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CORRECTION TO “WEAK AND L?-INVARIANCE PRINCIPLES
FOR SUMS OF B-VALUED RANDOM VARIABLES”

By WALTER PHILIPP
University of Illinois

The proofs of Theorems 1 and 2 of [11] contain several gaps which will be
corrected in this note.

1. Correction of the proof of Theorem 2. Let us start with Section 2 of
[11], containing the proof of Theorem 2. In Theorem 2 it was tacitly assumed
that the limit law G is nondegenerate. This has to be added to the hypotheses.

In 1982 an error was discovered in Theorem 5 of the paper [5] of Dudley and
Kanter which, as an immediate consequence, invalidates [11, Lemma 2.2]. For
1 < @ < 2 Dudley could easily fix the argument. However, for 0 < a < 1, Marcus
[9] disproved both [5, Theorem 5] and [11, Lemma 2.2] by an elegant counterex-
ample. A second gap in the proof of Theorem 2 is caused by the fact that the
proof of [6, Lemma 1.7] contains a flaw. This invalidates the proof of [11, (2.5)].
However, both [6, Lemma 1.7] and [11, (2.5)] are correct as they stand, as can be
seen by [11, (1.14)] and Karamata’s theorem.

We now correct these two gaps. We follow [11, Section 2] until the end of page
73, dropping Lemma 2.2 and its proof. In Lemma 2.3 relation (2.4) and its proof
are correct. We drop [11, (2.5)] and its proof and show directly that

(1) a(n) 'a(ne,) - 0.

Inspection of pages 74 and 75 shows that this is all that is missing in the proof of
[11, (1.14)].
To prove (1) we fix £ € N. Then by [11, (2.1), (2.3), and (2.4)]

(2) lim a(ﬁ)_la(n/k) =k-e

Hence there is a sequence {r(n), n > 1} with r(n) - oo and r(n) < n/(2k) for
n > n, and some n, such that

(3) a(r)'a(r(n)) - 0.

We also can assume ¢, < 1/(2k) for n > n,. Hence we can define 8, > 0 for
n > n, by

nd, + [r(n)] + [ne,] = [n/k].

Received July 1981; revised September 1985.

AMS 1980 subject classifications. Primary 60F05; secondary 60B10.

Key words and phrases. Invariance principles, domains of attraction stable laws, Banach space
valued random variables.

1095

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to &)

Wz

The Annals of Probability. RINGIY

WWW.jstor.org



1096 W. PHILIPP

Let
X,=a(n0,) " L f(x) = flb,),
B [n/k]
Yn = a(an) ( E f(xv) - f(b[ns"]));
v=nb,+[r(n)]+1
Z, = a(n/k)_l( Z f(x,) - f(b[n/k]))7
v<n/k
and
Yoi=a(n/k) 'a(nd,), 8, = a(n/k) 'a(ne,).
Since by (3)
n6,+[r(n)]
a(n)_l( Z(): f(x,) - f(b[,(n)])) — 0 in prob.
v=nb,+1

we have by a well-known [7, Theorem 17.2.1] mixing inequality uniformly for all
lt| <M, M>0

|| E exp(ity, X,) || E exp(it3,Y,,) | - | E exp(itZ,) |
nb,+[r(n)]
. ) y

(4)

ita(n/k)”' Y - 0.

v=nb,+1

< 16a(r(n)) + E|exp

Now X,, Y,, and Z, all converge in law to G f~! by [7, Theorem 18.1.1]. Thus
|E exp(itX,)| — exp(—c|t|*) for some ¢ > 0 and similarly for Y, and Z,. Let
{vy + 87, n’ € N} be any subsequence of {y + 87 n > 1}. Then there is a
subsequence n’” such that (vy,, 8,.) = (v, 8). Then by (4) y < o0, § < o0, and
y*+8%=1.Hence vy, + 8> 1lasn - «.So

limsupa(n/k) 'a(ne,) < 1.

This together with (2) implies (1) and hence [11, (1.14)].

To close the second gap in the proof of Theorem 2 we show that the only limit
laws G which can occur as limits of sums [11, (1.13)] are the stable ones. We need
the following simple fact.

LEMMA 1. Let X, and X, be B-valued random variables with #(X,) - A
and Z(X;) - p. Suppose that the o-fields %, and ¥, generated by X,, and X,
respectively, satisfy

a(n) = sup{|P(C N D) - P(C)P(D)|: C€ #,De ¥, —0.
Then
L(X,+ X)) > A*p.
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Proor. For B = R this follows at once from
|Eexp(it(X, + X)) — Eexp(itX,)Eexp(itX,)| < 16a(n), tE<R,

(see [7, Theorem 17.2.1]) and letting n — . For general B we first note that
{Z£(X,+ X)), n=1} is tight and thus relatively compact. The result follows
since L(f(X,+ X)) = (Ao f H*(uof")=(A*p)o f ! foreach f € B*. O

Suppose now that [11, (1.13)] holds. Fix &2 > 1 and write 7(n) := [log n]. We
define blocks H; and I; (1 <j < k) of consecutive integers of length n and 7(n),
respectively, leaving no gaps between them, i.e.,

Hy=((n+1(n))(j - 1), n + r(n)(j - 1)],
Li=(nj+ 7(n)(J - 1),(n + 7(n)) ],
S(n)= ¥ x, Tin)=Yx,

-t <
X = a(n)"'(8(n) - b,).
By (1.14) a(r(n))/a((n + t(n))k) — 0. Hence by (1.13) with 7(n) instead of n
L(a((n+7(n))k) (T(n) = byy)) = 8, 1<js<k,

the point mass at 0. Thus we can discard the sums over the short blocks I,
1 <j <k By[l1, (1.13)] L(X{) > G, 1 <j < k. We apply Lemma 1 %k —
times and obtain

g(zx,gf))—»a* . xG.

J=sk

On the other hand, since the short blocks can be discarded ¥;_,XS” can be
approximated by a properly centered multiple of (S, ,(n)r = Bn+r(nye)/ (1 +
7(n))k). We apply [11, (1.13)] and the convergence of types theorem and obtain

the result (see [2, page 200]).

2. Correction of the proof of Theorem 1. The proof of [11, Theorem 1]
contains a serious flaw, kindly pointed out to me by H. Dehling. It is the result of
an error in the calculation yielding relation [11, (3.6)]. This should read

maxa(v)/a(t,) < 2e*°.
v<ny,

As a consequence in [11, (3.12)] and [11, (3.13)] the exponents 6 /a will have to be
replaced by 2/a yielding the bound & in Lemma 3.2, a bound far too large for
completion of the argument on [11, page 79] (see [11, (3.31)] and [11, (3.32)]).

For a = 2, the Gaussian case, the gap is easily filled because instead of [11,
(3.1)] we can use the Fernique-Landau-Shepp theorem and obtain

G{x: ||x|]| = A} £ c.exp(—c,A\?)
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for some positive constants ¢, and c¢,. Hence subject to the above corrections
Lemma 3.1 and the rest of the argument remain valid as they stand.

In the case of Gaussian limit laws this method has been employed in many
papers to prove invariance principles. It is based on estimates of the Prohorov
distance of the laws of the properly normalized partial sums and the limit law
combined with an application of Strassen’s theorem on joint laws with given
marginals. In an effort to repair the proof of [11, Theorem 1] for a < 2 Dabrow-
ski, Dehling, and I refined this method, just mentioned. This refined method was
presented in a recent paper [4] where it was used to give a much simpler proof of
a theorem of de Acosta [1]. Here, however, I shall not present the proof of [11,
Theorem 1] via the refined method since it is now more economical to apply de
Acosta’s theorem [1] directly. Moreover, this new proof is also interesting from a
methodological point of view since for a long period of time it was unknown
whether or not [11, Theorem 1] could be derived from de Acosta’s theorem [1].

We follow the proof of [11, Theorem 1] in Section 3 until the end of the proof
of Lemma 3.2 replacing &* by £ * on the right side of the display just above
Lemma 3.1 and making the corrections mentioned in the first paragraph of this
section. In addition, the factors ; and  in (3.12) and the factor ; in the last line
of (3.13) should read , §, and 4, respectlvely Also in (3.7) t,_, should read ¢, ;.
Also note that (3.5) and (3.7) remain valid if we replace the exponent on the right
side of these two inequalities by 18/a.

We first construct two sequences {x;, j > 1} and {y;, j > 1} of independent
identically distributed random variables with the proper law and depending
perhaps on ¢ such that

(5) P{ max ”a(n) S ‘1/"7}” > 68} <.
j<n

For this purpose we consider the triangular array {a(nk)“xtk +jp LEJ S ny,

k =1,2,...}. By de Acosta’s main result [1] there exists without loss of gener-

ality (in the sense of Strassen) a triangular array {y,, 1 <j<n, k=12,...}

of independent identically distributed stable random variables of index « such

that
> e‘*} <&

for all £ > k,. Of course, we can assume also without loss of generality that the
2n,-dimensional vectors {(x; .1,---, %, s Ye1s---s Ve, )» £ =1,2,...} are inde-
pendent. Each integer » can be represented uniquely in the form » = ¢, + j with
1 <j < n,. We now define the desired sequence {,, » > 1} by setting y, = ;.
Then (6) can be rewritten as ’

= 86} < e,

a(ng) "L x4 = 1k L Y
Jsh J<h
Let n > t), with M, = k, + s,define M by ¢, , < n < tM,andputm M —s;
here s is defined in [11, (3.4)]. We replace [11, (3.28)] by (as in [11] we write

-1 _
a(n,) Z Xy+j — Ny /e Z Yrj
Jjsh Jsh

(6) P{ max

1<hzn,

(7) P{ max

l1<hzn,
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8(j) = §; and T(j) = T))

P{maxa(n)"'S(j) - n"T(j)] 2 6¢)

<P{ max " (n)~'S( ])”> 28} +P{ max |[n”VoT(j)| = s}

J=<tn ISt

+ )> P{ max a(nk) )y Xtprj — RAD) Yep+jl| 2 E/S}
m—-1<k<M hsny j=sh j=<h

Px P{|a<nk>a<n>‘ (ra/m) || 5, = 20n vo/s)
m—1<k<M =y

=1+ 1II +III + IV (say),

since by [11, (3.7) and (3.5)] a(n) = a(n,) for M — s < k < M. By [11, (3.4)]
t < n,, and thus by [11, Lemma 3.2]

m—-1=
I< P{ max [|S(/) | = ea(tM)} <6 I<e
J=ny
Since
(8) s < e b

we obtain from (7) above III < &. Finally, by [11, (3.5) and (3.7)] |a(n,)a(n) ™! —
(n,/n)"/% < ¥ Hence by Ottaviani’s inequality (see the argument at the
beginning of the proof of Lemma 3.2) and by (8) we also obtain IV < &. This
proves (5).

The sequences {x,, » > 1} and {y,, » > 1} constructed may still depend on e.
. In [11], this was overlooked, as was kindly pointed out to me by de Acosta. But
using a device of Major [8], also used in [10] in a similar context, we easily can
construct universal sequences of {x,, » > 1} and {y,, » = 1}.

For given p > 1 choose sequences {x{?), » > 1} and {y!?’, » > 1} of indepen-
dent random variables with partial sums S(”) and T}P), respectively, such that
for all n = ny(p)

9) P{ max ||a(n)_]S,f,’” - n_l/“T,g”’” > 2"’} <27P,
k=n .

Moreover, we assume without loss of generality that the x sequences are indepen-
dent from one another and that the y sequences are independent from one
another. Put r(p) = ¥, _ ,ny(q). We now define

q=p

(10) x,=xP , and y,=yP  ifr(p)<v<r(p+1).

Then {x,, » > 1} and {y,, » > 1} are sequences of independent random variables

with common distribution F and G, respectively, satisfying [11, (1.7)]. Indeed, let
¢ > 0 be given and let p, be such that 2770 < &. Let N, be so large that

P{a(n)_1 max ||S,|| > s} <e

k=r(py)
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and

P{n“/" max ||| > s} <e

k=r(py)

for all n = N,. Now let n > max(N,, ny(p,)) be given and choose M such that
r(M) < n £ r(M + 1). Then by (9) and (10)

max la(n)_IS,z — n~VeT, “ < a(n) max ||S,]|+ n~"* max ||T,|
k<n k<r(py) =r(py)
M-1 J . .
+ X max Y (a(n)'x, —nVy,
P=py+1 r(p)sjsr(p+1) v=r(p)+1

-1
+ S(M) _ p—1/ap(M)
max[a(n)"'S{0 - ntemn)|
M
<2+ ) 27P<4e
pb=py

except on a set of probability < 4e.

3. Remarks on Theorem 4. In Theorem 4 of [11] only the Gaussian case
can be salvaged. However, Major’s trick no longer can be applied. Modifying the
argument, Dabrowski [3] has been able to repair the proof of Theorem 4 in the
Gaussian case.

Samur [12] gives a counterexample to Theorem 4, non-Gaussian part, and
comments about modifications possibly needed in the Gaussian case.

We conclude with a remark.

As noted in [11], page 71, Theorem 2 of Simons and Stout [13] is contained in
[11], Theorem 1, as a special case. However, it might be interesting to observe
that their proof can be augmented so as to yield their result in the stronger form
[11, (1.7)]. Indeed, in their proof the sequences {x;, j = 1} and {y, j 2 1} are
constructed in such a way that {(x;, ;), j 2 1} is a sequence of independent
random vectors in R2. Hence a combination of the conclusion of their theorem
with Ottaviani’s maximal inequality applied to the sequence {a(n) 'x; — n” 'y,
1 <j < n} yields their result in stronger form [11, (1.7)]. It is already observed in
their paper that the case a = 2 cannot be treated with their method since it
would contradict the central limit theorem.
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