The Annals of Probability
1985, Vol. 13, No. 3, 991-1002

ON THE COVERAGE OF E-DIMENSIONAL SPACE BY
k-DIMENSIONAL SPHERES

By PETER HALL

Australian National University

Let n k-dimensional spheres, each of content a,, be distributed within a
k-dimensional cube according to density f. We derive necessary and sufficient
conditions on a, in order that the probability that the cube is completely
covered at least # times by the spheres, tend to one as n — «. (Here 7 is an
arbitrary positive integer.) In the special case f = const., we obtain upper and
lower bounds of the same order of magnitude for the probability of incomplete
coverage.

1. Introduction and results. Let .% denote the surface of a sphere in
[k + 1] (i.e., & + 1 dimensions), and let f be a density on .%. Distribute n points
independently on %4 according to f, and at each point construct a circular “cap”
of fractional angular radius a = a,. What properties must a, have in order that
the probability of complete coverage of % at least #(=1) times, tend to one as
n — ?

Previous treatment of this problem has been confined largely to the case where
f is the uniform density, and to small values of £ and # For example, when
f = const. and k = 7/ = 1, it may be deduced from work of Stevens (1939), Fisher
(1940), Siegel (1979) and others, that a necessary and sufficient condition for
ultimate complete coverage, is na, — log n — +. See also Shepp (1972a, 1972b).
When f = const., k = 2 and /7 = 1, it follows from Moran and Fazekas de St.
Groth (1962) and Gilbert (1965) that a necessary and sufficient condition is na,
— log n — log log n — +. See also Miles (1969). Exact coverage probabilities
have been derived by Glaz and Naus (1979) in the case determined by f = const.,
k =1 and /7 = 1. (Their formulae are highly algebraically complex, and seem
difficult to apply to produce asymptotic results.) Moran (1973) has provided an
approximation to the probability of coverage in the case f=1, k=3 and 7 = 1.
For related recent work, principally in the case k = 1, see Siegel (1978a, 1978b,
1979), Holst (1980, 1981) and Hisler (1982). Davy (1982) has surveyed several
types of coverage problem.

Our main aim in the present paper is to give a complete solution to the
coverage problem stated in the first paragraph, for a very general class of densities
fand for all k = 1 and # = 1. As by-products of our investigation we derive new
upper and lower bounds, of the same order of magnitude, for the probability of
incomplete coverage in the case f = 1; see Theorem 1 below.

The problem of covering a [k + 1] sphere with circular “caps” is the same in
all essential respects as that of filling a [k] cube with [k] spheres, provided we
introduce an appropriate convention to take care of edge effects. Since the latter

Received September 1983; revised June 1984.
AMS 1980 subject classification. Primary 60E05.
Key words and phrases. Coverage, geometric probability.

991

)

[
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,% /2

The Annals of Probability.
WWw.jstor.org

®



992 P. HALL

problem can be visualised in k = 1, 2 or 3 dimensions, whereas the former is
really only recognisable in & = 1 and 2 dimensions, we shall confine ourselves to
the spheres-in-a-cube problem. Let %; denote the unit cube [0, 1]%, and let f be a
density on %;. Distribute n points independently throughout % according to f,
and at each point construct a [k] sphere of radius é and [k] content a = a,.
Define V, = V,(n, a,) to be the /th order vacancy in %, or the amount of
content in %, not covered by at least # of the random spheres. Then & is
completely covered at least / times, if and only if V, = 0.

We interpret distances, integrals and coverage problems on %, as though %
were topologically a torus. See Miles (1969, pages 673-674) for a discussion of
this method of disposing of edge effects.

Our main result in the case f = 1 is the following pair of inequalities.

THEOREM 1. Suppose f = 1. There exist constants K, and K,, depending only
on k and 7, such that

Kymin[n{l + (na,)**72}(1 — a,)", 1] < P(V, > 0)
< Komin[n{l+ (na,)**2}(1 — a,)", 1]
uniformlyinnzmax(k+/—1,2/—1)and 0 < § < V.

The condition 0 < § < 1 ensures that no spheres self-intersect.
The following corollary provides necessary and sufficient conditions for ulti-
mate Zth order coverage, and is easily deduced from Theorem 1.

COROLLARY 1. Suppose f = 1. Then a necessary and sufficient condition for
P(V,=0)—>1asn— x,is that

na, —logn — (k + 7 — 2)log log n —» +»
asn— oo,

It does not seem possible to derive a completely general version of Theorem
1, valid for arbitrary f. However, the method used to derive Theorem 1 may be
adapted to yield a version of Corollary 1 for a very broad class of nonuniform
densities. Our next result shows that it is behaviour in the vicinity of the
minimum of f which determines coverage properties.

Assume that f is bounded on %, and has a unique, nonzero minimum on %,
occurring at the interior point m € %;:

for each ¢ >0, infjx_m>.f(x) > f(m) > 0.

Suppose that as x — m, f(x) decreases to f(m) in the usual second-order way.
That is, there exists a neighbourhood .#” = {x: | x — m | < ¢} of m, such that all
the first- and second-order derivatives of f exist on .#; the first derivatives vanish
at m, the second derivatives are continuous at m, and the % X k matrix of second
derivatives,

D = (azf(x)/axiaxj |x=m)’

is positive definite.
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THEOREM 2. Under the above conditions on f, a necessary and sufficient
condition for P(V,=0) — 1 as n —  is that

(1.1) na,f(m) — log n — (k/2 + 7 — 2)log log n — +x

asn— o,

An interesting feature of Theorems 1 and 2 is the subtle way in which the
coefficient of log log n depends on the nature of f. Hall (1983) has shown that
for any density f bounded away from zero and infinity on &, there exists a
constant K(f) such that P(V; = 0) — 1 provided na, > K(f)log n for all
sufficiently large n. A similar result may be proved for V,.

All the results described above have analogues in the case of a Poisson
distribution of spheres in %,. For example, suppose points are distributed in R*
according to a Poisson random field with constant intensity A per unit content.
At each point, construct a [k] sphere of radius 6 and content @ = a,. Let V denote
the vacancy within %,. On this occasion it is convenient to measure distance in
R* in the usual way, without using the torus topology. With this convention, the
following analogues of Theorem 1 and Corollary 1 hold.

THEOREM 3. In the Poisson (\) case, there exist constants K, and K,
depending only on k and 7, such that
Kimin[A {1 + (Aay)**?}exp(—Aay), 1] <= P(V, > 0)

= Komin[A {1 + (Aay)**"%}exp(—Aay), 1]
uniformly in A >1 and 0 < a, < %.

COROLLARY 2. In the Poisson ()\) case, a necessary and sufficient condition
for P(V,=0) — 1 as A\ > , is that

Aay —log A — (k + 7 — 2)log log A — +o
as A — oo,

Theorem 3 may be derived by following the lines of the proof of Theorem 1,
and so is not proved here. It is also possible to derive an analogue of Theorem 2
for a Poisson field of variable intensity A(x), x € %.. All the results above may
be extended to the problem of covering a rectangular box in [k] by [k] spheres,
albeit with slightly more complicated notation.

2. Proofs. If na, </ then

V,Zl—(na,,//)>0,

and so P(V, > 0) = 1. This identity also holds if na, = # It now follows easily
that if na, < 4 the two inequalities in Theorem 1 hold. Therefore we may assume
for the future that na, > Z But na, > # implies that at least one point of &, is
covered at least /# times by spheres. This fact will be used without further
comment in the work which follows. For example, it implies that at least two



994 P. HALL

spheres intersect, and hence that the variable N, introduced just before (2.1) is
well-defined.

We first derive an upper bound to P(V, > 0). Our proof is inspired by Gilbert
(1965).

Let S, denote any of the n [k] spheres of radius § placed into % according
to density f, and suppose S; has centre x; = (x11, **, x1)7. Let X, be any
point distant r from x,;, where 0 < r < 26. The expected number of spheres
(other than S;) centred within a rectangle of side lengths dx,; about the point
Xy = (%21, **+, x2)7, equals (n — 1) f(x,)dX,. Let S, denote such a sphere, and
let T2(x,, X2) be the intersection of the surfaces of S; and S,. Then Ty (X1, X;) is
the surface of a [k — 1] sphere of radius (82 — r%/4)'/?, whose centre and orientation
in &, are completely determined by x; and x,. Let p,(x;, xz) denote the probability
that the other n — 2 spheres do not completely envelop T,(x;, X») at least /
times.

Observe that with probability one, & is completely filled at least # times by
the n random [k] spheres, if and only if each set formed by the intersection 'of
the surfaces of every pair of spheres, is completely enveloped at least # times by
the remaining n — 2 spheres. That is, writing N, for the number of intersections
of the surfaces of two random spheres which are not enveloped at least # times,

(2.1) P(V,>0)=P(N,=1) < E(N,),

using Markov’s inequality. Now, the expected number of spheres centred within
a rectangle of side lengths dx,; about the point x,, equals nf (x,)dx;. Therefore

(2.2) E(N,) = L nf(x,) dx; L (n - l)f(x2)p2(x1, Xp) dX,.
Combining (2.1) and (2.2), we obtain
(2.3) P(V,>0) < (nb)® L . D2(X1, X3) dx; dX,,

where b = supxee, f (X), and where we define p,(x;, X;) = 0 if | x; — x5 | > 26.
If T,(x,4, Xx;) is not completely enveloped at least # times by the other n — 2
random spheres, then one of the following occurs:

(¥) no sphere surface intersects T5(xX;, X2), and the number of single spheres
which wholly contain T, (x;, X,) is fewer than /; or

(it) at least one sphere surface intersects T5(xX;, X,), and the intersection of
some sphere surface with T2(x;, X;) is not completely covered at least # times
by other random spheres.

Denote these events by E; (X1, X2) and E; (x;, X;), respectively. We shall handle
the two possibilities in turn.

For each z € &, let p(z) equal the probability that a single sphere placed at
random into & according to density f covers z. Let z, = z,(X1, X2) denote that
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point of T,(xX;, X,) whose first coordinate is greatest. (Indeed, any single point
of Ta(x1, X2) will do.) Then 1 — p(z;) dominates the probability that a single
sphere placed at random into %, according to density f does not intersect T5(x,,
X3). Therefore the probability that exactly m out of n — 2 spheres wholly contain
Ty (X, X2), and none of the other n — 2 — m spheres even intersect T5(X;, X;), is
dominated by

(n ;l 2)(anb)"‘{1 - p(z)}" ™2

Consequently,

f P{E(i) (Xl, Xz)} Xm dXz
FENHx;—xp| <20}

(2.4) = Yo (n ; 2)(anb)m f {1 — p(z2)}" "% dx; dx,
FEN{1x;,—xp| <25} )

< /b M1 + (na,)’™) {1 - p(z)}"" dx, dxe.

FEN{|x1—x5| <25}

Next we estimate
f P{E;)(x1, X2)} dx; dx,.
FEN{Ix;— x| <28}

Let x5 be any point in ; distant no more than é away from at least one point of
Ty (X1, X2). The expected number of [k] spheres (other than S; and S;) centred
within a rectangle of side lengths dx;; about x3, equals (n — 2) f(x3)dx3. Let S;
denote such a sphere, and let T5(x;, X2, X3) be the intersection of T5(x;, X) with
the surface of Ss. Then Ts(xX;, X2, X3) is the surface of a [k — 2] sphere whose
radius does not exceed 8, and whose radius, centre and orientation in % are
completely determined by x;, X, and x3. Write ps(X;, X2, X3) for the probability
that T5(x;, X,, X3) is not completely enveloped at least /# times by the remaining
spheres. Using the argument leading to (2.1) and (2.2), we may deduce that

P{E) (X1, X2)} < L nf(Xs) ps(X1, X2, X3) dXs,

k

where p3(xX;, Xz, X3) is defined to be zero if | x; — x| > 26 or if | x; — Xz | = 26
but x; is distant more than § away from all points of T>(x;, X2). Thus,

f P{E (%1, X)} dx; dx,
FEN{Ix1—xq | <20}
(2.5)

<nb Ling(xl, Xo, X3) dX1 dX2 ng.
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Combining (2.3), (2.4) and (2.5), we.obtain:

P(V,>0) =< (nb)2 f [P{E(i)(xl’ Xz)} + P{E(ii)(xl, Xz)}] dx; dx,

FEN{1x;—x5| =25}

< n’/b"1 + (na,)" '} {1 - p(z)}"7" dx, dx,

FIN{|x,—x,| <25}

+ (nb)? L . D3(X1, Xg, X3) dx; dx; dx;.

Another iteration of this argument would produce the estimate,

Lips(xi, Xg, X3) dX; dX; dX3

= /b1 + (na,) '} f {1 — p(z3)}"“? dx; dx, dx;
Z3

+ nb f pa(X1, X2, X3, X4) dX; dX, dX3 dX4,
R4

where z; = z3(x;, X;, X3) denotes that point of Ts(x;, X2, X3) whose first
coordinate is greatest; %; is the set of triples (x;, X2, X3) such that | x; — x| =
26 and x; is distant no more than é from some point of T5(x,, X2); %, is the set
of quadruples (x;, Xq, X3, X4) such that (x;, X, X3) € % and x, is distant no
more than § from some point of T3(x;, X2, X3); and p,(-) denotes the probability
that T (-) is not completely enveloped at least # times by the remaining spheres.
Reasoning in this way, we conclude that

P(V,>0)

< Lib* {1 + (na,) '} 23 n f {1 -p@)" """ dx, - dx;
(2.6) & o

+ (nb)* L DPr(X1, **+, X) dX; + -+ dXp,
k

where the constant L, depends only on /; z;(x;, - -, X;) equals that point of
Ti(x,, * -+, X;) whose first coordinate is greatest; pp(x;, * -, Xz) denotes the
probability that the surface of a certain sphere Th(X;, +*+, Xz),of k— (k— 1) =
1 dimension, is not completely enveloped at least # times by n — k spheres whose
centres are placed into %} according to density f; and %; denotes that subset of
%%, consisting of i-tuples (xy, - - +, X;) satisfying the condition

X; E%; |X1— X2| <26 and X; € % is distant

at most é from Tj_,(xy, -, Xj—;), for 3=<j=1i
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The surface of a [1] sphere consists of just two points. In the case of the [1]
sphere surface T,(X,, - -+, Xx), let these points be z) and z®. Then

Pe(X1, +*+, Xp) < Bia 3720 (n J_ k)Pj(Z“’){l — p(z®) ki

< 26 + (na,) ™Y Tk {1 — p(a®))rhr,

Substituting this estimate into (2.6), and writing z, for either z® or z® (precise
choice does not matter), we obtain:

P(V,>0)
2.7
< L:b*{1 + (na,)" '} Tk, n' L {1-p@z)"*"*dx, - dx;,

where the constant L, depends only on #

At this stage, the proofs in the cases f = 1 and f # 1 part company. Let us
suppose first that f # 1, and that na, — % but na, < (log n)? for large n. Choose
n > 0 so small that all the first and second derivatives of f(x) exist and are
bounded within the neighbourhood | x — m | = 39. If | x;, — m | > 2y then, for all
sufficiently large n, | z;(X;, ***, X;) + y — m| > n uniformly in 1 = i < k and
points X, - -+, X; and y such that (x;, -+, X;) € % and | y | < 6. Therefore

f {1 —p(z)}"F*dx, -+ dx;
ZN{|x,—m|>27}

(2.8) < {1 — a,infjx—m)>,f (X)}"*7*? f dx; -+ dx;
R

' i

=< Ciexp{—na,(1 + ¢)f(m)} L‘ dx; -+ dx;

for some ¢ > 0, where (here and below) C; denotes a generic positive constant not
depending on n. Note that

p(z) = J;qu f(z +y)dy.

For each x,, ---, Xx;, the set of all points x;;; € % distant no more than §
from Tj(x;, -, X;), has Lebesgue measure at most (48)*, for 2 < j < k — 1.
Furthermore, the set of points x, distant between u and u + du from x;, has
Lebesgue measure s,u”*"'du where s, denotes the surface [k — 1] content of a unit
[k] sphere. Therefore

26
f dx; -+ dx; < {(46)F} 25, f ub du
F; 0

= Cy(8%) ! = Csai".

(2.9)
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Combining this estimate with (2.8), we obtain:

(2.10) L,ﬂtlxl—m|>2n] {1 —-p)}"*"*dx, --- dx;
< Ciaiexp{—na,(1 + ¢)f(m)}.

Now assume that |x; — m| =< 27 Then for all sufficiently large n,

|zi(X1, +++, X;) +y —m| < 3p and |x; + y — m| < 3y uniformly in i and
points X, -, X; and y such that (x,, : -+, X;) € % and | y | < é. Furthermore,
| z;(x1, -« *, X;) — X; | < 26. Therefore

f f(z: +y) dy — f f(xi +y) dy‘ =G5 f dy = Cséa,
lyl=<é lyl=s |

yl=é
and
l J; | af(xl +y)dy — a,f(x;1)| < Cséa,,
yi=
whence
f {1 —p@)}"™* " dx, -+ dx;
ZiN{Ix;—m|=2q}
(2.11) < f {1 — anf(x1) + 2C56a,}" *“* dx, --- dx;
Z:N{lx;—m|=2n}

< Ceai? f | exp{—na,f(x)} dx,
|x—m|=2n
using the argument leading to (2.9). (Note that, under our assumptions on a,,
néa, — 0.) Since
f(x) = f(m) + (%)(x — m)"D(x — m) + r(x),

where r(x) = o(|x — m|?) as X — m and D is the positive definite matrix of
second derivatives defined just before Theorem 2, then

J:_ < exp{—na,f(x)} dx

(2.12) ~ exp{_nanf(m)} i<z exp{—(%)(x - m)TD(X - nl)}> dx

~ exp{—na,f(m)}(2r/na,)** | D |2
Substituting the estimates (2.10)-(2.12) into (2.7), we obtain:
P(V,>0) = C{l + (na,) 7'} T &1 n'laiexp{—na,(1 + ¢) f(m)}
(2.13) + nk/2a£,‘1'k/2exp{—na,,f(m)}]

< Cgn(na,)¥** ~2exp{—na,f(m)}.
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The right-hand side of this expression converges to zero if and only if (1.1) holds,
and so (1.1) is a sufficient condition for P(V, = 0) — 1. (Note that P(V, > 0) is
a monotone decreasing function of a,, and so our restriction that na, — « and
na, < (log n)? causes no difficulty.)

When f = 1, the argument following (2.7) can be simplified considerably. In
that case it follows from (2.7) and (2.9) that forn=k+ /7 —1and 0 < a, < ',

P(V,>0) = Dif1 + (na,) " "}(1 — a,)"* Tk n' L dx; -+ dx;

< Dyn(na,)* {1 + (na,)"'}(1 — a.)",

where (here and below) D, denotes a positive constant depending only on k and
Z Since P(V, > 0) < 1, the upper inequality in Theorem 1 follows immediately.
(Note that we are assuming na, > /)

The remainder of the proof consists in deriving lower bounds to P(V, > 0).
Since V, = V,I(V, > 0), then by the Cauchy-Schwartz inequality, (EV,)* <
E(V2)P(V,>0), or )

(2.14) P(V,>0) = (EV,)*/E(V2).
(See also Shepp, 1972a.) Let I denote the indicator function given by

I(x) = {1 if X is not covered at least # times
0 otherwise,

for x € &,. Then

(2.15) V,= L I(x) dx,

andifn=/

E{I(x)} = Y75 ('}){J;yls& fx+y) dy]f {1 - J;yls& f(x+y) dy}’

= Dsfl + (naninff)"l}{l - J; | 5f(x +y) dy} .

From this inequality and (2.15) we may deduce that if f =1,
(2.16) E(V,) =z D31 + (na,)"}(1 = a,)",
and if f # 1, if na, — ® and na, < (log n)?,

(2.17) E(V,) = Cio(na,) **'exp{—na,f(m)}.
(For (2.17), use the argument leading to (2.13).)
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Next observe that if | x; — x5 | > 26,
E{I(x,)I(x2)}

B Y S N f N d}"
(2.18) e i!j!(n—i—j)!{ 1z T F1HY) dY

j n—inj
X { f f(x2 +y) dy} {1 -2l f f(xa+y) dy} ,
lyl=é lyl=é

which is dominated by

(219)  Dufl + (na.)*"}(A = 2a,)"2“"V < Ds{l + (na,) 12 — a,)™
iff=1,n=2/-1and0<a, <%, and by

(2.20) C11(na,)*“~V*exp{—2na,f(m)}

if f # 1, na, — « and na, < (log n)% (For (2.20), use the argument leading to
(2.13).) Now suppose | X; — Xz | < 28, and let B denote the set of x € %, which
satisfy both | x; — x| = é and | x; — x| < é. Write A; for the set of x satisfying
| X; — x| =< 6, but which are not in B (i = 1, 2). Then

E{I(x,)I(x2)}

h
= (=1-h \/=1~h n! f
b BT S S = h =i =) { 5/ dy}

i J n—h—i—j
(2.21) X ‘{J; ) dy} {J; f(y) dy} {1 - fAuA s f(y) dy}

< bz(,_l) Zi;(l) z/=_0 -h 1 -h h+z+1a'l:{v(A )}z+1

n—h—i—j
. ‘{1 - f fy) dy} ,
A;UA,UB

where v(A,) denotes the content of A;. Note that v(4;) = v(A,).
It follows from (2.18)—(2.20) that

f Ef{I(x))I (Xz)} dx, dx,
201 x1—x,|>26}

- {Df,u + (na) P - @)™ if f=1
= (€11 (na,)® Y *exp{—2na,f (m)} otherwise.

(2.22)

Next we shall use (2.21) to derive a similar estimate for the integral over % N
{| X1 — x2| = 26}. Suppose first that f = 1, and observe that if | X, — X, | = 2us,
where 0 < u < 1, then

v(4A,) = an<2vk' ) f (1 — w?)* V2 gy < Deanu,
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where v, is the content of a [k] unit sphere. Furthermore,

f f(y)dy = a1 +2 ﬂi) f 1 - wd)* V2 gyt = q,(1 + Dyu).
A;UAUB Vg 0

Therefore if 0 <a, <% andn=2/-1,

n—h—i—j
f {U(Al)}i+j{l - f f(y) dY}’ dx, dx,
Z2N{]x,—xp| =26} A;UA,UB

1
(2.23) < Dgaiti+! f w1 — g (1 + Dou)} i dy
0

1
< Dyait*'(1 — a,)" f ut**lexp(—na,Diou) du
0
= Dlla£n+j+l(1 - an)"(nan)_(i+j+k)-
Substituting this estimate into (2.21), we see that
E {I (x)I (Xz)} dx; dx,

< Diza,(na,) {1 + (na.) "} — a,)™

Assume next that f # 1, and na, — « and na, < (log n)*. Using the argument
leading to (2.13) we see that in this case, the far left-hand side of (2.23) is
dominated by

1
Croaiti*t f dx f u”j*"‘lexp{—nf(x) dy} du
Zr 0 A;UA,UB

< C3aiti*l(na,) " 0++h f exp{—na,f(x)} dx

(2.24) Lgnuxl—les%l

=< Cuai*'(na,)"**Dexp{—na,f (m)}.

Substituting into (2.21) we find that

(2.25) Lgn”xl_xﬂsm E{I(x1)I(x,)} dx, dx;

< Cisan(na,)”*** 'exp{—na,f (m) }.
From (2.15), (2.22) and (2.24) we obtain
E(V?) = Digmax[{l + (na,) (1 = a,)", ax(na,) {1 + (na,)}(1 — a.)"
in the case f = 1, and from (2.15), (2.22) and (2.25),
E(V2%) = Ciemax[(na,)*“ "V *exp{—2na,f(m)}, a,(na,)’~***exp{—na,f(m)}]

in the case f # 1. Combining these estimates with (2.14), (2.16) and (2.17), we
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deduce that

(2.26) P(V, > 0) = Dyymin[n(na,)* {1 + (na,)*}(1 — a,)", 1]
iff=1, and

(2.27) P(V, > 0) = Cy;min[n(na,)***2exp{—na,f(m)}, 1]

if f # 1. Since we are assuming na, > / (note the first paragraph of Section 2),
then inequality (2.26) is equivalent to the lower bound in Theorem 1. The right-
hand side of (2.27) tends to zero if and only if condition (1.1) holds, and so (1.1)
is necessary for P(V,=0) — 1.

Acknowledgment. I am grateful to the referee for pomtmg out a careless
slip in my original formulation of Theorem 1.
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