few preparatory lemmas and propositions we shall be set
to prove the following theorem.

THEOREM 4.3. If the coefficient functions a in A(£) = a(§, x)-V are elements
in CY(RY) for each £ € & and sup}{| (3a/dxx)(&, x) | x€ERL k=1, ... ,d, £ EE}
<o, and if the closure of C = Y2 [z A*(£)u(dg) is uniformly parabolic, and
generates a semigroup S(t), then the stochastic integral equation has the property
of pathwise uniqueness.

PROPOSITION 4.4. (Gronwall’s Inequality) Let f, g:[0, b) — R be continuous
and nonnegative. Suppose,

4.4) fR)=A+ J; f(s)g(s) ds, A=0.
Then
(4.5) f(t) < A exp J; g(s) ds for t€]0,b).

PROPOSITION 4.5. Let G(x, t; y, u) be the fundamental solution to a uniformly
parabolic differential equation in R¢ X [0, T). If the coefficients have continuous
and bounded first derivatives, then

9 . — )—@=1/2g | lx—y]*
(4.6) P Gx, t;y,u) | = Ci(t —u) exp| —C. t—u)
for some C;,Co>0,andalli =1,2, ---,d.

PROOF. See [2].

LEMMA 4.6. Under the conditions stated in Theorem 4.3 for t sufficiently small
(4.7 IS®AE)1I? = C/t

for all £ € E and some C > 0. C depends only upon the Lipschitz constant.

PrROOF. Let f € N 2(A(£)), and let G be the Green’s function associated
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with S.
IS@®AEfI = fG(x, t; ¥, 0)a(§, ¥)-V,yf(y) dy H
= ny'[G(x, t; ¥, 0)a(§, Y)If(y) dy H
= f[VyG(x, t; ¥, 0)-a(§ ¥)If(y) dy H
(4.8) H f[G(x t; ¥, 0)Vy-a(§, ¥)If(y) dy H

= Killfl H fIV G(x, t; ¥, 0)| dy ”

+ Kill fli H f |G(x, t; y, 0)| dy H
—(d-1)/2 _ |x_—y_|2
= Ki|lfll dCyt exp| —C, : dy + Killfll

< K (dCiKot™2 + 1) |IfIl = CE72| £

for C = 2dC,K; and t < (dC,)2 K, is the constant arising from the Lipschitz
condition on a and da/dy;. O

Now the proof of Theorem 4.3.

PrOOF. If Y; and Y, are both continuous solutions to equation 4.2 with
identical initial condition, then the difference

Yi(t) = Yo(¢) = S(t)(Y1(0) — Y2(0))

(4.9) +J; LS(t—S)A(S)(Yl(S) — Y:(s))W(d¢, ds)

=fo LS(t — $)A(£)(Ya(s) — Ya(s)) W(dg, ds).

Therefore one way to establish uniqueness is to prove that if Y (¢) is a continuous
solution with Y(0) = 0 a.s., then Y(t) must be zero.
In order to establish uniqueness, we shall use the norm

(4.10) [supyey=1E (9, *)*"2

This will allow us to take advantage of the martingale

(411) [ f f ®, X(s,s»W(ds,dw} f f (6, X(&, 5)%u(df) ds

for nonanticipating X. Fix ¢t > 0 and choose § € @’ so that |0] = 1. S(e)
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converges strongly to the identity as ¢ — 0. As a consequence, for each w € Q,
andeachs <t

(4.12) S)Y(s, w) > Y(s, w) as ¢—0
and

(4.13) 6, S(e)Y(s, w))% — (8, Y(s, w))2
Hence we can choose ¢(w) so that if e <e(w) ands <t
(4.14) 200, S(e)Y(s, w))2 = (0, Y(s, w))2

Since Y has continuous sample paths, the convergence in equation 4.12 is uniform
in [0, t]. Therefore one ¢(w) may be chosen for all s < t. Define

(4.15)  Gn(t) = {w: 26, S(1/N)Y (s, w))* = (6, Y(s, w))? for all s < t}
Since each w must eventually be an element of Gy (t),
UR-1 Gn(t) = Q.
In a similar fashion, for each w, we may choose M (w) so that if M > M(w)
(4.16) M@, Y(s, w)2> || Y(s, w) |2
provided that (6, Y (s, w)) # 0. Define
Hy(t) = {w: N, Y(s, w))?2> | Y(s, w) ||? for all s € [(¢ — (1/N)) A 0, t]}.

(4.17) : Fe(t) = UR=1 Hn(t),
where
(4.18) F(t) = {w: (0, Y(t, w)) = 0}.

As a final preparation, let us introduce two sequences of stopping times:
For natural numbers L and N,

(4.19) or(w) = inf{s > 0: | Y(s, w) || = L},
and
(4.20) n(w) = inf{s = t — 1/N: w € Gn(s) N Hy(s)}.

Note that on the set F°(t), v = t if N is large enough. In any case 7y = t —
(1/N). The stopping times ¢, are introduced since the second moment of Y may
not be finite. By the continuity, and along with it, the boundedness of Y(t), we
may conclude that

(4.21) gL, —>® as.as L — oo,

With everything in order, we begin. Multiply equation 4.2 by S(1/N) and
sample it via the linear functional 6:

0, SA/N)Y(t A o A 7n))
(4.22) thopAry .
= J; _[ (0, S(t Nop N1y —s+ N)A(g)Y(s))W(dg, ds).



A REPRESENTATION FOR RANDOM EVOLUTIONS 551

If we square both sides of this equation, then we may use the martingale
mentioned at the start of the proof, and the strong Markov property to justify

E[6, SA/N)Y(t A o1 A 7n)]?

thop ATy )
= El:f J;(li, S(t ANorANry—s+ %)A(.E)Y(s))W(dg, ds)]
tAop AN 1 9
=FK f L <0, S(t Nor ANy —s+ N)A(E)Y(S)) wu(dg) ds

tAop ATy 1 2
SEf f “ S(t/\ UL/\TN"'S"'N)A(E)Y(S)
0 =

pu(dg) ds
tAop AN 1 -1
(423) < J; LC(t NorNiy—s+ N) I Y(s) I2u(dé) ds

by Lemma 4.5

thop AN
sEf CN|Y(s)|I? ds
0
tAop AN
=Ef CN|[Y(s A oL A7n)|?ds
0

t
< f CNE | Y(s A oz, A7) |2 ds.
0

However for the stopped process
I Y(s Ao A7n)II?
= N@, Y(s Ao A 78))2 <= 2N, S(1/N)Y(s A o1 A 7n))2
Therefore,

t
(4.24) E|YSsAaAmw)|*= f C2N?E|| Y(s A oz A 75) ||* ds.
0

Gronwall’s inequality applies to yield

(4.25) E|| Yt A oL A7n)|?=0.
Now let L — oo,

(4.26) E| YA n)|*=0.
(4.27) Elp (0, Y(t A 75))% = 0.
Now let N — «

(4.28) Elp (6, Y(t))? = 0.

On F°(¢t), (6, Y(t))® > 0. Therefore, P(F*(t)) = 0 or P(F(t)) = 1. In other words,
(0, Y(t)) = 0 with probability 1, i.e., E(6, Y(¢))? = 0. Since we can do this for all
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0ez’, 101 =1,

(429) sup||0||=1E(0, Y(t))2 = 0.
or Y(t) = 0 a.s. for each t. Let D by any countable dense set in [0, T'], then
(4.30) P{Y(t)=0forallt e D} =1

but Y must be almost surely continuous. Therefore, equation 4.30 provides us
with sufficient justification to conclude that

(4.31) Y(#) =0 as.forall t€]0,T]

This assures us the uniqueness of solutions. 00

5. Existence of solutions to the stochastic integral equation. Recall
that for any B-valued nonanticipating X with E [§ [z | X (£, s) [|°u(d§) ds <
for all ¢ we have the following martingale:

t t \2
(5.1) l:’[(ﬂ, X (& 5))?u(d) ds—u; L((),X(E,S))W(d&ds})

for any § € B*. We wish to establish that

(52) fotj; I X(& ) I1%n(df) ds — H J:LX(E, s)W(d¢, ds)

is a martingale. Returning to the language of Section 2, if X is an elementary
function, then there exists a random variable 8, so that (8, X(£, s)) is nonantici-
pating, || 0| = 1 and

(5.3) I X(& )l = (6, X(&, s)).

In this case, 5.1 and 5.2 are identical. Finite sums of martingales are martingales;
therefore equation 5.3 is a martingale for any simple function. Now take limits
in order to conclude that 5.2 is a martingale for all nonanticipating X with
E [b [z | X (& s)||?u(d¢) ds < o for all ¢t. Thus, the martingale 5.2 gives the
isometry we use to build Banach valued processes.

2

THEOREM 5.1. If the coefficient functions a € C*(R? and if for each £ and
each multi-index o, D* a(§, x) is a Lipschitz function with a common Lipschitz
constant, and if C is uniformly parabolic, then the variation of parameters form
(Equation 4.2) has a strong solution.

The estimates we use in the proof are based upon the following theorem:

THEOREM 5.2. [2] If the coefficients of a uniformly parabolic system in
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R? X [0, T are infinitely differentiable, and if all the derivatives are bounded
functions, then the fundamental solution G is infinitely differentiable,

a . C2 sz a <|x - ylz
(54) |D5Gx, t; 3, u)| < Cl<—)> b eXp<‘02 2(t — u)

2t — u
and
o c \” . (_ <Ix—_:vl"’
(5.5) |D:Gx, t;y,u)| =< Cl<—"“-2,,(t_u)> Drexol =Col 5 )

for any multi-index a.

PrOOF OF THEOREM 5.1. Let us attempt to construct a solution to

(5.6) Y(t) = S@#)Y () + J; LS(t — 8)A(§)Y(s)W(dE, ds)

for these two cases. First, choose Uy(t) = S(t)Y(0). If a solution’ exists, U,
captures the average behavior, since EUy(t) = EY(t). Then let

(5.7) Ui(t) = J; LS(t — $)A(E)Uo(s) W(dE, ds).

Iterating this procedure, we have that

(5.8) Uk(t) = J; LS(t = 8)A(§)Up-1(s) W (dE, ds).

We shall define these iterates one at a time. To be precise, if U,_; is a continuous
nonanticipating process in the domain of A(£), then because S(t — s)A(§)
is a &-uniformly bounded family of operators, with U#Z(S(t — s)A(§)) C
N 2(A(§)), then the integrand in equation 5.8 is defined. Once we have estab-
lished that U, is bounded, then we can conclude that U, is a nonanticipating
continuous process in the domain of the A (£). The k = 0 step of the induction is
easy to verify. Therefore, owing the proof of the boundedness of the U,, we are
allowed to perform the iteration. By the linearity of the integral

(5.9)  XE-o Ux(t) = S(#)Y(0) + J; LS(t — 8)A(£) Zi=s Un(s)W(dE, ds).

We shall demand more than boundedness of U,, because we wish to make sense
of

limn_,oo 2 Z=0 Uk (t ) ’

and to show that equation 5.6 holds for the limit. A typical argument uses the
fact that supo<;<rE || Ur(t) | is bounded by the kth term in an exponential
expansion. This fact, along with a martingale inequality and the Borel-Cantelli



554 J. C. WATKINS

lemma secures the limit. This is our plan here.

U(t) = J; J:S(t = t1)A (&) Up-1 (t1) W(dEy, dty)

= J(: J;S(t - t)A(&) J; J;S(tl — ta)A(£2) Up—2(t)

(5.10) - W(dge, dt:) W(dé,, dty)

= J(: J;J; LS(t — t1)A(£)S(ty — t2)A (&) Up-2(ts)

- W(d¢&;, dt;)W(déy, dt)

=f ff ff fs(t—tl)A(Sl)S(tl—tz)A(gz)
0 VE Yo E 0 =

oo A(&8)S () Y(0)W(dEr, dty) --- W(dEz, dt;) W(dEy, dty).
Upon k applications of the martingale property we have
E|U.@)|?

(5.11) =J; J:J; ££ LEIIS(t—tl)A(El)S(tl—tz)A(Ez)

oo A(E)S (k) Y(0) || % (dEe) dty - - - p (dEs) dtap(dt) dty.
The order of business is now to estimate the norm of the product
(5.12) Je(t)f = S(t — t)A(&)S(ty — t:)A(&) - A(&)S (W,

for f € B. Unfortunately giving a detailed proof and avoiding both notational
nightmares and expressions that become unmanageably long seems impossible.
Luckily, the ideas are not quite as hard to grasp. In this segment, J,(t) will
signify any term like equation 5.12 with A appearing k times and ¢ being the sum
of the lengths of time that the semigroup S acts. If we commute the second and
third factors in 5.1, we find that

Jr(t)f = S(t — t1)S(ty — t2)A(£)A(E)S (b2 — t3)A(&3) - -+ A(E)S(t)f
+ S(t — t)[A(&), S(ts — t2)]JA(&) - A(&)S(tR)f
= S(t — t2)A(&)A(£)S(t, — t3)A(E3) - - - A(&)S(tf

+ 8@ — a)[A(&), St — t2)]A(&) --- A(E)S S

The symbol [+, *] denotes the commutator of the two operators. We shall show
that the commutator term acts like S(¢; — t;). Hence, we may estimate this term
as we would J,—; (t)f. This process continues to commute terms, moving the A
term to the right and spinning off terms that may be estimated as one would deal

(5.13)
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with J,,(t) for some m < k. The final remaining term is

| S@A(E)A(E) --- A&
= I fG(x, t; 5, 0)A(6)A (&) --- A(&)f(y) dy l

(5.14) = I fA*(El)A*(Ez) o ANE)G(x, t; y, 0)f () dy I

= sup|a|=kL"f |D*G(x, t; 5, 0) | |f(y)| dy < CL*7*||f].

The procedure produces k(k — 1)/2 terms, each bounded by CL™™, with
m < k. For t bounded, we need worry only about the behavior for ¢ near zero.
Thus the final remaining term dominates, and

(5.15) | Ju(t) | <= (k?/2) CL*t™*,

A(&) is now written a; - V. The subscript i on the gradient operator is meant
to show that the derivatives are taken with respect to x; = (x}, x2, - - -, x%). For
brevity write

d/2 12
(5.16) e 1) =Cl(2w<—tciv>) e"p(‘@(—“'z’ft -yu'>))'

Now we check to see that the commutator term acts appropriately.

| Jr(t)f |

= ’ ff G(x, t; x1, t1)a1(x)- VG (x1, t; X2, t2)a2(x2)Vadp—s(ts)f dxy dix;
= f f |G(x, t; x1, 1) | |a1(x) | | VG (x1, t1; %2, t2) |
- | ag(x2) - Voo (t2)f | dxz dxy

= f f e(x —x1, t — t1)Kd | Dge(xy — x2, t; — t3) |
- | az(x2) - Voo (t2)f | dxs dx;

< Kd f f e(x - X, t— tl)Dx;e(xl — X2, L1 — tz)

- sgn(xl — x3) | ag(x2) - Vadpa(ta)f | dx, dx,

= —de f e(x — x1, t — t1)e(x; — x2, t1 — t3)

X Dylsgn(xi — x3) | az(x2) - Vaddp—s (t2)f | ] dxz dx,
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after integrating by parts,

< —KCod f e(x — xz, t — t2)Dy[sgn(xl — x3) | a2 (x2) - Vak—2(t2)f |] dxz
by the semigroup property,

=< KC,d f e(x — %2, t — t5)20(x} — x3) | az(x2)- Vodp—2(t2)f | dxs

+ KC.d f e(x — xg, t — to)sgn(xl — x3)Dyy| az(x2) - Voiz (t2)f | dxs

(5.17)
< 2KCyd | e(x — x3, t — t5) | @2(x2) - Voddp—a(t2)f | dx2

+ KCod f f e(x — xy, t — ty)sgn(x} — x})
X Dy az(x2) - VG (x2, ta; %3, t3)as(xs) - Vadp-s(ts)f | dxs dix,.

We can identify the first term as the commutator term. As promised, a
differential operator disappeared, and the semigroup terms combined. So this
term may be regarded as J;—; (t). The next term is set for the next commutation.
The balance of the details is omitted, since the terms become exceedingly long.
Guided by the outline above, the reader should be able to produce the course of
action.

Assume first that E | Y(0) ||2 < . Then the iteration procedure in equation
5.8 that generated the Uy, is valid. Also by Doob’s martingale inequality.

E[suposc<rll Un(t) I1”] < 4E || Up(T) |I*

T t tp—1
I Y Iy -TRAC Y
0 = Y0 = (1] =

- u(dé) dty - - - u(dEz) dtau(dé) dt
by equations 5.11 and 5.12. Now use the inequality in 5.14.

T 4 tp—1 B2
<4 f f f f cee f f — CL*T*E| Y(0) || 2
o J=zJo Jz 0 = 2

- u(d&) dty - -+ p(dEr) dtau(dt) dty

(5.18) T -
= 2k2CL*T*E | Y (0) | * f f f dty, --- dt; dt,
0 0 0
20T krp—k 2 (T _ 2k* 14 2
= 2R*CL*T"E | Y(0) || ™ =7CLE||Y(O)||.

By virtue of the Borel-Cantelli temma and the Weierstrass-M test,
(5.19) Y=o Pfsuposc=rll Ux(t) |1* > k7% < E|| Y(0) || 22C Y50 (R*/R)L* < oo.

This implies that Y 7_o U.(t) converges almost surely uniformly on [0,T"]. There-
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fore, the limit Y(¢) exists as a continuous nonanticipating process. Also
(5.20) S(t — s)A(E) T35 Ur(t) — S(t — s)A(E)Y(s)

almost surely [P] for all £, and Y solves the integral equation.
A truncation argument allows us to release the restriction E || Y(0) || < .0
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