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A NOTE ON FELLER’S STRONG LAW OF LARGE NUMBERS

BY YuaN SHIH CHOW' AND CUN-HUI ZHANG
Columbia University and SUNY at Stony Brook

Let X,, n>1, be iid. random variables with common distribution
function F(x) and v,, n > 1, be a sequence of constants such that y,/n is
nondecreasing in n. Set S, = X; + - -- +X,,. The main theorem of this paper
gives an integral test which determines the infinite limit points of {S,/y,}.
This result extends and combines Feller’s (1946) strong law of large numbers
(SLLN) and the results of Kesten (1970) and Erickson (1973).

1. Introduction. Let X, X,, n > 1, be independent identically distributed
random variables with common distribution function F(x). And let v,, n > 1, be
a sequence of positive constants such that y,/n is nondecreasing in n. Then, the

sequence S, = X, + --- +X,, n > 1, is called a random walk and the normalized
random walk which we shall study is {S,/7,}
Define
y(x)=1v,, x=n, n>0, y,=0

=%+ (Yue1 — Yu)(x — 1), n<x<n+1l, n>0.

And let y~'(-) denote the inverse function of y(-). Set ¢ = EX/(limvy,/n) if
E|X| < o0 and ¢ = 0 otherwise. Feller (1946) obtained the following remarkable
result

P{limS,/y,=c} =1 iff Ey (]X]) < o
iff P(limsup|S,/v,| < o0} =1,

(1.1)

where iff stands for if and only if.

However, as far as limsupS,/vy, and liminfS,/y, are concerned, Feller’s
strong law of large numbers does not cover the case where Ey (| X|) = oo.
Define

m,(x) = /()"P{X+ >t}dt, x*=max(x,0),

m_(x) = /xP{X_ >t} dt, x~ = max(—x,0),
0 .

J.(v) =f()wmin(y—l(x),x/m_(x))dF(x),

and

J (y) = /wmin(y_l(x),x/m+(x)) d(1 - F(—x)).

0
The following theorem gives an integral test which extends (1.1).
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THEOREM 1. [No assumption on F(x)]
(i) J,(v) = oo iff P{limsupS,/y, = o} = 1.
(i) J _(v) <dJ (y) = w0 iff
P{liminf S, /vy, = iminf(|X,| + --- +|X,])/v,}
= P{limsupS,/y, = o0} = 1.
(i) J,(v) + J_(y) < 0 iff Ey'(|X]) < c0.

REMARK. Similar statements may be made, by symmetry, about the case
where J _(y) = oo or the case where J,(y) < J_(y) = . It follows from (1.1)
that (iii) is implied by (i). However, (iii) is purely an analytic fact and a proof of
(iii) is given in the next section by a simple nonprobabilistic argument.

Kesten (1970) and Erickson (1973) studied the case where y, = n and obtained
similar results. The integral test in Theorem 1 is the same as that in Theorem 2
of Erickson (1973) for vy, = n. Like Kesten (1970), Theorem 1 is obtained by
investigating the positive and negative contributions to the random walk {S,}
with respect to the sequence v,,. In fact, we have the following stronger

THEOREM 2. Suppose that either E|X| = oo or limy,/n = c. Then, one of
the following alternatives must prevail:
(i) J,(y) = o0 and P{limsup X, /(y, + X; + - +X,) =00} =1;
(i) J,(y) < o0 and
P{lim(X; + -+ +X)/(v, + X7 + -+ +X,)=0} = 1.

Theorem 1 and Theorem 2 will be proved in Section 2. We have two corollaries
below which follow easily from Theorem 2.

COROLLARY 1. Suppose that E|X| + limy,/n = co. Then, J  (v) < o iff

Sn/yn = (_ Z Xi‘/‘Yn

i=1

(1 +0(1) +0(1) a.s.

COROLLARY 2. Suppose that limy,/n = oo. Then, it is impossible for any
random walk to have

(1.2) — o0 < liminfS,/y, <0 a.s.

Erickson (1976, page 818) pointed out that it is impossible to have
0 <liminfn™*S, < o0 a.s.fora <1.
Actually, it follows from his argument that it is impossible for any random walk
to have
(1.3) 0 < liminfS,/b, < o a.s. for b, > 0 and lim b,/n = 0.
Corollary 2 is the analogue of (1.3) for limy,/n = .
2. Proofs. Lemma 1 gives an inequality for truncated expectations of partial

sums of i.i.d. nonnegative random variables. The inequality has its own interest
and may be used for other purposes.
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LEmMMA 1. Let Y,Y,,...,Y, be i.i.d. nonnegative random variables. Set
S, =Y + - +Y, andm(x) = [§P{Y > y} dy. Let C > 0 be a constant. Then

E min(8S,, C) < min(C, nm(C)) < 16E min(S,, C).
Proor. Let S, =X min(Y;, C). We shall discuss two cases, .nm(C) > 3C
and nm(C) < 3C. For the first case, nm(C) = uC > 3C, '
P(S,<C} =P(ES,—- S, > (u—-1)C}
< (u—-1)"2C2rE(min(Y, C))’ < u/(u - 1)° < 3/4,
E min(S,,C) = CP{S, > C} > C/4,
C < 16E min(S,, C).

For nm(C) = uC < 3C,

nm(C) = ES;

< 8E min(S,,C) + ES/I{S; > 8C},

ES;I{S; > 8C)} <(nE(min(Y,C))* + (nm(C))’) /(8C)
<(Cnm(C) + 3Cnm(C))/(BC) =nm(C)/2,
nm(C) < 16E min(S,,C).

The inequality in the other direction is obvious. O

We shall study the ratio of two independent nonnegative random walks
instead of the ratio of the positive and negative contributions of the random walk
(S, n > 1.

THEOREM 3. Let {W,} and {V,} be two independent sequences of i.i.d.
nonnegative random variables. Suppose that EW, + EV, + limy,/n = co. Then
the following statements are equivalent:

@) im(W, + --- +W)/(y, + V; + --- +V, ) =0 a.s;

(ii) limsup(W, + -+ +W,)/(v,+ V; + --- + V) < 00 a.s,;
(iii) limsup W, /(y,+ Vi + --- + V) < © a.s;
(iv) T2 \P(0W, >y, + V, + -+ +V,} < oo for some § > 0;
(V) ZX_\P(6W, >y, + Vi + -+ +V,} < o0 forall § > 0;
(vi) femin(y~ Y(x), x/[§P{V, > t} dt) dP(W, < x} < oo.

ProoF. It suffices to prove (iii) = (iv) = (v) = (vi) = (iv) = (i) since it is
obvious that (i) = (ii) = (iii). .
* (iii) = (iv). There are constants § > 0 and & < oo such that

P{U[8W;l>yn+Vl+---+V;]}sl—8<1.
n=~k
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Set
An=[8vVn>‘Yn+Vl+ e +V;t]’

AnAn+m c An[8m+m > Tm + ‘/n+l + .- +‘/;z+m]’

P{AnJQIAij} < P{A,,}P{ngAjk} < P{(A,}(1-9),

N N © c
6 Z P{Ank+i} =< Z P{Ankﬂ‘l: U A(n+j)k+iJ } < 17 i= 1""’ k.
n=1 1

n=1 Jj=

(iv) = (v). Since y(2n) > 2y(n), we have

Y P28W,> vy, + Vi + --- +V )}

n=1

o0
<1+2Y P(20W,,>y(2n) + V, + -+ +V,,}

n=1

<1+4) PW,>vy, +V,+ - +V,}.

n=1
(v) = (vi) = (iv). Let T = inf{k: S, > C}, S,=X",V,, and S/ =
Y*_ min(V,, C). Then, it follows from Wald’s lemma that

[ “P(V, > t} dtE min(T, n) = ESucr. m»
0
min(S,, C) < Slinr, ny < 2min(S,,C),

n—1
Emin(T,n) =1+ ) P{V,+ --- +V, < C}.
k=1

Therefore, by Lemma 1,
Y P(W, >y, + Vi + - +V,)

n=1

<7 ¥ P+ +V,<x)dP(W, <x)

0 y=y(n)<x
< 2]wmin(y‘l(x),x/fo{Vl > t) dt) dP{W, < x)
0 0

<2+32f ¥ PVi+- +V;<x)dP(W, <x)

0 y=y(m)<x

<32+32[ ¥ PV, + - +V, +y, <22} dP(W, <x)
0 n=1

e o]
=32+32) PR2W, >y, + V. + -+ +V ).

n=1
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(iv) = (i). We shall prove (v) = (i) instead.
S P(W, + W,) > v, + Vi + - +V,)

n=1

<1+2Y P(8(W, + W,) >y(2n) + V; + -+ + V. }

n=1

oC
<1+2Y P(8W, >y, + V, + - +V,}
n=1

oC
+2 Y P(dW, >y, + V, + .-+ +V,}
n=1
< 00.
Let T(M) =inf{n: y,+ V,+ -+ +V, + M = §W, + W,)}. Then, by (v),
ET(M) < ET(0) < oo and we can choose large M such that ET(M) < 2. Set

T, = T = T(M),
T = lnf{_] ‘Yj+ Vk+1 + o +Vk+j+ M> 8(‘/V2n—1 + vv?n)}

on {T,_, = k}, and

n—1

T =T,  +T™, n=23,....

Then, by the strong law of large numbers, there exists an integer-valued random
variable N such that

T,=T"+---+T™<2n -1 foranyn>N.

Since v,/n is nondecreasing,

YW(TH) + - +y(T™) < y(T,) <y(2n—-1) foranyn =N,

(W, + - +W,,)<nM+y2n—-1)+ Vi + - +V,,,, n=N.
By the condition that EW, + EV, + limy,/n = oo,
M= (y,+Vi+ - +V,+ W+ - +W,)o(1) as.
Hence,
limsup(W, + -+ +W,) (1, + Vi + -~ +V,) < 1/8 as.

And (i) follows because that & is arbitrary. O

PROOF OF THEOREM 2. We may assume that P(X > 0} # Oand P{X < 0} #
0. Let

T=T, =T® =int{k: X, >0}, T,=S,=0,
T =inf{k>0: X, >0}, T,=T,_,+T™, nx2,
and
W,=X., V,=—(S, -8, -W,), n=x1l

Since T‘™ are copies of T, (W,,V,), n > 1, are i.i.d. random vectors [see Chow
and Teicher (1978, page 136, Lemma 3)]. It is not difficult to find that W, is
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independent of V| [see also Kesten (1970, middle of page 1185)].
P{W, > t}=P{X>t}/P{X>0}, EW,>EX™,

(2.1) T
V,= Y X,, EV,>EX,
n=1
X T
[P(V, > t}dt = Emin(V,, x) < E ¥ min(X, ,x)
0 n=1
(2.2) = ETE min( X, x),

P(T > n} = (P(X <0))",
ET <o and X, < V.
Therefore, by (2.1) and (2.2),
23) J(v) < oo
iff

: /““’min(y“(x),x/foxp{v1 > t) dt) dP{W, < x} < o0.

Let % be an integer with ET < k. By the strong law of large numbers.
P{T, > kn,i.0.} =0,
limsup X,/ /(v, + X; + -+ +X,)
> limsupW,/(¥(T,) + V; + -+ +V,)
> limsupW,/(y(kn) + V, + -+ +V,,)
> limsupW,,,. /(y(kn + i) + V,+ -+ +V,,.,) foranyi
= limsupW,/(v,+ V, + --- +V,) as.
It follows from Theorem 3(iii), (vi), and (2.3) that
(2.4) P{limsup X, /(y, + X; + -+ +X,) =00} =1 if J,(y) = 0.
Similarly,
limsup(X; + -+ +X)/(v, + Xy + -+ +X,,)
< limsup(W, + -+ + W,)[(¥(T,_)) + Vy + -+ +V,_))
< limsup(W, + - + W)[(v, o + Vo - +V,)
= limsup(W, + -+ + W,)[(y, + V, + -+ +V,) as.
And it follows from Theorem 3(i), (vi), and (2.3) that
P{limsup(X; + - +X)/(v, + X; + -+ +X,)=0} =1,
if J,(y) < oo. This completes the proof.

PROOF OF THEOREM 1. (i) and (ii) follow easily from Theorem 2 and Corollary
1. Since J ,(y) + J_(y) < Ey~'(|X|), we only need to prove the only if part of
(iii). Suppose that

(2.5) J(y) +J_(v) < 0.
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Since Ey (| X]) < Yy (1)[E|X] + 1], we can further assume that E|X| = oo. Set
(2.6) h(x) = min(y“(x),x//xPﬂXl > t) dt).
0

Then,
th(x) dP{|X| < x)
0

(2.7) = [“min(y'(x), ¥/(m,(x) + m_(x))) dP{ X| < z)

<J.(v) +J_(y) <o by(25).
Since y(x)/x is nondecreasing,
(2.8) h(x) is nondecreasing and h(x)/x is nonincreasing.
Choose x, so that [*h(x)dP{|X| < x} < 1/2. Then by (2.8)

f()yP{|X| > t)dt = [)wmin(t, y)dP{|X| < t)

<xo+y(h(3) [ h(8) dP(IX| < t}.
Therefore, since E|X| = oo,
Y
h(y)y“j(; P(|X|>t}dt <xoh(y)/y +1/2>1/2

and
h(y) =y '(y) foralllarge y.
This and (2.7) finish the proof.
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